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Languages with a rather free word order, like Ger-
man, display discontinuous constituents particularly
frequently. In (1), the discontinuity is caused by an g: ‘: @5
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Abstract

Discontinuities occur especially frequently in
languages with a relatively free word order,
such as German. Generally, due to the long-
distance dependencies they induce, they lie
beyond the expressivity of Probabilistic CFG,
i.e., they cannot be directly reconstructed by
a PCFG parser. In this paper, we use a
parser for Probabilistic Linear Context-Free
Rewriting Systems (PLCFRS), a formalism
with high expressivity, to directly parse the
German NeGra and TIGER treebanks. In both
treebanks, discontinuities are annotated with
crossing branches. Based on an evaluation us-
ing different metrics, we show that an output
quality can be achieved which is comparable
to the output quality of PCFG-based systems.

I ntroduction

extraposed relative clause.

1)

wiedertreffenalle Attribute zu, die auch
again matchall attributesvV PART whichalso
sonst  immer passen

otherwisealwaysfit

‘Again, the same attributes as always apply.’

In most constituency treebanks, sentence annota-
tion is restricted to having the shape of trees with-
out crossing branches, and the non-local dependen-
cies induced by the discontinuities are modeled by
an additional mechanism. In the Penn Treebank
(PTB) (Marcus et al., 1994), e.g., this mechanism
is a combination of special labels and empty nodes,
establishing implicit additional edges. In the Ger-
man TUBa-D/Z (Telljohann et al., 2006), additional
edges are established by a combination of topolog-
ical field annotation and special edge labels. As an
example, Fig. 1 shows a tree from TuBa-D/Z with
the annotation of (1). Note here the edge label ON-
MOD on the relative clause which indicates that the
subject of the sentencalle Attribute) is modified.
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)
[on-mol]
(=] (| (|
© O @
[on] [on] [mop] [mop] [mop] [HD]
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[HD] [HD] (= [HD] [HD] [HD] [HD] [HD] [HD]

wieder treffen alle Attribute  zu , die
ADV  VVFIN PIDAT NN PTKVZ $, PRELS ADV ADV ADV  VVFIN
3pis npn npn np* 3pis

auch  sonst immer passen

Figure 1: A tree from TuBa-D/Z

Another language with a rather free word order is

Bullgari_an- In (2), the discontinuity is caused by top-  However, in a few other treebanks, such as the
icalization.

(2)

XuMuka | a3 KymyBaM CaMo eBTUHH i
Pens | buy only expensive;
‘As for pens, | only buy expensive ones.
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German NeGra and TIGER treebanks (Skut et al.,
1997; Brants et al., 2002), crossing branches are al-
lowed. This way, all dependents of a long-distance
dependency can be grouped under a single node.
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Fig. 2 shows a tree from NeGra with the annotatiomeasure, adapted for LCFRS, in order to compare
of (3). our parser to previous work on parsing German tree-
banks. In order to address the known shortcomings
of EVALB, we perform an additional evaluation us-
ing the tree distance metric of Zhang and Shasha
(1989), which works independently of the fact if
Note the direct annotation of the discontinuous VPihere are crossing branches in the trees or not, and a
- dependency evaluation (Lin, 1995), which has also
B be applied before in the context of parsing German
(Kubler et al., 2008). Last, we evaluate certain diffi-

3) Nochnie habeich soviel gewahit
Yet neverhavel somuchchosen
‘Never have | had that much choice.’

VP

; ; s cult phenomena by hand on TePaCoC (Kubler et al.,
N N 2008), a set of sentences hand-picked from TIGER.
Noon nle bbe o h s el gownt The evaluations show that with a PLCFRS parser,

15gPresind 1.5g"Nom competitive results can be achieved.
The remainder of the article is structured as fol-
Figure 2: A tree from NeGra lows. In Sect. 2, we present the formalism, the

parser, and how we obtain our grammars. In
Since in general, the annotation mechanisms f@&ect. 3, we discuss the evaluation methods we em-
non-local dependencies lie beyond the expressivifyloy. Sect. 4 contains our experimental results.
of Context-Free Grammar, non-local information isSect. 5 is dedicated to related work. Sect. 6 con-
inaccessible for PCFG parsing and therefore genesins the conclusion and presents some possible fu-
ally discarded. In NeGra/TIGER annotation, e.g.ture work.
tree transformation algorithms are applied before
parsing in order to resolve the crossing brancheg2. A Parser for PLCFRS
See,_ e.g., Kubler et al. (2098) and Boyd (2007) .fOE.l Probabilistic Linear Context-Free
details. If one wants to avoid the loss of annotation
information which is implied with such transforma-
tions, one possibility is to use a probabilistic parsekCFRS are an extension of CFG where the non-
for a formalism which is more expressive than CFGterminals can span not only single strings but, in-
In this paper, we tackle the question if qualita-Stead, tuples of strings. We will notate LCFRS with
tively good results can be achieved when parsingjie syntax osimple Range Concatenation Gram-
German with such a parser. Concretely, we use@ars (SRCG) (Boullier, 1998), a formalism that is
parser for Probabilistic Linear Context-Free Rewrite€quivalent to LCFRS.
ing Systems (PLCFRS) (Kallmeyer and Maier, A LCFRS (Vijay-Shanker et al., 1987) is a tuple
2010). LCFRS (Vijay-Shanker et al., 1987) are & = (N, 1.V, P, S) where
natural extension of CFG in which a single non- _ . . .
terminal node can dominate more than one contin-& V' is & finite set of non-terminals with a func-
uous span of terminals. We can directly interpret ~ ton dim: N — N that determines than-out
NeGra-style trees as its derivation structures, i.e.,we °f €achA € N
can extract grammars without making further lin-
guistic assumptions (Maier and Lichte, 2009) (see
Sect. 2.3), as it is necessary for other formalisms
such as Probabilistic Tree Adjoining Grammars c) S € N is the start symbol witidim (S) = 1;
(Chiang, 2003). Since the non-local dependencies
are immediately accessible in NeGra and TIGER, d) P is a finite set of rewriting rules
we choose these treebanks as our data source. In

Rewriting Systems

b) T andV are disjoint finite sets of terminals and
variables;

order to judge parser output quality, we use four dif- A1, ..., Qgima)) — A1(Xf1), e anr)n(Al))
ferent evaluation types. We use an EVALB-style A (X XS )
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form20whereA,A1,...,AmeN,Xj@ €V  scan:
forl <i<m,1<j<dim(A)anda; € (TU 0:[A, ({67 +1))]
V)*for1l < i < dim(A). Forallr € P, it holds Unary: in:[B,p]
that every variableX occurring inr occurs exactly " in+ |log(p)| -
once in the left-hand side (LHS) and exactly oncein (B 511 ing : [C, e
the right-hand side (RHS). BNy s +inc + logp) : [4, pal
wherep : A(pa) — B(pp)C(pé) is an instantiated rule.
Goal: [S, ({(0,n))]

A POS tag ofw; 11

A PR B P

Thefan-out of an LCFRSG is the maximal fan-
out of all non-terminals irt;. Furthermore, the RHS
length of a rewriting rules € P is called therank Figure 3: Weighted CYK deduction system
of r and the maximal rank of all rules iR is called
therank of G. An LCFRS is callecordered if for
everyr € P and every RHS non-terminalinrand 22 A CYK Parser for PLCFRS

each pairX;, X» of arguments of4 in the RHS of - we use the parser of Kallmeyer and Maier (2010).
r, X1 precedesX; in the RHS iff X, precedesXy |t s a probabilistic CYK parser (Seki et al., 1991),

in the LHS. using the technique of weighted deductive parsing

Borrowed from SRCG, we specify the languagdNederhof, 2003). While for symbolic parsing, other
of an LCFRS based on the notion of ranges. Fdplaborate algorithms_exist (.Kallmeyer. and Maier,
some input words = w - - - w,, a range is a pair 2009), for probabilistic parsing, CYK is a natural
(i,7) of integers withd < i < n denoting the sub- Choice.
string w;;1 - --w;. Note that a range denotesiff It is assumed for the parser that our LCFRSs are
i = j. Only consecutive ranges can be concatenatéti rank2 and do not contain rules where some of the
into new ranges. We can replace the variables akd?S components are. Both assumptions can be
terminals of the rewriting rules with ranges. E.g.Mmade without loss of generality since every LCFRS
A({(g,h)) — B({g+1,h — 1)) is a replacement of ¢an be binarized (Gobmez-Rodriguez et al., 2009)
the claused(aX1b) — B(X;) if the input worduw is ande-components on LHS of rules can be removed
such thatw,,; = a andwy, = b. A rewriting rule in (Boullier, 1998). We make the assumption that POS
which all elements of all arguments have been cor{29ging is done before parsing. The POS tags are
sistently replaced by ranges is calledastantiated ~ SPecial non-terminals of fan-out Consequently,
rule. A derivation is built by successively rewriting the rules are either of the form(a) — ¢ whereA
the LHSs of instantiated rules with its RHSs. ThdS @ POStagand € T or of the formA(a) — B(Z)
languageL(G) of some LCFRSG consists of all oF A(@) — B()C(7) whered € (VF)#4), e,
wordsw = wy - - - w,, for which it holds that there is ©nly the rules for POS tags contain terminals in their
a rule with the start symbol on the LHS which car-HSS.
be instantiated t¢0, ») and rewritten tc. The parser items have the forfd, p], with A €

o _ N and/ a vector of ranges characterizing all com-

A probabilistic LCFRS (PLCFRS) is @ tU- ponents of the span offl. We specify the set

ple (N,T,V, P, S,p) such that{N, TV, P, 5) is & of weighted parse items via the deduction rules in
LCFRS andp : P — [0..1] a function such that for g 3

al Ae N2, g pp(AT) — ®) = 1. There

, , Parsing time can be reduced by reordering the
are possibly other ways to extend LCFRS with proba a4 during parsing such that those items are pro-

abilities. This definition is supported by the fact thaEessed first which lead to a complete parse more

probabilistic MCFG$ have been defined in the Samequickly than others (Klein and Manning, 2003a).

way (Kato et al., 2006). The parser uses for this purpose an admissible, but

not monotonic estimate callédR estimate. It gives
(relative to a sentence length) an estimate of the out-

IMCFGs are equivalent to LCFRSs and SRCGs (BoullierSid€ probability of some non-terminal with a span
1998). of a certain length (the sum of the lengths of all the
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components of the span), a certain nhumber of teworks like the transformation into Chomsky Normal
minals to the left of the first and to the right of theForm for CFGs. For each rule with an RHS of length
last component and a certain number of terminals 3, we introduce a new non-terminal which cov-
gaps in between the components of tHespan, i.e., ers the RHS without the first element and continue
filling the gaps. A discussion of other estimates isuccessively from left to right. The rightmost new
presented at length in Kallmeyer and Maier (2010)rule, which covers the head daughter, is binarized to
: : N unary.

23 LCFRSfor Modeling Discontinuities We markovize the grammar as in the CFG case.
We use the algorithm from Maier and Sggaardo the new symbols introduced during the binariza-
(2008) to extract LCFRS rules from our data setgion, a variable number of symbols from the vertical
For all nonterminalsiy with the children4, --- A,, and horizontal context of the original rule is added.
(i.e., for all non-terminals which are not pretermi-Following the literature, we call the respective quan-
nals), we create a claus® — 1 - - -, with ¢;, titiesv andh. As an example, Fig. 4 shows the out-
0 < i < m, labeledA;. The arguments of each put for the production for the VP in the left tree in
¥, 1 < i < m, are single variables, one for eachFig. 2.
of the continuous yield part dominated by the node , ,
A;. The arguments afy are concatenations of theseﬂp/‘fter extraction and head marking: ;

_ : _ : P2(X1,X2X3) — AVP1(X1) AVP1(X2) VVPPL(X3)
variables that describe how the discontinuous parts
of the yield of Ay are obtained from the yields of its After binarization and markovization with= 1,k = 2:
daughters. For all preterminals dominating some \épsg(éf\z/)lj}%:X/PPlF())l(;()X@;n)DZJ-Avplh-vvpplh(XQ)
terminala, we extract a productiod(a) — e. Since AP @_sz_VVPFl,th(XZ)
by definition, a label is associated with a certaing.vp> .vwPP1"(X,) — VWPP1(X})
fan-out, we distinguish the labels by correspondatfter binarization and markovization with= 2, h = 1:
ing subscripts. Note that this extraction algorithmVP2(X1,X2) — AVP1(X:) @-VP2-S2’-AVP1"(X2)
yields only ordered LCFRS. Furthermore, note tha@ VP2 -S2-AVPL' (X1 X>) N

_ ) _ = AVP1(X,) @-VPZ-S2-VVPP1'(X>)

for trees without crossing branches, this algorithng_yp2.s2 vvpp1:(x,) — VWPP1(X))
yields a PLCFRS with fan-out 1, i.e., a PCFG.

As mentioned before, the advantage of using
LCFRS is that grammar extraction is Straight-Figure 4: Grammar extraction and binarization example
forward and that no separate assumptions must be o
made. Note that unlike, e.g., Range Concatenation The probabilities are then computed based on the
Grammar (RCG) (Boullier, 1998), LCFRS cannotnumber of opcurrence_s of rul_es !n the tra_nsformed
model re-entrancies, i.e., nodes with more than orf€€bank, using a Maximum Likelihood estimator.
incoming edge. While those do not oceur in NeGrag Evaluation methods
style annotation, some of the annotation in the PTB,
e.g., the annotation for right node raising, can be inAe assess the quality of our parser output using dif-
terpreted as re-entrancies. This topic is left for fuferent methods.
ture work. See Maier and Lichte (2009) for further The first is anEVAL B-style metric (henceforth
details, especially on how treebank properties relatEVALB), i.e., we compare phrase boundaries. In
to properties of extracted grammars. spite of its shortcomings (Rehbein and van Gen-

Before parsing, we binarize our grammar. We firsabith, 2007), it allows us to compare to previ-
mark the head daughters of all non-terminal nodesus work on parsing NeGra. In the context of
using Collins-style head rules based on the NeGIlaCFRS, we compare sets of tuples of the form
rules of the Stanford Parser (Klein and Manning|A, (if,il), ..., (if,i¥)], whereA is a non-terminal
2003b) and the reorder the RHSs of all LCFRS rule some derivation tree withim(A) = k and each
such that sequence of elements to the right of the]",;"), 1 < m < k, is a tuple of indices denot-
head daughter is reversed and moved to the begimg a continuous sequence of terminals dominated
ning of the RHS. From this point, the binarizationby A. One set is obtained from the parser output, and
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e |7i| and|7T4| nodes, respectively. For&mapping

Bo -------- >C_ - o from 7 to 74 with the setsD, 7, S and M, we
B/ \t3 B/;B\tz{ compute them as follows.
I | [ [ |
1 2 z 1 2

D T S
X )l/ X )l/ dice(a):l——| [+ [Z1+15]
[7ic| + |74l
Figure 5: TDIST example |D| + |Z] + |S]|

Jaceard(e) =1~ Iy T+ 18T+ 1M]
one from the corresponding treebank trees. Usiriyhere, in order to achieve macro-averaging, we sum
these tuple sets, we compute labeled and unlabeltte numerators and denominators over all tree pairs
recall (LR/UR), precision (LP/UP), and ti§ mea- before dividing. See Emms (2008) for further de-
sure (LF1/UF,) in the usual way. Note thatif = 1,  tails.
our metric is identical to its PCFG version. The third method isdependency evaluation
EVALB does not necessarily reflect parser output"€nceforthDEP), as described by Lin (1995). It
quality (Rehbein and van Genabith, 2007; Emmgonsists of comparing dependency graphs extracted
2008; Kubler et al., 2008). One of its major prob-Tom the gold data and from the parser output. The
lems is that attachment errors are penalized tdiEPendency extraction algorithm as given by Lin
hard. As the second evaluation method, we ther&0€s also not rely on trees to be free of crossing
fore choose théree-distance measure (henceforth branches. It only relies on a method to identify the
TDIST) (Zhang and Shasha, 1989), which levitate§€ad Of each phrase. We use our own implementa-
this problem. It has been proposed for parser eval{fon of the algorithm which is described in Sect. 4
ation by Emms (2008). TDIST is an ideal candidat@f Lin (1995), combined with the head finding algo-
for evaluation of the output of a PLCFRS, since it théithm of the parser. Dependency evaluation abstracts
fact if trees have crossing branches or not is not refiway from another bias of EVALB. Concretely, it
evant to it. Two trees;, andr, are compared on the dpes not prefer trees with a high node/token ratio,
basis ofT-mappings from 7, to 4. A T-mapping SINce two dependency graphs to be cqmpared neces-
is a partial mapping of nodes ofr, to nodes ofr4 sarily have the same number of (te_rmmal) nqdes. In
where all node mappings preserve left-to-right orthe context of parsing German, this evaluation has
der and ancestry. Within the mappings, node inseR€€n employed previously by Kbler et al. (2008).
tion, node deletion, and label swap operations are Last, we evaluate onTePaCoC (Testing
identified, represented resp. by the s&tsD and Parser Performance on Complex Grammatical
S. Furthermore, we consider the sét represent- Constructions), a set of particularly difficult sen-

ing the matched (i.e., unchanged) nodes. The cost {&nces hand-picked from TIGER (Kibler et al.,
a T-mapping is the total number of operations, i.e2008).

|Z|+|D|+|S|. Thetreedistance between two trees 4
T and 7y is the cost of the cheape$tmapping.
Fig. 5, borrowed from Emms, shows an example foDur data sources are the German NeGra (Skut et
a T-mapping. Inserted nodes are prefixed with al., 1997) and TIGER (Brants et al., 2002) tree-
deleted nodes are suffixed with, and nodes with banks. In a preprocessing step, following common
swapped labels are linked with arrows. Since in topractice, we attach all punctuation to nodes within
tal, four operations are involved, to tHismapping, the tree, since it is not included in the NeGra an-
a cost of 4 is assigned. For more details, especiallyotation. In a first pass, using heuristics, we at-
on algorithms which compute TDIST, refer to Billetach all nodes to the in each case highest available
(2005). In order to convert the tree distance measuphrasal node such that ideally, we do not introduce
into a similarity measure like EVALB, we use thenew crossing branches. In a second pass, paren-
macro-averaged Dice and Jaccard normalizations #igeses and quotation marks are preferably attached
defined by Emms. Letyx andr4 be two trees with to the same node. Grammatical function labels are

Experiments
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discarded. After this preprocessing step, we createl Evaluation Using EVALB

a separate version of the data set, in which we rgyp 2 shows the evaluation of the parser output us-
solve the crossing branches in the trees, using ”iﬁ‘g EVALB, as described in the previous section.

common approach of re-attaching nodes 10 high§ge report labeled and unlabeled precision, recall
constituents. We use the first 90% of our data selg,q F, measure.

for training and the remaining 10% for testing. Due
to memory limitations, we restrict ourselves to sen- LP IR LA JUP UR _UR
tences of a maximal length of 30 words. Our TIGER NeGra| 72.39  70.68 71.53 76.01  74.22  75.10
data sets (TIGER and T-CF) have 31,568 sentenC"IIGER 7497 719 7343 7858 7542 7097
a D500 SSN-CF | 74.85 7326 74.04 78.11 76.45 77.28
of an average length of 14.81, splitted into 31,568 T.ce| 77.51 73.73 75.57 80.50 76.66 78.57
sentences for training and 3,508 sentences for test-
ing. Our NeGra data sets (NeGra and N-CF) have

18,335 sentences, splitted info 16,501 sentences forNot surprisingly, reconstructing discontinuities is

training and 1,834 sentences for testing. ) hard. Therefore, when parsing without crossing
We parse the data sets described above with acfjranches, the results are slightly better. In order to
vated LR estimate. For all our experiments, We USgqae the influence of discontinuous structures during
the markovization settings = 2 andh = 1, which  ar5ing on the underlying phrase structure, we re-
have proven to be successful in previous work 0Qg|ye the crossing branches in the parser output of
parsing NeGra (Rafferty and Manning, 2008). W& eGra and TIGER and compare it to the respective

provide the parser with the gold tagging. Fig. &qq test data of N-CF and T-CF. Tab. 3 shows the
shows the average parsing times for all data sets Q8g s

an AMD Opteron node with 8GB of RAM (pure

Java implementation), Tab. 1 shows the percentage | ';;75 '-7"‘1’ - L5118| L7J(|3338 3558 U7P;147
of parsed sentences. eGra| 72. - j . . .

TIGER | 75.28 72.25 73.74 78.81 75.64 77.20

Table 2: EVALB results

Table 3: EVALB results (resolved crossing branches)

100 | T-CF’ B

The results deteriorate slightly in comparison
with N-CF and T-CF, however, they are slightly
higher than for than for NeGra and TIGER. This
is due to the fact that during the transformation,
some errors in the LCFRS parses get “corrected”
Wrongly attached phrasal nodes are re-attached to
unique higher positions in the trees.

In order to give a point of comparison with previ-
ous work on parsing TIGER and NeGra, in Tab. 4,
001 - - - - p- we report some of the results from the literature. All

Sentence length of them were obtained using PCFG parsers: Kubler
(2005) (Tab. 1, plain PCFG for NeGra), Kubler et al.
Figure 6: Parsing times (2008) (Tab. 3, plain PCFG and Stanford parser with
markovizationv = 2 andh = 1 for TIGER), and
Petrov and Klein (2007) (Tab. 1, Berkeley parser, la-
tent variables). We include the results for N-CF and

i
o
T
I

time in sec. (log scale)
=
Il

01} o E

| NeGra TIGER  N-CF T-CF
total | 1834 3508 1834 3508

parsed| 1779 3462 1804 3462 T-CF. _ _
(97.0%)  (98.7%)  (98.4%)  (98.7%) Our results are slightly better than for the plain
PCFG models. We would expect the result for T-
Table 1: Parsed sentences CF to be closer to the corresponding result for the

Stanford parser, since we are using a comparable
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| plain thiswork markov. latent e.g., lies at 93.62 (Dice) and 87.87 (Jaccard). For
T’]‘gﬁg‘ gi:gg ;‘S‘gi 730 801 the Berkeley Parser (Petrov and Klein, 2007), 94.72
and 89.87 is reported. We see that our results lie in
them same range. However, Jaccard scores are lower
since this normalization punishes a higher number
of edit operations more severely than Dice. In or-
model. This difference is mostly likely due to lossegjer to meaningfully interpret which treebank prop-
induced by the LR estimate. All items to which thegties are responsible for the fact that between the
estimate assigns an outside log probability estimaboow trees and the trees from the parser, the German
of —oo get blocked and are not put on the agendgjata requires more tree edit operations than the En-
This blocking has an extremely beneficial effect oyjish data, a TDIST evaluation of the output of an

parser speed. However, it is paid by a worse recalff.the-shelf PCFG parser would be necessary. This
as experiments with smaller data sets have showg.|eft for future work.

A complete discussion of the effects of estimates, as
well as a discussion of other possible optimizations}.3 Dependency Evaluation

is presented in Kallmeyer and Maier (2010). £ the dependency evaluation, we extract depen-
Recall finally that LCFRS parses are more mfor-dency graphs from both the gold data and the test

mative than PCFG parses —a lower score for LCFRga4 "and compare the unlabeled accuracy. Tab. 6
EVALB than for PCFG EVALB does not necessarily s \ys the results. We report unlabeled attachment

Table 4: PCFG parsing of NeGra, LabelEd

mean that the PCFG parse is “better”. score (UAS).
4.2 Evaluation Using Tree Distance UAS
Tab. 5 shows the results of evaluating with TDIST, NeGra | 76.50
excluding unparsed sentences. We report dhe TI[EIBE:E ;;gg
and jaccard normalizations, as well as a summary T:CF 78.67
of the distribution of the tree distances between gold
trees and trees from the parser output (see Sect. 3). Table 6: Dependency evaluation
tree distance distrib. . .
dice jaccard| O <3 >10 The dependen_cy results are consistent with the
NeGra| 88.86 79.79| 31.65 53.77 15.08 previous results in as much as the scores for PCFG
TIGER | 89.47  80.84| 29.87 56.78 18.18 parsing are again higher. The dependency re-
N-CF | 9250 8599 3343 6192 6.71 sults reported in Kibler et al. (2008) however are

T-CF]9270 8646|3180 6381 456 much higher (85.6 UAS for the markovized Stan-

ford parser). While a part of the losses can again
be attributed to the LR estimate, another reason lies

Again, we can observe that parsing LCFRS igindoubtedly in the different dependency conversion
harder than parsing PCFG. As for EVALB, the remethod which we employ, and in further treebank
sults for TIGER are slightly higher than the ones foiransformations which Kibler et al. perform. In or-
NeGra. The distribution of the tree distances showder to get a more fine grained result, in future work,
that about a third of all sentences receive a conwe will consider graph modifications as proposed by
pletely correct parse. More than a half, resp. a thirtlin (1995) as well as including annotation-specific
of all parser output trees require 3 operations to be information from NeGra/TIGER in our conversion
mapped to the corresponding gold tree, and a onlyriocedure.
small percentage requires 10 operations.

To our knowledge, TDIST has not been used t§-4 T€PacoC
evaluate parser output for NeGra and TIGER. HowThe TePaCoC data set (Kubler et al., 2008) provides
ever, Emms (2008) reports results for the PTB usin$00 hand-picked sentences from TIGER which con-
different parsers. Collins’ Model 1 (Collins, 1999),tain constructions that are especially difficult to

Table 5: Tree distance evaluation

64



parse. Out of these 100 sentences, we only considamly 78.6 labeled Ffor the Stanford Parser. Our
69. The remaining 31 sentences are either longewerall results are slightly worse than the results of
than 30 words or not included in the TIGER 2003Xiubler et al., but show less variance.

release (Kibler et al. use the 2005 release). The To sum up, not surprisingly, getting the right at-
data is partitioned in groups of sentences with extraachment positions seems to be hard for LCFRS,
posed relative clauses (ERC), forward conjunctiotoo. Additionally, with crossing branches, the out-
reduction (FCR), noun PP attachment (PPN), verput is rated worse, since some attachments are not
PP attachment (PPV), subject gap with finite/frontegresent anymore without crossing branches. Since
verbs (SGF) and coordination of unlike constituentespecially for the relative clauses, attachment posi-
(CUC). Tab. 7 shows the EVALB results for the (dis-tions are in fact a matter of discussion from a syntac-
continuous) TePaCoC. We parse these sentences tis{point of view, we will consider in future studies
ing the same training set as before with all TePaCof selectively resolve some of the crossing branches,
sentences removed. e.g., by attaching relative clauses to higher positions.

LP LR LR UP UR UR 5 Reated Work
ERC | 59.34 61.36 60.34 6484 67.05 6592

';CF?)E ;ggg ;gzg gig 3?,‘82 311332 %-gg The use of formalisms with a high expressivity has
PPV | 7333 7333 7333 76.66 76.66 76.66 been explored before (Plaehn, 2004; Levy, 2005).
cuc | 5876 5758 5816 6907 67.68 6837 1O our knowledge, Plaehn is the only one to re-
SGF | 82.67 81.05 81.85 85.33 83.66 84.49 port evaluation results. He uses the formalism of
all | 7227 71.83 7205 7726 76.78 77.02 Discontinuous Phrase Structure Grammar (DPSG).
Limiting the sentence length to 15, he obtains 73.16
Table 7: EVALB scores for TePaCoC labeled F on NeGra. Evaluating all sentences of
our NeGra data with a length of up to 15 words re-

While we cannot compare our results directlysuns’ however, in 81.27 labeled .FFor a compari-

with the PCFG results (using grammatical functionyq, petween DPSG and LCFRS, refer to Maier and
labels) of Kuibler et al., their results nevertheless givg ggaard (2008).

an orientation.
We take a closer look at all sentence groups. O Conclusion and Future Work

result for ERC is more than 15 points worse than h _ tiated th ibility of using Prob
the result of Kibler et al. The relative clause itsehWe ave Investigated the possibility of using Frob-

is mostly recognized as a sentence (though not eg_—b |I|stt|c quear gg_ntext—tl_:ree Rewrltlrtl_? Sytster(r:ls for
plicitly marked as a relative clause, since we do no IFECt parsing of discontinuous constituents. t.onse-

consider grammatical functions). However, it is al_quently, vl\\lle gave agﬂ'gE‘;TLCERi parcs)er on tlhe
most consistently attached too high (on the VP o erman Netra an reebanks. Lur evaiu-

on clause level). While this is correct for Kubler etat'on' which used different metrics, showed that a

al., with crossing branches, it treated as an error aer‘ICiRtS parserkcan”ac]tu?r:/ N compeimzj/e reslultf_.
punished especially hard by EVALB. FCR is parsed n future work, afl of the presented evauation

mostly well and with comparable results to KinIermethOdS will be investigated to greater detail. In

et al. There are too few sentences to make a strm‘?éder to do this, we will parse our data_l sets with
rrent state-of-the-art systems. Especially a more

claim about PP attachment. However, in both PPN )
and PPV flat phrases seem to be preferred, Whiéﬂaborate dependency conversion should enable a

has as a consequence that in PPN, PPs are attacHey® informative comparison between the output of
too high and in PPV too low. Our output ConﬁrmsPCFG parsers and the output of the PLCFRS parser.

the claim of Kibler et al.’s that unlike coordinationsLaSt' since an algorithm is available which extracts

is the most difficult of all TePaCoC phenomena. Théfc(;:RS)SS frc;rgogepindency st.ruc_:tures l(KUhI(Ta?n
conjuncts themselves are correctly identified in modnd Satta, ), the parser is instantly ready for

cases, however then coordinated at the wrong levélasing df[hem. We. are tc urrently performing the cor-
SGFis parsed best. Kibler et al. report for this groubesF)On NG Experiments.
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