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Abstract

The extraction of bio-molecular events
from text is an important task for a number
of domain applications such as pathway
construction.  Several syntactic parsers
have been used in Biomedical Natural
Language Processing (BioNLP) applica-
tions, and the BioNLP 2009 Shared Task
results suggest that incorporation of syn-
tactic analysis is important to achieving
state-of-the-art performance. Direct com-
parison of parsers is complicated by to dif-
ferences in the such as the division be-
tween phrase structure- and dependency-
based analyses and the variety of output
formats, structures and representations ap-
plied. In this paper, we present a task-
oriented comparison of five parsers, mea-
suring their contribution to bio-molecular
event extraction using a state-of-the-art
event extraction system. The results show
that the parsers with domain models using
dependency formats provide very similar
performance, and that an ensemble of dif-
ferent parsers in different formats can im-
prove the event extraction system.

Introduction

}@is.s.u-tokyo.ac.jp

task (Kim et al., 2009). By contrast, the results
did not indicate a clear preference for a particular
parser, and there has so far been no direct compar-
ison of different parsers for event extraction.

While the outputs of parsers applying the same
out format can be compared using a gold standard
corpus, it is difficult to perform meaningful com-
parison of parsers applying different frameworks.
Additionally, it is still an open question to what ex-
tent high performance on a gold standard treebank
correlates with usefulness at practical tasks. Task-
based comparisons of parsers provide not only a
way to asses parsers across frameworks but also a
necessary measure of their practical applicability.

In this paper, five different parsers are com-
pared on the bio-molecular event extraction task
defined in the BioNLP 2009 Shared Task using a
state-of-the-art event extraction system. The data
sets share abstracts with GENIA treebank, and the
treebank is used as an evaluation standard. The
outputs of the parsers are converted into two de-
pendency formats with the help of existing conver-
sion methods, and the outputs are compared in the
two dependency formats. The evaluation results
show that different syntactic parsers with domain
models in the same dependency format achieve
closely similar performance, and that an ensemble
of different syntactic parsers in different formats
can improve the performance of an event extrac-

Bio-molecular events are useful for modeling andtion system.

understanding biological systems, and their aus
tomatic extraction from text is one of the key
tasks in Biomedical Natural Language Process-

Bio-molecular Event Extraction with
Several Syntactic Parsers

ing (BioNLP). In the BioNLP 2009 Shared Task This paper focuses on the comparison of several
on event extraction, participants constructed evergyntactic parsers on a bio-molecular event extrac-
extraction systems using a variety of differenttion task with a state-of-the-art event extraction

parsers, and the results indicated that the use afystem. This section explains the details of the
a parser was correlated with high ranking in thecomparison. Section 2.1 presents the event ex-
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traction task setting, following that of the BioNLP nn pre pobj cc
2009 Shared Task. Section 2.2 then summa-
rizes the five syntactic parsers and three formats
adopted for the comparison. Section 2.3 described
how the state-of-the-art event extraction system of
Miwa et al. (2010) is modified and used for the
comparison.

NFAT/AP-1 complex formed only with P and P2

T A

nsubj dep conj

Figure 1: Stanford basic dependency tree
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2.1 Bio-molecular Event Extraction root NFAT/AP-1 complex formed only with P and P2
. H 1
The bio-molecular event extraction task consid- vyt },I-O/D' EN/,

ered in this study is that defined in the BioNLP

2009 Sha.red Task (Kim et al., 206_9)I'he shared . Figure 2: CONLL-X dependency tree
task provided common and consistent task defi- noun_argl orep_argl2 prep_argl2
nitions, data sets for training and evaluation, and /a_rE.\ argl arg2
evaluation criteria. The shared task consists of ¥ YA

three subtasks: core event extraction (Task 1),
augmenting events with secondary arguments verb_argl adj_argl coord_argl2 coord_argl2
(Task 2), and the recognition of speculation and argl  arsl argl arg2
negation of the events (Task 3) (Kim et al., 2009). _ _

In this paper we consider Task 1 and Task 2. The  Figure 3: Predicate Argument Structure

shared task defined nine event types, which can

divided into five simple events (Gerexpression, bm
Transcription, Proteirtatabolism, Phosphoryla- “CCG
tion, and Localization) that take one core argu-

ment, a multi-participant binding event (Bind- [RESEESS

ing), and three regulation events (Regulation, PosEbabbn { prB | i

itive_regulation, and Negativeegulation) that can Bikel (. ﬁ
take other events as arguments. oA
In the two tasks considered, events are repr

sented with a textual trigger, type, and arguments,

where the trigger is a span of text that states th&igure 4: Format conversion dependencies in five
event in text. In Task 1 the event arguments thaparsers. Formats adopted for the evaluation is
need to be extracted are restricted to the core aghown in solid boxes. SD: Stanford Dependency
guments Theme and Cause, and secondary argfgrmat, CCG: Combinatory Categorial Grammar

ments (locations and sites) need to be attached futput format, PTB: Penn Treebank format, and
Task 2. PAS: Predicate Argument Structure in Enju for-

mat.

NFAT/AP-1 complex formed only with P and P2

2.2 Parsers and Formats

Five parsers and three formats are adopted foC&C) (Rimell and Clark, 2009) and the Enju
the evaluation. The parsers are GDep (Sagae arghrser with the GENIA model (Miyao et al.,
Tsujii, 2007¥, the Bikel parser (Bikel) (Bikel, 2009¥. The formats are Stanford Dependencies
2004§, the Charniak-Johnson reranking parser(SD) (Figure 1), the CoNLL-X dependency for-
using David McClosky’s self-trained biomedi- mat (Figure 2) and the predicate-argument struc-
cal parsing model (MC) (McClosky, 2000)the  ture (PAS) format used by Enju (Figure 3). With
C&C CCG parser, adapted to biomedical textthe exception of Enju, the analyses of these parsers
were provided by the BioNLP 2009 Shared Task

http://www-tsuijii.is.s.u-tokyo.ac.jp/

GENIA/SharedTask/ organizers. Analysis of system features in the task
*http://www.cs.cmu.edu/ ~sagae/parser/ found that the use of parser output with one of
gdep/ -
Shttp://www.cis.upenn.edu/ ~dbikel/ Shttp://svn.ask.it.usyd.edu.au/trac/
software.html candc/
4http://www.cs.brown.edu/ ~dmcc/ Shttp://www-tsuijii.is.s.u-tokyo.ac.jp/
biomedical.html enju/
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the formats considered here correlated with higiormance on this data. However, it does not in-
rank at the task (Kim et al., 2009). A number of validate comparison within the dataset. We fur-
these parsers have also been shown to be effectitier note that the models do not incorporate any
for protein-protein interactions extraction (Miyao knowledge of the event annotations of the shared
et al., 2009). task.

The five parsers operate in a number of different
frameworks, reflected in their analyses. GDep is 2.3 Event Extraction System

native dependency parser that produces CONLLi'h by Mi | (2010) is ad df
X-format dependency trees. MC and Bikel are e system by Miwa et al. ( ) is adopted for

phrase-structure parsers, and they produce Peﬁlﬂe evaluation. The system was originally devel-

Treebank (PTB) format analyses. C&C is a deepOped for finding core events (Task 1 in the BioNLP

parser based on Combinatory Categorial Gramgoq9 Shared Task) using Enju and GDep with the
mar (CCG), and its native output is in a CCG_natlve output of these parsers. The system con-
specific forr’nat The output of C&C is converted sists of three supervised classification-based mod-

into SD by a rule-based conversion script (RimeIIUIeS: a trigger detector, an event edge detector,

and Clark, 2009). Enju is deep parser based 0ﬁmd a complex event detector. The trigger detec-

Head-driven Phrase Structure Grammar (HPSG?Or classifies each word into the appropriate event
the event edge detector classifies each edge

and produces a format containing predicate argugptes’ ¢ and tein int i
ment structures (PAS) along with a phrase struc- € weendanheven anl apro elré Into an alrgurT;_en
ture tree in Enju format. type, and the complex event detector classifies

To study the contribution of the formats in event candidates constructed by all edge combina-

which the five parsers output their analyses to tasEontS’ deciding betweerlll event a?d notn-event.h_The
performance, we apply a number of conversiongYSt€M USes one-vs-all support vector machines

between the outputs, shown in Figure 4. The EnngSVMS) for the classifications. )
PAS output is converted into Penn Treebank for- | N€ System operates on one sentence at a time,

mat using the method introduced by (Miyao et alqbuilding features for classification based on the
2009). SD is generated from PTB by the StanSyntactic analyses for the sentence provided by
ford tools (de Marneffe et al., 2006)and CoNLL-  the two parsers as well as the sequence of the
X dependencies are generated from PTB by uswords in the sentenpe, including the .target candi-
ing Treebank Converter (Johansson and Nugueg,ate- The features include the constituents/words

2007§. We note that all of these conversions canround entities (triggers and proteins), the depen-
introduce some errors in the conversion process, 9€ncies, and the shortest paths among the enti-
With the exception of Bikel, all the applied U€S- The feature generation is format-independent

parsers have models specifically adapted fofe9arding the shared properties of different for-
biomedical text. Further, all of the biomedical do- Mats, but makes use also of format-specific infor-

main models have been created with reference arf§ation when available for extracting features, in-
for many parsers with direct training on the dataCluding the dependency tags, word-related infor-
of (a subset of) the GENIA treebank (Tateisi et™ation (e.g. a lexical entry in Enju format), and
al., 2005). The results of parsing with these mogthe constituents and their head information.

els as provided for the BioNLP Shared Task are The previously introduced base system is here
used in this comparison. However, we note thaimproved with two modifications. One modifica-
the shared task data, drawn from the GENIA evention is removing two classes of features from the
corpus (Kim et al., 2008), contains abstracts thaPriginal features (for details of the original feature
are also in the GENIA treebank. This implies that'epresentation, we refer to (Miwa et al., 2010));
the parsers are likely to perform better on the text§Pecifically the features representing governor-
used in the shared task than on other biomedic#léPpendent relationships from the target word, and
domain text, and similarly that systems buildingthe features representing each event edges in the

on their output are expected to achieve best peomplex event detector are removed. The other
—_— modification is to use head words in a trigger ex-
http://www-nlp.stanford.edu/software/ pression as a gold trigger word. This modification
lex-parser.shtml .. .
8http://nip.cs.lth.se/software/ is inspired by the part-of-speech (POS) based se-
treebank _converter/ lection proposed by Kilicoglu and Bergler (2009).

39



The system uses a head word “in” as a trigger | BD | CD | CDP | CTD
word in a trigger expression “in the presence of” Task 1| 55.60| 54.35| 54.59 | 54.42
instead of using all the words of the expression.  Task 2| 53.94| 52.65| 52.88 | 52.76

In cases where there is no head word information

in a parser output, head words are selected heuri%—-f”;fbIe 1; S(?[on;pa:jrlzon ofdthe F-scqre tresulii wg[h
tically: if a word does not modify another word iherent stanford dependency variants on the de-

in the trigger expression, the word is selected as éelo_pment data S?t with the MC parser. Results fqr
asic dependencies (BD), collapsed dependencies

head word. CD), collapsed dependencies with tion of
The system is also modified to find secondar); ). collapsed dependencies with propagation o

arguments (Task 2 in the BioNLP 2009 ShareaconjunCt de_pendenmes (CDP), and collapsed trge
gependenmes (CTD) are shown. The best score in

Task). The second arguments are treated as ad- h task is shown in bold

ditional arguments in Task 1: the trigger detec-S3CN 1asK 1S ShO 0ld.

tor finds secondary argument candidates, the event

edge detector finds secondary argument edge can- /2"\ e Wit

didates, and the complex event detector finds year/ap-1 complex formed only with P and P2

prep_with

events including secondary arguments. The fea- \ A A \ A

tures are extracted using the same feature extrac- nsubj  dep conj_and

tion method as for regulation events taking pro-

teins as arguments. Figure 5: Stanford collapsed dependencies with

) _ propagation of conjunct dependencies
3 Evaluation Setting

Event extraction performance is evaluated usingamples are balanced by placing more weight on

the evaluation script provided by the BioNLP’09 the positive examples. The examples predicted

shared task organiz€ror the development data with confidence greater than 0.5, as well as the

set, and the online evaluation system of the ¥&sk examples with the most confident labels, are ex-

for the test data set. Results are reported underacted. The C-values of SVMs are set to 1.0.

the official evaluation criterion of the task, i.e. the  Some of the parse results do not include word

‘Approximate Span Matching/Approximate Re- base forms or part-of-speech (POS) tags, which

cursive Matching” criterion. Task 1 and Task 2 are required by the event extraction system. To

are solved at once for the evaluation. apply these parsers, the GENIA Tagger (Tsuruoka
As discussed in Section 2.2, the texts of the GEet al., 2005) output is adopted to add this informa-

NIA treebank are shared with the shared task dattion to the results.

sets, which allows the gold annotations of the tree-

bank to be used for reference. The GENIA tree4 Evaluation

bank is convertgd into the Enju format with Enju. Results of event extraction with the setting in Sec-
When the trees in the treebank cannot be converted, - 5 2 il pe presented in this section. Sec-

into the Enju format, parse results are used Ntion 4.1 considers the effect of different variants

stead. Thei?ENIA treebank_ is also converted_ INtQ¢ the Stanford Dependency representation. Sec-
PTB format™. The treebank is then converted O ion 4.2 presents the results of experiments with

the_ depgndenc_y formats Wi_th the conversions degitarant parsers, and Section 4.3 shows the per-
scribed in Section 2.2. While based on manua”yformance with ensembles of multiple parsers. Fi-

annotated gold data, the converted treebanks al}’?ally, the performance of the event extraction sys-

not always correctdge to conversion grrors'. tem is discussed in context of other proposed
The event extraction system described in SeCiethods for the task in Section 4.4.

tion 2.3 is used with the default settings shown in
(Miwa et al., 2010). The positive and negative ex-4.1 Stanford Dependency Setting

Shttp://www-tsuijii.is.s.u-tokyo.ac.jp/ Stanford dependencies have four different vari-
GEl(l)\lIA/SharedTask/downIoads.shtml ants: basic dependencies (BD), collapsed depen-
http://www-tsujii.is.s.u-tokyo.ac.jp/ i i i -
GENIA/SharedTask/eval-test.shtml dengles (CD),.coIIapsed depen_denues with prop
Uhttp-/icategorizer.tmit.bme. hu/ agation of conjunct dependencies (CDP), and col-
~illes/genia  _ptb/ lapsed tree dependencies (CTD) (de Marneffe and
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| BD | CD | CDP | CTD are not removed, possible explanations include er-

Task 1| 54.22 | 54.37 | 53.88 | 53.84 rors in typing or sparseness issues causing prob-
(-1.38) | (+0.02) | (-0.71) | (-0.58) lems in generalization for the types of non-basic

Task 2| 52.73 | 52.80 | 52.31 | 52.35 dependencies. While achieving a clear resolution
(-1.21) | (+0.15)| (-0.57) | (-0.41) of the results of the comparison between SD vari-

_ . ants requires more analysis, from a performance

T_able 2. Comparison of the F-Scor(_a result; WIthoptimization perspective the results present an un-

different Stanford dependency variants W'thOUtcompIicated choice. Thus, in the following eval-

dependency types. uation, the basic dependencies are adopted for all

SD results.

Manning, 2008). Except for BD, these variants do _
not necessarily connect all the words in the sen4.2 Parser Comparison

tence, and CD and CDP do not necessarily forrThesults with different parsers and different for-

a tree structur;.f Flgur:e 5 Sh_OWS_ an example OFnats on the development data set are summarized
CDP converted from the tree in Figure 1. To sey, Table 3. Baseline results are produced by re-

lect a suitable alternative for the comparative ex'moving dependency (or PAS) information from

periments, we first compared these variants as go harse results. The baseline results differ be-
pre!lmlnary experlment. Table 1 shows the Cor_n'tween the represetations as the word base forms
parison results with the MC parser. DependenmegnCI POS tags produced by the GENIA tagger for

are generalized b_y removiqg e_xpressions aftér “ use with the Stanford dependency and CoNLL-
of the dependencies (e.gwith” in prep.with) for 415 are different from those for Enju, and

better performance. We find that basic dependerbecause head word information in Enju format is

cigs give thg best performance to event eXtrf"lCtiorhsed. The evaluation finds best results for both
with little difference between the other varlants.tasks with Enju, using its native output format.

This result is surprising, as variants other than ba'However, as discussed in Section 2.3, the treat-

sic have features such as the resolution of ozt of the Enju format and the other two formats

junctions that are specifically designed for Prac-yre slightly different, this result does not necessar-

t'f:al applications. Howeyer, basic d_ependendenny indicate that the Enju format is the best alter-
cies were found to consistently provide best per

formance also for the other parseis
The SD variants differ from each other in two

native for event extraction.

Unsurprisingly, we find that the Bikel parser,

K the d q dth OIthe only one in the comparison lacking a model
ey aspects: the dependency structure and the gaapted to the biomedical domain, performs worse

pen_dency types.. To gain |nS|ght into why thethan the other parsers. For SD, we find best results
basic dependencies should provide better perforf—or C&C, which is notable as the parser output is

mance than othgr varla_mts, we performed an e)TJrocessed into SD by a custom conversion, while
periment attempting to isolate these factors by re;

. . . T MC output uses thale factoconversion of the
peating the evaluation while eliminating the de-

) . Stanford tools. Similarly, MC produces the best
pendency types. The results of this evaluation are.<.it for the CoNLL-X format. which is the na-
shown in Table 2. The results indicate that th )

Sive output format of GDep. Enju and GDep pro-

contribution of the dependency types to extractiorhuces comparable results to the best formats for

performance differs between the variants: the €Xboth tasks. Overall, we find that event extraction

Eec_tecilj perfocrlmance droopl) f's n;]ost n|<|)table df((:j)r th?esults for the parsers applying GENIA treebank
asic dependencies, an o_rt € collapsed depefli,yels are largely comparable for the dependency
dencies there is even a minute increase in P, mats (SD and CoNLL-X)

formance, making results for collapsed dependen-

. The results with the data derived from the GE-
cies best of the untyped results (by a very rlarrOV\NIA treebank can be considered as upper bounds

margin). While this result doesn’t unambiguously
. o . . for the parsers and formats at the task, although
point to a specific explanation for why basic de- )
conversion errors are expected to lower these

endencies provide best performance when types .
P P P yp ounds to some extent. Even though trained on

“Collapsed tree dependencies are not evaluated on e treebank, usmg the parsers doe_s not provide
C&C parser since the conversion is not provided. performance as high as that for using the GE-
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Task 1 Task 2
SD | CoNLL | PAS SD | CoNLL | PAS

Baseline| 51.05 - 50.42| 49.17 - 48.88
GDep - 55.70 - - 54.37 -
Bikel 53.29| 53.22 - 51.40| 51.27 -
MC 55.60| 56.01 - 53.94| 5451 -
C&C | 56.09 - - | 94.27 - -

Enju | 55.48| 55.74 | 56.57| 54.06| 54.37 | 55.31
GENIA | 56.34| 56.09 | 57.94| 55.04| 54.57 | 56.40

Table 3. Comparison of F-score results with five parsers in three different formats on the development
data set. SD: Stanford basic Dependency format, CoNLL: CoNLL-X format, and PAS: Predicate Argu-
ment Structure in Enju format. Results without dependency (or PAS) information are shown as baselines.
The results with the GENIA treebank (converted into PTB format and Enju format) are shown for com-
parison (GENIA). The best score in each task is shown in bold, and the best score in each task and format

is underlined.
Task 1 Task 2

c&C | MC Enju | C&C | MC Enju
SD | CoNLL | CoNLL | SD | CoNLL | CoNLL

MC | 57.44 - - 55.75 - -
CONLL | (+1.35)| - . (+1.24)| - -
Enju | 56.47 | 56.24 - 54.85 | 54.70 -
CoNLL | (+0.38)| (+0.23)| - (+0.48)| (+0.19)| -

Enju | 57.20 | 57.78 | 56,59 | 55.75 | 56.39 | 55.12
PAS | (+0.63)| (+1.21) | (+0.02) | (+0.44) | (+1.08) | (-0.19)

Table 4: Comparison of the F-score results with parser ensembles on the development data set. C&C
with Stanford basic Dependency format, MC with CoNLL-X format, Enju with CoNLL-X format, and
Enju with Predicate Argument Structure in Enju format are used for the parser ensemble. The changes
from single-parser results are shown in parentheses. The best score in each task is shown in bold.

NIA treebank, but in many cases results with thewith Predicate Argument Structure in Enju format.
parsers are only slightly worse than results withTable 4 summarizes the parser ensemble results.
the treebank. The results suggest that there is rel&¥e find that all ensembles of different parsers in
tive little remaining benefit to be gained for eventdifferent formats produce better results than those
extraction from improving parser performance.for single parser outputs (Table 3); by contrast, the
This supports the claim that most of the errors inresults indicate that ensembles of the same formats
event extraction are not caused by the parse e(MC + Enju in CoNLL-X format) or parsers (Enju
rors in (Miwa et al., 2010). Experiments using thein CoNLL-X and Enju formats) produce relatively
CoNLL-X format produce slightly worse results small improvements, may in some cases even re-
than for SD with the gold treebank data, which isduce performance. The results thus indicate that
at variance with the indication from parser-basedvhile a parser ensemble can be effective but that it
results with MC and Enju. Thus, the results do notis important to apply different parsers in different
provide any systematic indication suggesting thaformats.

one dependency format would be superior to the Taple 5 shows detailed results with three parsers
other in use for event extraction. with three different formats. The ensembles sys-
tematically improve F-scores in regulation and the
overall performance (“All"), but the ensembles
The four parser outputs were selected for the evalean degrade the performance for simple and bind-
uation of a parser ensemble: C&C with Stan-ing events. Different parser outputs are shown
ford basic Dependency format, MC with CoNLL- to have their strengths and weaknesses in differ-
X format, Enju with CoNLL-X format, and Enju ent event groups. The use of Enju, for exam-

4.3 Event Extraction with Parser Ensemble
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\ Simple \ Binding \ Regulation | All
Task 1

BL-E | 75.85/71.09/73.39 40.32/38.17/39.22 30.65/48.16 / 37.46 46.12 / 55.60/50.42
BL-G | 76.03/73.48/74.73 40.32/38.17/39.22 33.50/45.95/38.7% 47.74 / 54.86 / 51.05
C 78.89/78.43/78.66 48.79 / 43.37 / 45.92 37.17 /54.07 / 44.06 51.82/61.12 / 56.09
M 79.79/77.12/78.43 43.95/41.13/42.50 39.41/52.94/45.18 52.66 / 59.82 / 56.01
E 79.79/76.07/77.88 45.16 / 43.75/ 44.44 40.12/53.68 / 45.92 53.21/60.38 / 56.57
C+M 80.50/ 79.05/ 79.77 | 48.39/42.25/45.11 41.85/53.17/46.84 54.84/60.31/57.44
C+E 79.79/76.46/78.09 47.98 /45.59/ 46.76| 41.04 /53.66 / 46.51 54.11/60.66 / 57.20

E+M 80.50/ 77.15/78.79| 44.35/42.97 | 43.6% 42.26 /55.63/ 48.03 | 54.50 /61.49/ 57.78

C+E+M | 80.14/77.07/78.58 51.61/ 42.95 /46.89 | 42.46/ 54.30/ 47.66| 55.51/ 60.27 /57.79

Task 2
BL-E | 74.60/69.10/71.75% 36.55/34.73/35.62 29.89/47.20/ 36.60 44.74 /] 53.86 / 48.88
BL-G | 74.42/71.31/72.83 36.55/33.33/34.87 32.52/44.83/37.70 46.13/52.64 / 49.17

C 77.64176.77/77.20 43.78/38.79/41.13 36.17 /52.89/42.96 50.14 /59.14 / 54.27

M 78.71/75.95/77.31 39.36/36.57/37.91 38.70/52.12/ 44.42 51.25/58.21 / 54.51

E 79.07/75.26/77.12 41.37/40.08/40.71 39.31/52.86/45.09 51.98/59.10/55.31

C+M | 79.61/78.03/78.81| 43.37/36.99/39.93 40.93/52.07 / 45.83 53.31/58.41/55.75

C+E | 78.89/75.34/77.08 44.18 /40.89/ 42.47 | 40.22 /52.86 / 45.68 52.81/59.04 / 55.75
E+M | 79.79/76.33/78.02 40.16/38.76 / 39.4% 41.34 /54.69/ 47.09 | 53.15 /60.05/ 56.39
C+E+M | 79.43/76.25/77.81 46.18/ 37.46 / 41.37| 41.54/53.39/46.72| 53.98/ 58.45/56.13

Table 5: Comparison of Recall / Precision / F-score results on the development data set. C&C with Stan-
ford basic Dependency format (C), MC with CoNLL-X format (M), and Enju with Predicate Argument
Structure in Enju format (E) are used for the evaluation. Results with Enju output without PAS informa-
tion (BL-E) and the GENIA tagger output (BL-G) are shown as baselines. Results on simple, binding,
regulation, and all events are shown. The best score in each result is shown in bold.
\ Simple \ Binding \ Regulation | All
Task 1

Ours | 67.09/77.59/71.96 | 49.57 /51.65/50.59 38.42/ 53.95/ 44.88 | 50.28/ 63.19/ 56.00

Miwa | 65.31/76.44/70.44 52.16/ 53.08/ 52.62 | 35.93 / 46.66 / 40.60 48.62 / 58.96 / 53.29

Bjorne | 64.21/77.45/70.21 40.06/49.82 /44.41 35.63/45.87/40.11 46.73 /58.48 / 51.95

Riedel N/A 23.05/48.19/31.19 26.32/41.81/32.30 36.90/55.59/ 44.35
Task 2

Ours | 65.77/75.29/ 70.21 | 47.56/ 49.55/ 48.54 | 38.24/ 53.57/ 44.62| 49.48/ 61.87/ 54.99

Riedel N/A 22.35/46.99/ 30.24} 25.75/40.75/ 31.54 35.86/54.08/43.12

Table 6: Comparison of Recall / Precision / F-score results on the test data set. MC with CoNLL-X
format and Enju with Predicate Argument Structure in Enju format are used for the evaluation. Results
on simple, binding, regulation, and all events are shown. Results by Miwa et al. (2010) (Miwe)eBj

et al. (2009) (Byrne), and Riedel et al. (2009) (Riedel) for Task 1 and Task 2 are shown for comparison.
The best score in each result is shown in bold.

ple, is good for extracting regulation events, butsemble of the three parser outputs are +0.01 for
produced weaker results for simple events. Thdask 1, and -0.26 for Task 2. This result sug-
ensembles of two parser outputs inherit both th@ests that adding more different parsers does not
strengths and weaknesses of the outputs in mosiways improve the performance. The ensemble
cases, and the strengths and weaknesses of the @fithree parser outputs, however, shows stable per-
sembles vary depending on the combined parsdormance across categories, scoring in the top two
outputs. The differences in performance betweeffor binding, regulation, and all events, in the top
ensembles of the outputs of two parsers to the erfour for simple events.
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4.4 Performance of Event Extraction System  of-the-art event extraction system. The specific

Table 6 shows a comparison of performance ori@sk considered was the BioNLP shared task, al-
the shared task test data. MC with CoNLL-X for- 1owing the use of the GENIA treebank as a gold
mat and Enju with Predicate Argument StructureStandard parse reference. The event extraction sys-
in Enju format are used for the evaluation, select{€M, modified for a higher performance and an ad-

ing one of the best performing ensemble settinglitional subtask, showed high performance on the
in Section 4.3. The performance of the best sysShared task subtasks considered. Four of the five

tems in the original shared task is shown for referconsidered parsers were applied using biomedi-
ence ((Bprne et al., 2009) in Task 1 and (Riedel €& models trained on the GENIA treebank, and
et al., 2009) in Task 2). The event extractionthey were found to produce similar performange.
system with our modifications performed signifi- Parser ensembles were further shown to allow im-

cantly better than the best systems in the Sh(,;lre;arovement of the performance of the event extrac-
task, further outperforming the original systemton system. _

by Miwa et al. (2010). This result shows that 1he contributions of this paper are 1) the com-

the system applied for the comparison of syntacParison of seyeral comm_only used parsers on the
tic parsers achieves state-of-the-art performance £/€nt extraction task with a gold treebank, 2)

event extraction. This result also shows that théleémonstration of the usefulness of the parser en-
system originally developed only for core eventsSeémble on the task, and 3) the introduction of a
extraction can be easily extended for other arguState-of-the-art event extraction system. One lim-
ments simply by treating the other arguments adation of this study is that the comparison be-

additional arguments. tween the parsers is not perfect, as the format con-
versions miss some information from the origi-
5 Related Work nal formats and results with different formats de-

. end on the ability of the event extraction sys-
Many approaches for parser comparison have be 8m to take advantage of their strengths. To max-

_propoied n thg B'I%INLP g'eli' Mﬁsft comp;t_r— imize comparability, the system was designed to
Isons have used gold treebanks with interme Ia'[Sxtract features identically from similar parts of

formats (Clegg and Shepherd, 2007; Pyysalo etrhe dependency-based formats, further adding in-

al., 2007). Appllcﬁlon-o?entedfpatrs_etr Cgmp‘zr;formaﬂon provided by other formats, such as the
S0n across several formats was Tirst INroduced by, | entries of the Enju format, from external re-

Mlyap et al. (2009), who compared e |ght Pars€r3ources. The results of this paper are expected to
and five formats for the protein-protein mteractlonbe useful as a guide not only for parser selection

(PPI) extraction task. PPl extraction, the recog-for biomedical information extraction but also for

mtlonf(?; blnaryt Lelafuo'n? of bf_tweerl pr(:_telnts, Ethe development of event extraction systems.
one ofthe most basic Information exraclion tasks - r,q ge|ection of compared parsers and formats

:‘r zhe.tﬁl?rl]\lLP flfel&'. Ourtflnldlr:zgs dto n;)t ct(_)n- in the present evaluation is somewhat limited. As
Ict wi ose of Miyao €t al. tvent extraction future work, it would be informative to extend

ean be viewed as an additional e_xt.r|n5|c evalugfhe comparison to other syntactic representations,
tion task for syntactic parsers, providing more reli-

bl d evaluati d a broad five tsuch as the PTB format. Finally, the evaluation
able and evajuation and a broader PErSpective I, o g that the system fails to recover approxi-

parsl_e ' Serforma?cg. A? atc_i d|t|onaé_a|3\$ntige 0 ately 40% of events even when provided with
application-oriented evaluation on BIo share anually annotated treebank data, showing that

task data is the availability of a manually anno- oiher methods and resources need to be adopted

tated gold standard treebank, the GENIA treebanl‘%further improve bio-molecular event extraction

that covers the same set of abstracts as the 'Fag stems. Such improvement is left as future work.
data. This allows the gold treebank to be consid-

ered as an evaluation standard, in addition to comacknowledgments

parison of performance in the primary task. _ _ o
This work was partially supported by Grant-in-Aid
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