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Nauklerstr. 35
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Abstract

Discontinuities occur especially frequently in
languages with a relatively free word order,
such as German. Generally, due to the long-
distance dependencies they induce, they lie
beyond the expressivity of Probabilistic CFG,
i.e., they cannot be directly reconstructed by
a PCFG parser. In this paper, we use a
parser for Probabilistic Linear Context-Free
Rewriting Systems (PLCFRS), a formalism
with high expressivity, to directly parse the
German NeGra and TIGER treebanks. In both
treebanks, discontinuities are annotated with
crossing branches. Based on an evaluation us-
ing different metrics, we show that an output
quality can be achieved which is comparable
to the output quality of PCFG-based systems.

1 Introduction

Languages with a rather free word order, like Ger-
man, display discontinuous constituents particularly
frequently. In (1), the discontinuity is caused by an
extraposed relative clause.

(1) wieder
again

treffen
match

alle
all

Attribute
attributes

zu,
VPART

die
which

auch
also

sonst
otherwise

immer
always

passen
fit

‘Again, the same attributes as always apply.’

Another language with a rather free word order is
Bulgarian. In (2), the discontinuity is caused by top-
icalization.

(2) Himikali1

Pens1
az
I

kupuvam
buy

samo
only

evtini
expensive

t1
t1

‘As for pens, I only buy expensive ones.’

In most constituency treebanks, sentence annota-
tion is restricted to having the shape of trees with-
out crossing branches, and the non-local dependen-
cies induced by the discontinuities are modeled by
an additional mechanism. In the Penn Treebank
(PTB) (Marcus et al., 1994), e.g., this mechanism
is a combination of special labels and empty nodes,
establishing implicit additional edges. In the Ger-
man TüBa-D/Z (Telljohann et al., 2006), additional
edges are established by a combination of topolog-
ical field annotation and special edge labels. As an
example, Fig. 1 shows a tree from TüBa-D/Z with
the annotation of (1). Note here the edge label ON-
MOD on the relative clause which indicates that the
subject of the sentence (alle Attribute) is modified.

Figure 1: A tree from TüBa-D/Z

However, in a few other treebanks, such as the
German NeGra and TIGER treebanks (Skut et al.,
1997; Brants et al., 2002), crossing branches are al-
lowed. This way, all dependents of a long-distance
dependency can be grouped under a single node.
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Fig. 2 shows a tree from NeGra with the annotation
of (3).

(3) Noch
Yet

nie
never

habe
have

ich
I

so
so

viel
much

gewählt
chosen

‘Never have I had that much choice.’

Note the direct annotation of the discontinuous VP.

Noch

ADV

nie

ADV

habe

VAFIN

1.Sg.Pres.Ind

ich

PPER

1.Sg.*.Nom

so

ADV

viel

ADV

gewählt

VVPP

.

$.

MO HD

AVP

MO HD

AVP

MO MO HD

VP

OCHD SB

S

Figure 2: A tree from NeGra

Since in general, the annotation mechanisms for
non-local dependencies lie beyond the expressivity
of Context-Free Grammar, non-local information is
inaccessible for PCFG parsing and therefore gener-
ally discarded. In NeGra/TIGER annotation, e.g.,
tree transformation algorithms are applied before
parsing in order to resolve the crossing branches.
See, e.g., Kübler et al. (2008) and Boyd (2007) for
details. If one wants to avoid the loss of annotation
information which is implied with such transforma-
tions, one possibility is to use a probabilistic parser
for a formalism which is more expressive than CFG.

In this paper, we tackle the question if qualita-
tively good results can be achieved when parsing
German with such a parser. Concretely, we use a
parser for Probabilistic Linear Context-Free Rewrit-
ing Systems (PLCFRS) (Kallmeyer and Maier,
2010). LCFRS (Vijay-Shanker et al., 1987) are a
natural extension of CFG in which a single non-
terminal node can dominate more than one contin-
uous span of terminals. We can directly interpret
NeGra-style trees as its derivation structures, i.e., we
can extract grammars without making further lin-
guistic assumptions (Maier and Lichte, 2009) (see
Sect. 2.3), as it is necessary for other formalisms
such as Probabilistic Tree Adjoining Grammars
(Chiang, 2003). Since the non-local dependencies
are immediately accessible in NeGra and TIGER,
we choose these treebanks as our data source. In
order to judge parser output quality, we use four dif-
ferent evaluation types. We use an EVALB-style

measure, adapted for LCFRS, in order to compare
our parser to previous work on parsing German tree-
banks. In order to address the known shortcomings
of EVALB, we perform an additional evaluation us-
ing the tree distance metric of Zhang and Shasha
(1989), which works independently of the fact if
there are crossing branches in the trees or not, and a
dependency evaluation (Lin, 1995), which has also
be applied before in the context of parsing German
(Kübler et al., 2008). Last, we evaluate certain diffi-
cult phenomena by hand on TePaCoC (Kübler et al.,
2008), a set of sentences hand-picked from TIGER.
The evaluations show that with a PLCFRS parser,
competitive results can be achieved.

The remainder of the article is structured as fol-
lows. In Sect. 2, we present the formalism, the
parser, and how we obtain our grammars. In
Sect. 3, we discuss the evaluation methods we em-
ploy. Sect. 4 contains our experimental results.
Sect. 5 is dedicated to related work. Sect. 6 con-
tains the conclusion and presents some possible fu-
ture work.

2 A Parser for PLCFRS

2.1 Probabilistic Linear Context-Free
Rewriting Systems

LCFRS are an extension of CFG where the non-
terminals can span not only single strings but, in-
stead, tuples of strings. We will notate LCFRS with
the syntax ofsimple Range Concatenation Gram-
mars (SRCG) (Boullier, 1998), a formalism that is
equivalent to LCFRS.

A LCFRS (Vijay-Shanker et al., 1987) is a tuple
G = (N,T, V, P, S) where

a) N is a finite set of non-terminals with a func-
tion dim: N → N that determines thefan-out
of eachA ∈ N ;

b) T andV are disjoint finite sets of terminals and
variables;

c) S ∈ N is the start symbol withdim(S) = 1;

d) P is a finite set of rewriting rules

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . , X

(1)
dim(A1)

)

· · ·Am(X
(m)
1 , . . . , X

(m)
dim(Am))
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for m ≥ 0 whereA,A1, . . . , Am ∈ N , X(i)
j ∈ V

for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai) andαi ∈ (T ∪
V )∗ for 1 ≤ i ≤ dim(A). For all r ∈ P , it holds
that every variableX occurring inr occurs exactly
once in the left-hand side (LHS) and exactly once in
the right-hand side (RHS).

The fan-out of an LCFRSG is the maximal fan-
out of all non-terminals inG. Furthermore, the RHS
length of a rewriting rulesr ∈ P is called therank
of r and the maximal rank of all rules inP is called
the rank of G. An LCFRS is calledordered if for
everyr ∈ P and every RHS non-terminalA in r and
each pairX1, X2 of arguments ofA in the RHS of
r, X1 precedesX2 in the RHS iffX1 precedesX2

in the LHS.

Borrowed from SRCG, we specify the language
of an LCFRS based on the notion of ranges. For
some input wordw = w1 · · ·wn, a range is a pair
〈i, j〉 of integers with0 ≤ i ≤ n denoting the sub-
stringwi+1 · · ·wj. Note that a range denotesε iff
i = j. Only consecutive ranges can be concatenated
into new ranges. We can replace the variables and
terminals of the rewriting rules with ranges. E.g.,
A(〈g, h〉) → B(〈g + 1, h − 1〉) is a replacement of
the clauseA(aX1b) → B(X1) if the input wordw is
such thatwg+1 = a andwh = b. A rewriting rule in
which all elements of all arguments have been con-
sistently replaced by ranges is called aninstantiated
rule. A derivation is built by successively rewriting
the LHSs of instantiated rules with its RHSs. The
languageL(G) of some LCFRSG consists of all
wordsw = w1 · · ·wn for which it holds that there is
a rule with the start symbol on the LHS which can
be instantiated to〈0, n〉 and rewritten toε.

A probabilistic LCFRS (PLCFRS) is a tu-
ple 〈N,T, V, P, S, p〉 such that〈N,T, V, P, S〉 is a
LCFRS andp : P → [0..1] a function such that for
all A ∈ N : Σ

A(~x)→~Φ∈P
p(A(~x) → ~Φ) = 1. There

are possibly other ways to extend LCFRS with prob-
abilities. This definition is supported by the fact that
probabilistic MCFGs1 have been defined in the same
way (Kato et al., 2006).

1MCFGs are equivalent to LCFRSs and SRCGs (Boullier,
1998).

Scan:
0 : [A, 〈〈i, i+ 1〉〉]

A POS tag ofwi+1

Unary:
in : [B, ~ρ]

in+ |log(p)| : [A, ~ρ]
p : A(~ρ) → B(~ρ) ∈ P

Binary:
inB : [B, ~ρB], inC : [C, ~ρC ]
inB + inC + log(p) : [A, ~ρA]

wherep : A( ~ρA) → B( ~ρB)C( ~ρC) is an instantiated rule.
Goal: [S, 〈〈0, n〉〉]

Figure 3: Weighted CYK deduction system

2.2 A CYK Parser for PLCFRS

We use the parser of Kallmeyer and Maier (2010).
It is a probabilistic CYK parser (Seki et al., 1991),
using the technique of weighted deductive parsing
(Nederhof, 2003). While for symbolic parsing, other
elaborate algorithms exist (Kallmeyer and Maier,
2009), for probabilistic parsing, CYK is a natural
choice.

It is assumed for the parser that our LCFRSs are
of rank2 and do not contain rules where some of the
LHS components areε. Both assumptions can be
made without loss of generality since every LCFRS
can be binarized (Gómez-Rodrı́guez et al., 2009)
andε-components on LHS of rules can be removed
(Boullier, 1998). We make the assumption that POS
tagging is done before parsing. The POS tags are
special non-terminals of fan-out1. Consequently,
the rules are either of the formA(a) → ε whereA
is a POS tag anda ∈ T or of the formA(~α) → B(~x)
orA(~α) → B(~x)C(~y) where~α ∈ (V +)dim(A), i.e.,
only the rules for POS tags contain terminals in their
LHSs.

The parser items have the form[A, ~ρ], with A ∈
N and~ρ a vector of ranges characterizing all com-
ponents of the span ofA. We specify the set
of weighted parse items via the deduction rules in
Fig. 3.

Parsing time can be reduced by reordering the
agenda during parsing such that those items are pro-
cessed first which lead to a complete parse more
quickly than others (Klein and Manning, 2003a).
The parser uses for this purpose an admissible, but
not monotonic estimate calledLR estimate. It gives
(relative to a sentence length) an estimate of the out-
side probability of some non-terminalA with a span
of a certain length (the sum of the lengths of all the

60



components of the span), a certain number of ter-
minals to the left of the first and to the right of the
last component and a certain number of terminals
gaps in between the components of theA span, i.e.,
filling the gaps. A discussion of other estimates is
presented at length in Kallmeyer and Maier (2010).

2.3 LCFRS for Modeling Discontinuities

We use the algorithm from Maier and Søgaard
(2008) to extract LCFRS rules from our data sets.
For all nonterminalsA0 with the childrenA1 · · ·Am

(i.e., for all non-terminals which are not pretermi-
nals), we create a clauseψ0 → ψ1 · · ·ψm with ψi,
0 ≤ i ≤ m, labeledAi. The arguments of each
ψi, 1 ≤ i ≤ m, are single variables, one for each
of the continuous yield part dominated by the node
Ai. The arguments ofψ0 are concatenations of these
variables that describe how the discontinuous parts
of the yield ofA0 are obtained from the yields of its
daughters. For all preterminalsA dominating some
terminala, we extract a productionA(a) → ε. Since
by definition, a label is associated with a certain
fan-out, we distinguish the labels by correspond-
ing subscripts. Note that this extraction algorithm
yields only ordered LCFRS. Furthermore, note that
for trees without crossing branches, this algorithm
yields a PLCFRS with fan-out 1, i.e., a PCFG.

As mentioned before, the advantage of using
LCFRS is that grammar extraction is straight-
forward and that no separate assumptions must be
made. Note that unlike, e.g., Range Concatenation
Grammar (RCG) (Boullier, 1998), LCFRS cannot
model re-entrancies, i.e., nodes with more than one
incoming edge. While those do not occur in NeGra-
style annotation, some of the annotation in the PTB,
e.g., the annotation for right node raising, can be in-
terpreted as re-entrancies. This topic is left for fu-
ture work. See Maier and Lichte (2009) for further
details, especially on how treebank properties relate
to properties of extracted grammars.

Before parsing, we binarize our grammar. We first
mark the head daughters of all non-terminal nodes
using Collins-style head rules based on the NeGra
rules of the Stanford Parser (Klein and Manning,
2003b) and the reorder the RHSs of all LCFRS rules
such that sequence of elements to the right of the
head daughter is reversed and moved to the begin-
ning of the RHS. From this point, the binarization

works like the transformation into Chomsky Normal
Form for CFGs. For each rule with an RHS of length
≥ 3, we introduce a new non-terminal which cov-
ers the RHS without the first element and continue
successively from left to right. The rightmost new
rule, which covers the head daughter, is binarized to
unary.

We markovize the grammar as in the CFG case.
To the new symbols introduced during the binariza-
tion, a variable number of symbols from the vertical
and horizontal context of the original rule is added.
Following the literature, we call the respective quan-
tities v andh. As an example, Fig. 4 shows the out-
put for the production for the VP in the left tree in
Fig. 2.

After extraction and head marking:
VP2(X1,X2X3)→ AVP1(X1) AVP1(X2) VVPP1’(X3)

After binarization and markovization withv = 1, h = 2:
VP2(X1,X2)→ AVP1(X1) @-VP2v-AVP1h-VVPP1h(X2)
@-VP2v-AVP1h-VVPP1h(X1X2)
→ AVP1(X1) @-VP2v-VVPP1h(X2)
@-VP2v-VVPP1h(X1)→ VVPP1(X1)
After binarization and markovization withv = 2, h = 1:
VP2(X1,X2)→ AVP1(X1) @-VP2v-S2v-AVP1h(X2)
@-VP2v-S2v-AVP1h(X1X2)
→ AVP1(X1) @-VP2v-S2v-VVPP1h(X2)
@-VP2v-S2v-VVPP1h(X1)→ VVPP1(X1)

Figure 4: Grammar extraction and binarization example

The probabilities are then computed based on the
number of occurrences of rules in the transformed
treebank, using a Maximum Likelihood estimator.

3 Evaluation methods

We assess the quality of our parser output using dif-
ferent methods.

The first is anEVALB-style metric (henceforth
EVALB), i.e., we compare phrase boundaries. In
spite of its shortcomings (Rehbein and van Gen-
abith, 2007), it allows us to compare to previ-
ous work on parsing NeGra. In the context of
LCFRS, we compare sets of tuples of the form
[A, (i1l , i

1
r), . . . , (i

k
l , i

k
r )], whereA is a non-terminal

in some derivation tree withdim(A) = k and each
(iml , i

m
r ), 1 ≤ m ≤ k, is a tuple of indices denot-

ing a continuous sequence of terminals dominated
byA. One set is obtained from the parser output, and
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Figure 5: TDIST example

one from the corresponding treebank trees. Using
these tuple sets, we compute labeled and unlabeled
recall (LR/UR), precision (LP/UP), and theF1 mea-
sure (LF1/UF1) in the usual way. Note that ifk = 1,
our metric is identical to its PCFG version.

EVALB does not necessarily reflect parser output
quality (Rehbein and van Genabith, 2007; Emms,
2008; Kübler et al., 2008). One of its major prob-
lems is that attachment errors are penalized too
hard. As the second evaluation method, we there-
fore choose thetree-distance measure (henceforth
TDIST) (Zhang and Shasha, 1989), which levitates
this problem. It has been proposed for parser evalu-
ation by Emms (2008). TDIST is an ideal candidate
for evaluation of the output of a PLCFRS, since it the
fact if trees have crossing branches or not is not rel-
evant to it. Two treesτk andτA are compared on the
basis ofT -mappings from τk to τA. A T -mapping
is a partial mappingσ of nodes ofτk to nodes ofτA
where all node mappings preserve left-to-right or-
der and ancestry. Within the mappings, node inser-
tion, node deletion, and label swap operations are
identified, represented resp. by the setsI, D and
S. Furthermore, we consider the setM represent-
ing the matched (i.e., unchanged) nodes. The cost of
a T -mapping is the total number of operations, i.e.
|I|+ |D|+ |S|. Thetree distance between two trees
τK and τA is the cost of the cheapestT -mapping.
Fig. 5, borrowed from Emms, shows an example for
a T -mapping. Inserted nodes are prefixed with>,
deleted nodes are suffixed with<, and nodes with
swapped labels are linked with arrows. Since in to-
tal, four operations are involved, to thisT -mapping,
a cost of 4 is assigned. For more details, especially
on algorithms which compute TDIST, refer to Bille
(2005). In order to convert the tree distance measure
into a similarity measure like EVALB, we use the
macro-averaged Dice and Jaccard normalizations as
defined by Emms. LetτK andτA be two trees with

|τK | and|τA| nodes, respectively. For aT -mapping
σ from τK to τA with the setsD, I, S andM, we
compute them as follows.

dice(σ) = 1−
|D|+ |I|+ |S|

|τK |+ |τA|

jaccard (σ) = 1−
|D|+ |I|+ |S|

|D|+ |I|+ |S|+ |M|

where, in order to achieve macro-averaging, we sum
the numerators and denominators over all tree pairs
before dividing. See Emms (2008) for further de-
tails.

The third method isdependency evaluation
(henceforthDEP), as described by Lin (1995). It
consists of comparing dependency graphs extracted
from the gold data and from the parser output. The
dependency extraction algorithm as given by Lin
does also not rely on trees to be free of crossing
branches. It only relies on a method to identify the
head of each phrase. We use our own implementa-
tion of the algorithm which is described in Sect. 4
of Lin (1995), combined with the head finding algo-
rithm of the parser. Dependency evaluation abstracts
away from another bias of EVALB. Concretely, it
does not prefer trees with a high node/token ratio,
since two dependency graphs to be compared neces-
sarily have the same number of (terminal) nodes. In
the context of parsing German, this evaluation has
been employed previously by Kübler et al. (2008).

Last, we evaluate onTePaCoC (Testing
Parser Performance on Complex Grammatical
Constructions), a set of particularly difficult sen-
tences hand-picked from TIGER (Kübler et al.,
2008).

4 Experiments

Our data sources are the German NeGra (Skut et
al., 1997) and TIGER (Brants et al., 2002) tree-
banks. In a preprocessing step, following common
practice, we attach all punctuation to nodes within
the tree, since it is not included in the NeGra an-
notation. In a first pass, using heuristics, we at-
tach all nodes to the in each case highest available
phrasal node such that ideally, we do not introduce
new crossing branches. In a second pass, paren-
theses and quotation marks are preferably attached
to the same node. Grammatical function labels are
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discarded. After this preprocessing step, we create
a separate version of the data set, in which we re-
solve the crossing branches in the trees, using the
common approach of re-attaching nodes to higher
constituents. We use the first 90% of our data sets
for training and the remaining 10% for testing. Due
to memory limitations, we restrict ourselves to sen-
tences of a maximal length of 30 words. Our TIGER
data sets (TIGER and T-CF) have 31,568 sentences
of an average length of 14.81, splitted into 31,568
sentences for training and 3,508 sentences for test-
ing. Our NeGra data sets (NeGra and N-CF) have
18,335 sentences, splitted into 16,501 sentences for
training and 1,834 sentences for testing.

We parse the data sets described above with acti-
vated LR estimate. For all our experiments, we use
the markovization settingsv = 2 andh = 1, which
have proven to be successful in previous work on
parsing NeGra (Rafferty and Manning, 2008). We
provide the parser with the gold tagging. Fig. 6
shows the average parsing times for all data sets on
an AMD Opteron node with 8GB of RAM (pure
Java implementation), Tab. 1 shows the percentage
of parsed sentences.
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Figure 6: Parsing times

NeGra TIGER N-CF T-CF
total 1834 3508 1834 3508
parsed 1779

(97.0%)
3462
(98.7%)

1804
(98.4%)

3462
(98.7%)

Table 1: Parsed sentences

4.1 Evaluation Using EVALB

Tab. 2 shows the evaluation of the parser output us-
ing EVALB, as described in the previous section.
We report labeled and unlabeled precision, recall
andF1 measure.

LP LR LF1 UP UR UF1

NeGra 72.39 70.68 71.52 76.01 74.22 75.10
TIGER 74.97 71.95 73.43 78.58 75.42 76.97

N-CF 74.85 73.26 74.04 78.11 76.45 77.28
T-CF 77.51 73.73 75.57 80.59 76.66 78.57

Table 2: EVALB results

Not surprisingly, reconstructing discontinuities is
hard. Therefore, when parsing without crossing
branches, the results are slightly better. In order to
see the influence of discontinuous structures during
parsing on the underlying phrase structure, we re-
solve the crossing branches in the parser output of
NeGra and TIGER and compare it to the respective
gold test data of N-CF and T-CF. Tab. 3 shows the
results.

LP LR LF1 UP UR UF1

NeGra 72.75 71.04 71.89 76.38 74.58 75.47
TIGER 75.28 72.25 73.74 78.81 75.64 77.20

Table 3: EVALB results (resolved crossing branches)

The results deteriorate slightly in comparison
with N-CF and T-CF, however, they are slightly
higher than for than for NeGra and TIGER. This
is due to the fact that during the transformation,
some errors in the LCFRS parses get “corrected”:
Wrongly attached phrasal nodes are re-attached to
unique higher positions in the trees.

In order to give a point of comparison with previ-
ous work on parsing TIGER and NeGra, in Tab. 4,
we report some of the results from the literature. All
of them were obtained using PCFG parsers: Kübler
(2005) (Tab. 1, plain PCFG for NeGra), Kübler et al.
(2008) (Tab. 3, plain PCFG and Stanford parser with
markovizationv = 2 andh = 1 for TIGER), and
Petrov and Klein (2007) (Tab. 1, Berkeley parser, la-
tent variables). We include the results for N-CF and
T-CF.

Our results are slightly better than for the plain
PCFG models. We would expect the result for T-
CF to be closer to the corresponding result for the
Stanford parser, since we are using a comparable
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plain this work markov. latent
NeGra 69.94 74.04 – 80.1

TIGER 74.00 75.57 77.30 –

Table 4: PCFG parsing of NeGra, LabeledF1

model. This difference is mostly likely due to losses
induced by the LR estimate. All items to which the
estimate assigns an outside log probability estimate
of −∞ get blocked and are not put on the agenda.
This blocking has an extremely beneficial effect on
parser speed. However, it is paid by a worse recall,
as experiments with smaller data sets have shown.
A complete discussion of the effects of estimates, as
well as a discussion of other possible optimizations,
is presented in Kallmeyer and Maier (2010).

Recall finally that LCFRS parses are more infor-
mative than PCFG parses – a lower score for LCFRS
EVALB than for PCFG EVALB does not necessarily
mean that the PCFG parse is “better”.

4.2 Evaluation Using Tree Distance

Tab. 5 shows the results of evaluating with TDIST,
excluding unparsed sentences. We report thedice

and jaccard normalizations, as well as a summary
of the distribution of the tree distances between gold
trees and trees from the parser output (see Sect. 3).

tree distance distrib.
dice jaccard 0 ≤ 3 ≥ 10

NeGra 88.86 79.79 31.65 53.77 15.08
TIGER 89.47 80.84 29.87 56.78 18.18

N-CF 92.50 85.99 33.43 61.92 6.71
T-CF 92.70 86.46 31.80 63.81 4.56

Table 5: Tree distance evaluation

Again, we can observe that parsing LCFRS is
harder than parsing PCFG. As for EVALB, the re-
sults for TIGER are slightly higher than the ones for
NeGra. The distribution of the tree distances shows
that about a third of all sentences receive a com-
pletely correct parse. More than a half, resp. a third
of all parser output trees require≤ 3 operations to be
mapped to the corresponding gold tree, and a only a
small percentage requires≥ 10 operations.

To our knowledge, TDIST has not been used to
evaluate parser output for NeGra and TIGER. How-
ever, Emms (2008) reports results for the PTB using
different parsers. Collins’ Model 1 (Collins, 1999),

e.g., lies at 93.62 (Dice) and 87.87 (Jaccard). For
the Berkeley Parser (Petrov and Klein, 2007), 94.72
and 89.87 is reported. We see that our results lie in
them same range. However, Jaccard scores are lower
since this normalization punishes a higher number
of edit operations more severely than Dice. In or-
der to meaningfully interpret which treebank prop-
erties are responsible for the fact that between the
gold trees and the trees from the parser, the German
data requires more tree edit operations than the En-
glish data, a TDIST evaluation of the output of an
off-the-shelf PCFG parser would be necessary. This
is left for future work.

4.3 Dependency Evaluation

For the dependency evaluation, we extract depen-
dency graphs from both the gold data and the test
data and compare the unlabeled accuracy. Tab. 6
shows the results. We report unlabeled attachment
score (UAS).

UAS
NeGra 76.50

TIGER 77.84
N-CF 77.52
T-CF 78.67

Table 6: Dependency evaluation

The dependency results are consistent with the
previous results in as much as the scores for PCFG
parsing are again higher. The dependency re-
sults reported in Kübler et al. (2008) however are
much higher (85.6 UAS for the markovized Stan-
ford parser). While a part of the losses can again
be attributed to the LR estimate, another reason lies
undoubtedly in the different dependency conversion
method which we employ, and in further treebank
transformations which Kübler et al. perform. In or-
der to get a more fine grained result, in future work,
we will consider graph modifications as proposed by
Lin (1995) as well as including annotation-specific
information from NeGra/TIGER in our conversion
procedure.

4.4 TePaCoC

The TePaCoC data set (Kübler et al., 2008) provides
100 hand-picked sentences from TIGER which con-
tain constructions that are especially difficult to
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parse. Out of these 100 sentences, we only consider
69. The remaining 31 sentences are either longer
than 30 words or not included in the TIGER 2003
release (Kübler et al. use the 2005 release). The
data is partitioned in groups of sentences with extra-
posed relative clauses (ERC), forward conjunction
reduction (FCR), noun PP attachment (PPN), verb
PP attachment (PPV), subject gap with finite/fronted
verbs (SGF) and coordination of unlike constituents
(CUC). Tab. 7 shows the EVALB results for the (dis-
continuous) TePaCoC. We parse these sentences us-
ing the same training set as before with all TePaCoC
sentences removed.

LP LR LF1 UP UR UF1

ERC 59.34 61.36 60.34 64.84 67.05 65.92
FCR 78.03 76.70 77.36 82.66 81.25 81.95
PPN 72.15 72.15 72.15 75.95 75.95 75.95
PPV 73.33 73.33 73.33 76.66 76.66 76.66
CUC 58.76 57.58 58.16 69.07 67.68 68.37
SGF 82.67 81.05 81.85 85.33 83.66 84.49

all 72.27 71.83 72.05 77.26 76.78 77.02

Table 7: EVALB scores for TePaCoC

While we cannot compare our results directly
with the PCFG results (using grammatical function
labels) of Kübler et al., their results nevertheless give
an orientation.

We take a closer look at all sentence groups. Our
result for ERC is more than 15 points worse than
the result of Kübler et al. The relative clause itself
is mostly recognized as a sentence (though not ex-
plicitly marked as a relative clause, since we do not
consider grammatical functions). However, it is al-
most consistently attached too high (on the VP or
on clause level). While this is correct for Kübler et
al., with crossing branches, it treated as an error and
punished especially hard by EVALB. FCR is parsed
mostly well and with comparable results to Kübler
et al. There are too few sentences to make a strong
claim about PP attachment. However, in both PPN
and PPV flat phrases seem to be preferred, which
has as a consequence that in PPN, PPs are attached
too high and in PPV too low. Our output confirms
the claim of Kübler et al.’s that unlike coordinations
is the most difficult of all TePaCoC phenomena. The
conjuncts themselves are correctly identified in most
cases, however then coordinated at the wrong level.
SGF is parsed best. Kübler et al. report for this group

only 78.6 labeled F1 for the Stanford Parser. Our
overall results are slightly worse than the results of
Kübler et al., but show less variance.

To sum up, not surprisingly, getting the right at-
tachment positions seems to be hard for LCFRS,
too. Additionally, with crossing branches, the out-
put is rated worse, since some attachments are not
present anymore without crossing branches. Since
especially for the relative clauses, attachment posi-
tions are in fact a matter of discussion from a syntac-
tic point of view, we will consider in future studies
to selectively resolve some of the crossing branches,
e.g., by attaching relative clauses to higher positions.

5 Related Work

The use of formalisms with a high expressivity has
been explored before (Plaehn, 2004; Levy, 2005).
To our knowledge, Plaehn is the only one to re-
port evaluation results. He uses the formalism of
Discontinuous Phrase Structure Grammar (DPSG).
Limiting the sentence length to 15, he obtains 73.16
labeled F1 on NeGra. Evaluating all sentences of
our NeGra data with a length of up to 15 words re-
sults, however, in 81.27 labeled F1. For a compari-
son between DPSG and LCFRS, refer to Maier and
Søgaard (2008).

6 Conclusion and Future Work

We have investigated the possibility of using Prob-
abilistic Linear Context-Free Rewriting Systems for
direct parsing of discontinuous constituents. Conse-
quently, we have applied a PLCFRS parser on the
German NeGra and TIGER treebanks. Our evalu-
ation, which used different metrics, showed that a
PLCFRS parser can achieve competitive results.

In future work, all of the presented evaluation
methods will be investigated to greater detail. In
order to do this, we will parse our data sets with
current state-of-the-art systems. Especially a more
elaborate dependency conversion should enable a
more informative comparison between the output of
PCFG parsers and the output of the PLCFRS parser.
Last, since an algorithm is available which extracts
LCFRSs from dependency structures (Kuhlmann
and Satta, 2009), the parser is instantly ready for
parsing them. We are currently performing the cor-
responding experiments.
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