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Abstract

We explore the possibility of using
Stochastic Bracketing Linear Inversion
Transduction Grammars for a full-scale
German–English translation task, both on
their own and in conjunction with align-
ments induced with GIZA++. The ratio-
nale for transduction grammars, the details
of the system and some results are pre-
sented.

1 Introduction

Lately, there has been some interest in using In-
version Transduction Grammars (ITGs) for align-
ment purposes. The main problem with ITGs is the
time complexity, O(Gn6) doesn’t scale well. By
limiting the grammar to a bracketing ITG (BITG),
the grammar constant (G) can be eliminated, but
O(n6) is still prohibitive for large data sets.

There has been some work on approximate in-
ference of ITGs. Zhang et al. (2008) present a
method for evaluating spans in the sentence pair
to determine whether they should be excluded or
not. The algorithm has a best case time com-
plexity of O(n3). Saers, Nivre & Wu (2009) in-
troduce a beam pruning scheme, which reduces
time complexity to O(bn3). They also show
that severe pruning is possible without significant
deterioration in alignment quality (as measured
by downstream translation quality). Haghighi et
al. (2009) use a simpler aligner as guidance for
pruning, which reduces the time complexity by
two orders of magnitude. Their work also par-
tially implements the phrasal ITGs for translation-
driven segmentation introduced in Wu (1997), al-
though they only allow for one-to-many align-
ments, rather than many-to-many alignments. A
more extreme approach is taken in Saers, Nivre
& Wu (2010). Not only is the search severely
pruned, but the grammar itself is limited to a lin-

earized form, getting rid of branching within a sin-
gle parse. Although a small deterioration in down-
stream translation quality is noted (compared to
harshly pruned SBITGs), the grammar can be in-
duced in linear time.

In this paper we apply SBLITGs to a full size
German–English WMT’10 translation task. We
also use differentiated translation paths to com-
bine SBLITG translation models with a standard
GIZA++ translation model.

2 Background

A transduction grammar is a grammar that gener-
ates a pair of languages. In a transduction gram-
mar, the terminal symbols consist of pairs of to-
kens where the first is taken from the vocabulary
of one of the languages, and the second from the
vocabulary of the other. Transduction grammars
have to our knowledge been restricted to trans-
duce between languages no more complex than
context-free languages (CFLs). Transduction be-
tween CFLs was first described in Lewis & Stearns
(1968), and then further explored in Aho & Ull-
man (1972). The main motivation for explor-
ing this was to build programming language com-
pilers, which essentially translate between source
code and machine code. There are two types of
transduction grammars between CFLs described in
the computer science literature: simple transduc-
tion grammars (STGs) and syntax-directed trans-
duction grammars (SDTGs). The difference be-
tween them is that STGs are monotone, whereas
SDTGs allow unlimited reordering in rule produc-
tions. Both allow the use of singletons to insert
and delete tokens from either language. A sin-
gleton is a biterminal where one of the tokens is
the empty string (ε). Neither STGs nor SDTGs
are intuitively useful in translating natural lan-
guages, since STGs have no way to model reorder-
ing, and SDTGs require exponential time to be in-
duced from examples (parallel corpora). Since

167



compilers in general work on well defined, manu-
ally specified programming languages, there is no
need to induce them from examples, so the expo-
nential complexity is not a problem in this setting
– SDTGs can transduce in O(n3) time, so once the
grammar is known they can be used to translate
efficiently.

In natural language translation, the grammar is
generally not known, in fact, state-of-the art trans-
lation systems rely heavily on machine learning.
For transduction grammars, this means that they
have to be induced from parallel corpora.

An inversion transduction grammar (ITG)
strikes a good balance between STGs and SDTGs,
as it allows some reordering, while requiring only
polynomial time to be induced from parallel cor-
pora. The allowed reordering is either the iden-
tity permutation of the production, or the inver-
sion permutation. Restricting the permutations in
this way ensures that an ITG can be expressed in
two-normal form, which is the key property for
avoiding exponential time complexity in biparsing
(parsing of a sentence pair).

An ITG in two-normal form (representing the
transduction between L1 and L2) is written with
identity productions in square brackets, and in-
verted productions in angle brackets. Each such
rule can be construed to represent two (one L1 and
one L2) synchronized CFG rules:

ITGL1,L2 CFGL1 CFGL2

A→ [ B C ] A→ B C A→ B C
A→ 〈 B C 〉 A→ B C A→ C B
A→ e/f A→ e A→ f

Inducing an ITG from a parallel corpus is still slow,
as the time complexity is O(Gn6). Several ways
to get around this has been proposed (Zhang et al.,
2008; Haghighi et al., 2009; Saers et al., 2009;
Saers et al., 2010).

Taking a closer look at the linear ITGs (Saers et
al., 2010), there are five rules in normal form. De-
composing these five rule types into monolingual
rule types reveals that the monolingual grammars
are linear grammars (LGs):

LITGL1,L2 LGL1 LGL2

A→ [ e/f C ] A→ e C A→ f C
A→ [ B e/f ] A→ B e A→ B f
A→ 〈 e/f C 〉 A→ e C A→ C f
A→ 〈 B e/f 〉 A→ B e A→ f B

A→ ε/ε A→ ε A→ ε

This means that LITGs are transduction grammars
that transduce between linear languages.

There is also a nice parallel in search time com-
plexities between CFGs and ITGs on the one hand,
and LGs and LITGs on the other. Searching for
all possible parses given a sentence is O(n3) for
CFGs, and O(n2) for LGs. Searching for all possi-
ble biparses given a bisentence is O(n6) for ITGs,
and O(n4) for LITGs. This is consistent with
thinking of biparsing as finding every L2 parse for
every L1 parse. Biparsing consists of assigning a
joint structure to a sentence pair, rather than as-
signing a structure to a sentence.

In this paper, only stochastic bracketing gram-
mars (SBITGs and SBLITGs) were used. A brack-
eting grammar has only one nonterminal symbol,
denoted X . A stochastic grammar is one where
each rule is associated with a probability, such that

∀X

∑
φ

p(X → φ) = 1


While training a Stochastic Bracketing ITG

(SBITG) or LITG (SBLITG) with EM, expectations
of probabilities over the biparse-forest are calcu-
lated. These expectations approach the true prob-
abilities, and can be used as approximations. The
probabilities over the biparse-forest can be used
to select the one-best parse-tree, which in turn
forces an alignment over the sentence pair. The
alignments given by SBITGs and SBLITGs has been
shown to give better translation quality than bidi-
rectional IBM-models, when applied to short sen-
tence corpora (Saers and Wu, 2009; Saers et al.,
2009; Saers et al., 2010). In this paper we ex-
plore whether this hold for SBLITGs on standard
sentence corpora.

3 Setup

The baseline system for the shared task was a
phrase based translation model based on bidi-
rectional IBM- (Brown et al., 1993) and HMM-
models (Vogel et al., 1996) combined with the
grow-diag-final-and heuristic. This is
computed with the GIZA++ tool (Och and Ney,
2003) and the Moses toolkit (Koehn et al., 2007).
The language model was a 5-gram SRILM (Stol-
cke, 2002). Parameters in the final translation sys-
tem were determined with Minimum Error-Rate
Training (Och, 2003), and translation quality was
assessed with the automatic measures BLEU (Pap-
ineni et al., 2002) and NIST (Doddington, 2002).
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Corpus Type Size
German–English Europarl out of domain 1,219,343 sentence pairs
German–English news commentary in-domain 86,941 sentence pairs
English news commentary in-domain 48,653,884 sentences
German–English news commentary in-domain tuning data 2,051 sentence pairs
German–English news commentary in-domain test data 2,489 sentence pairs

Table 1: Corpora available for the German–English translation task after baseline cleaning.

System BLEU NIST
GIZA++ 17.88 5.9748
SBLITG 17.61 5.8846
SBLITG (only Europarl) 17.46 5.8491
SBLITG (only news) 15.49 5.4987
GIZA++ and SBLITG 17.66 5.9650
GIZA++ and SBLITG (only Europarl) 17.58 5.9819
GIZA++ and SBLITG (only news) 17.48 5.9693

Table 2: Results for the German–English translation task.

We chose to focus on the German–English
translation task. The corpora resources available
for that task is summarized in Table 1. We used the
entire news commentary monolingual data con-
catenated with the English side of the Europarl
bilingual data to train the language model. In ret-
rospect, this was probably a bad choice, as others
seem to prefer the use of two language models in-
stead.

We contrasted the baseline system with pure
SBLITG systems trained on different parts of the
training data, as well as combined systems, where
the SBLITG systems were combined with the base-
line system. The combination was done by adding
the SBLITG translation model as a second transla-
tion path to the base line system.

To train our SBLITG systems, we used the algo-
rithm described in Saers et al. (2010). We set the
beam size parameter to 50, and ran expectation-
maximization for 10 iterations or until the log-
probability of the training corpus started deterio-
rating. After the grammar was induced we ob-
tained the one-best parse for each sentence pair,
which also dictates a word alignment over that
sentence pair, which we used instead of the word
alignments provided by GIZA++. From that point,
training did not differ from the baseline procedure.

We trained a total of three pure SBLITG system,
one with only the news commentary part of the
corpus, one with only the Europarl part, and one

with both. We also combined all three SBLITG

systems with the baseline system to see whether
the additional translation paths would help.

The system we submitted corresponds to the
“GIZA++ and SBLITG (only news)” system, but
with RandLM (Talbot and Osborne, 2007) as lan-
guage model rather than SRILM. This was because
we lacked the necessary RAM resources to calcu-
late the full SRILM model before the system sub-
mission deadline.

4 Results

The results for the development test set are sum-
marized in Table 2. The submitted system
achieved a BLEU score of 0.1759 and a NIST

score of 5.9579 for cased output on this year’s test
set (these numbers are not comparable to those
in Table 2). To our surprise, adding the addi-
tional phrases as a second translation path does
not seem to help. Instead a small deterioration
in BLEU is noted (0.22–0.40 points), whereas the
differences in NIST are mixed (-0.0098–+0.0071
points). Over all the variations were very small.
The pure SBLITG systems perform consistently
below baseline, which could indicate that the
grammar class is unable to capture the reorderings
found in longer sentence pairs adequately in one
parse. The variation between the pure SBLITG sys-
tems can be explained by the size of the training
data: more data – better quality.
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5 Conclusions

We tried to use SBLITGs as word aligners on full
size sentences, which has not been done to date,
and noted that the formalism seems unable to ac-
count for the full complexity of longer sentence
pairs. We also tried combining the translation
models acquired with SBLITG alignments to the
baseline system, and noted very small differences,
tending to a deterioration in quality. The fact that
SBLITGs seem unable to capture the complex re-
lationship between an English and a German sen-
tence in one parse means that we need to find ei-
ther some more complex model or some way to
use the entire parse forest to arrive at the align-
ment.
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