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Introduction

We are pleased to bring you these Proceedings of the First Workshop on Speech and Language
Processing for Assistive Technologies (SLPAT), held in Los Angeles, California, USA on June 5, 2010.
We received 16 paper submissions, of which 8 were chosen for oral presentation and another 4 for
poster presentation – all 12 papers are included in this volume. In addition, four demo proposals were
accepted, and short abstracts of these demos are also included here.

This workshop was intended to bring together individuals from the Augmentative and Alternative
Communication (AAC), Assistive Technologies (AT), Natural Language Processing (NLP) and Speech
research communities, along with representatives from the AAC user community and companies
working in this domain, to share research findings, and to discuss present and future challenges and the
potential for collaboration and progress. While AAC is a particularly apt application area for speech and
NLP technologies, we purposefully made the scope of the workshop broad enough to include assistive
technologies as a whole, even those falling outside of AAC. While we encouraged work that validates
methods with human experimental trials, we also accepted work on basic-level innovations, inspired
by AT/AAC related problems. Thus we have aimed at broad inclusivity, which is also manifest in the
diversity of our Program Committee.

We are very excited to have three invited speakers. Rick Hohn and Jan Staehely will speak on their
experiences and perspectives as users of AAC technology. Also, Greg Lesher will give an invited talk
entitled “Exploiting Web Content for Augmentative Communication”. We would like to thank all three
for taking the time to participate and provide their collective insight to the workshop.

We would also like to thank the members of the Program Committee for completing their reviews
promptly, and for providing useful feedback for deciding on the program and preparing the final
versions of the papers. Thanks also to Priscilla Rasmussen, David Traum and Richard Sproat for
assistance with logistics. Finally, thanks to the authors of the papers, for submitting such interesting
and diverse work, and to the presenters of demos and commercial exhibitions.

Melanie Fried-Oken, Kathy McCoy and Brian Roark
Co-organizers of the workshop
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Abstract 

We are building a tool that helps children with 

Complex Communication Needs
1
 (CCN) to 

create stories about their day at school. The 

tool uses Natural Language Generation (NLG) 

technology to create a draft story based on 

sensor data of the child’s activities, which the 

child can edit. This work is still in its early 

stages, but we believe it has great potential to 

support interactive personal narrative which is 

not well supported by current Augmentative 

and Alternative Communication (AAC) tools. 

1 Introduction 

Many tools have been developed to help children and 

adults who cannot speak (or who have limited speech) 

communicate better.  However, most of these tools have 

focused on supporting communication for practical 

goals, such as “I am thirsty.” But human communica-

tion is also used for social goals; we develop friendships 

and other inter-personal relationships via social interac-

tion and communication. The bulk of conversation is 

characterized by free narrative (Cheepen 1988). One of 

the most important types of conversational narrative is 

personal narrative: someone telling a story about what 

happened to him or her. 

 People with limited or no functional speech do tell 

stories, but these tend to be in monologue form, or in a 

sequence of pre-stored utterances on voice output com-

munication aids (Waller 2006). Individuals who use 

                                                           
1 The term Complex Communication Needs (CCN) describes 

individuals who, due to motor, language, cognitive, and/or 

sensory perceptual impairments (e.g., as a result of cerebral 

palsy), do not develop speech and language skills as expected. 

This heterogeneous group typically experiences restricted 

access to the environment, limited interactions with their 

communication partners, and few opportunities for communi-

cation (Light and Drager 2007). 

Augmentative and Alternative Communication (AAC) 

tools tend to be passive, responding to questions with 

single words or short sentences (e.g. Soto, Hartmann et 

al. 2006) and if able to initiate and maintain extended 

conversations tend to relate experience word for word 

each time they tell a story, even though much of conver-

sation is reused (Clarke and Clarke 1977). This is time 

consuming and physically exhausting – typical rates 

range from 8 to 10 words per minute up to 12 to 15 per 

minute when techniques such as word prediction are 

used (Higginbotham, Shane et al. 2007), with the result 

that people seldom engage in storytelling. Despite the 

importance of narrative, little work has been done on 

specific tools to help language-impaired individuals 

engage in personal storytelling. In this paper, we de-

scribe our work in progress on building a tool that uses 

Natural Language Generation (NLG) technology to help 

children tell stories about their day at school, describing 

both the work we have done to date, and the challenges 

that we face in further developing this concept. 

2 Background 

2.1 AAC 

Technology underpins much of Augmentative and Al-

ternative Communication (AAC), a field that attempts to 

augment natural speech and provides alternative ways to 

communicate for people with limited or no speech. At 

the simplest level, people with Complex Communica-

tion Needs (CCN) can cause a pre-stored message to be 

spoken by activating a single switch. At the most so-

phisticated level, literate users can generate novel text 

using input methods ranging from a single switch to a 

full keyboard.  

Despite advances in AAC, there are still many indi-

viduals for whom communication remains problematic. 

Although some individuals with CCN become effective 

communicators, most do not – they tend to be passive 

communicators, responding mainly to questions or 

prompts at a one or two word level. Conversational 
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skills such as initiation, elaboration and storytelling are 

seldom observed (Waller 2006). 

One reason for the reduced levels of communicative 

ability is the cognitive demands of AAC interfaces. Cur-

rent AAC technology provides the user with a purely 

physical link to speech output. The user is required to 

have sufficient cognitive abilities and physical stamina 

to translate what they want to say into the sequence of 

operations needed to produce the desired output. Mne-

monic codes and dynamic displays (Beukelman and 

Mirenda 2005) provide some help in the retrieval 

process, but users still have to master complex retrieval 

and production strategies.  

A second reason for the impoverished quality of 

conversation is the focus of AAC devices on transac-

tional communication; conversation which expresses 

needs wants and information transfer, for example, “I 

am thirsty”, “I use a straw for drinking”. Instead, inter-

active conversation is characterized by free narrative 

and phatic conversation, for example, “Guess what 

happened this morning…”, “Hello”, and “How are 

you?” Without easy access to extended interactive 

communication, it is difficult to develop the skills 

needed to initiate new topics and engage in storytelling.  

2.2 Importance of Narrative 

 Conversational narratives (oral stories told during 

interactive conversations) are crucial to social engage-

ment. Narratives provide a means for people to relate 

and share experiences, develop organizational skills, 

work through problems, develop self image, express 

personality, give form and meaning to life, and allow 

people to be interesting entertainers (Waller 2006).  

 Narrative skills develop experientially with children 

being able to engage in storytelling even before they are 

verbal (Bruner 1975). Early personal experience stories 

consist of a high point, for example, “Mummy fall!” 

with adults scaffolding the full story, eliciting the ‘who’, 

‘what’, ‘when’ and ‘where’. However, not all expe-

riences make good stories. An experience becomes a 

story if the storyteller has an emotional connection to 

the event (Labov, 1972), or if the event is unusual (Qua-

sthoff & Nikolaus, 1982). 

 Parents of typically developing children encourage 

development of narrative skills by eliciting stories from 

their children (Peterson and McCabe 1983), but the de-

velopment of narrative skills is problematic for people 

with CCN. We recall a study where disabled children 

were told different stories more often than typically 

developing peers who were read the same story night 

after night (Light, Binger et al. 1994). In doing so, the 

disabled children did not have the chance to learn the 

sequence of stories, or the structure commonly used in 

narrative such as beginning, middle and end. As such, 

initially children should use the same story template 

consistently until they are ready to progress to another 

one. 

 It is difficult to provide access to event information 

which may become a story, and few AAC systems pro-

vide support for interactive story narration. However 

NLG gives us a possibility to change the underlying 

paradigm of AAC. Instead of placing the entire cogni-

tive load on the user, AAC devices can be designed to 

support the retrieval of story events and the scaffolding 

of story narration for individuals with CCN. 

2.3 NLG, Data-to-text 

NLG systems generate texts in English (or other human 

languages) from non-linguistic data (Reiter and Dale 

2000).  Our vision is to use an NLG system to generate 

a draft story, which the child can edit.  The non-

linguistic input to our story-generator is sensor data 

about the child’s activities, including location data 

(where the child was) and interaction data (what people 

and objects the child interacted with).  We also want to 

allow teachers and school staff to enter information 

about the child’s activities (such as voice messages). 

 A number of data-to-text systems (Reiter 2007) have 

been developed in recent years, which generate English 

summaries of sensor and other numerical data.  The 

most popular application area has been weather fore-

casting (generating textual weather forecasts from the 

results of a numerical atmosphere simulation model), 

and indeed several weather forecast generators have 

been fielded and used operationally (Goldberg, Driedger 

et al. 1994; Reiter, Sripada et al. 2005). A number of 

data-to-text systems have also been developed in the 

medical community, such as BabyTalk (Gatt, Portet et 

al. 2009), which generates summaries of clinical data 

from a neonatal intensive care unit, and the commercial 

Narrative Engine (Harris 2008) which summarizes data 

acquired during a doctor/patient encounter. 

 Most previous research in data-to-text has focused 

on summarizing technical data for expert users, with the 

goal of effectively communicating key information.  In 

our work, in contrast, the focus is on summarizing data 

about everyday events, with the goal of having some-

thing interesting to talk about.  There has been consider-

able work in the computational creativity community on 

generating interesting stories (Péréz and Sharples 2004), 

but it has focused on fictional written stories, where the 

computer system can say whatever it wishes, without 

the constraint of describing real events. 

 Most previous work in NLG has focused on com-

puter systems which generate texts without human in-

put.  However, in our case we want children to be able 

to annotate (evaluate) and edit stories, as far as their 

abilities permit.  There has been some research on hu-

man post-editing of NLG texts (Sripada, Reiter et al. 

2005), but this has focused on editing at the text level.  
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Since editing at the text level is very laborious for AAC 

users, we need a higher-level interface that lets children 

edit content and structure without needing to type 

words.  We also want children to be able to control how 

a story is narrated, perhaps in response to a listener’s 

questions or body language.  For example children may 

wish to add comments such as “It was awesome!”, or 

tell events out of sequence. 

    In short, we need to develop interfaces and interac-

tion techniques that allow our users to control the NLG 

system.  Unfortunately there has been very little pre-

vious work on this topic, indeed almost nothing is 

known about Human-Computer Interaction aspects of 

NLG systems.  Developing a better understanding of 

these aspects is one of the main research challenges we 

face from an NLG perspective. 

3 Current and ongoing work 

3.1 “How was School today…?” 

We developed an initial version of “How was School 

today…?” in 2009; see Reiter et al (2009) for more de-

tails about this system. 

 

 
 

Fig. 1: Participating pupil with support worker:  

The prototype system is mounted on the wheelchair, and 

the pupil has access to the system via head switch con-

trolled row/column scanning. 

 

 This system used Radio Frequency Identification 

(RFID), an emerging application in AAC to identify or 

give access to relevant vocabulary (Bart, Riny et al. 

2008; DeRuyter and Fried-Oken 2010). Sensors were 

used to track both location (by putting tags on doors, 

which were automatically sensed by a long-range RFID 

reader) and interaction (by asking staff to manually 

swipe RFID cards in a short-range reader when the child 

interacted with a person or object). Staff could also 

record spoken messages about interesting events during 

the day (see Fig. 1). 

The software analyzed this data to remove sensor noise, 

and then compared it to a timetable which specified 

where children were supposed to be, what they were 

supposed to be doing and which teacher was supposed 

to be taking the class throughout the day.  This allowed 

the software to both fill in missing information, and to 

identify divergences from the schedule. The result of 

this process was a series of events (which corresponded 

to classes, for example, maths class), each of which had 

a set of associated messages (interactions during the 

event, divergence from schedule, etc.). 

 After the data analysis was completed, an NLG sys-

tem identified the events most interesting (to the child), 

using a heuristic that took into consideration both how 

inherent interesting an event was (for example, lunch 

was regarded as an inherently interesting event that 

children were likely to want to talk about) and also 

whether an event was unusual or not.  The latter is based 

on the observation that most personal narratives focus 

on unexpected or unusual events.  Unusual events were 

identified by the presence of recorded voice messages 

and by divergence from the timetable, e.g. a different 

teacher present or a different location. The system se-

lected the five most ‘interesting’ events and displayed 

them to the child in a simple visual editing interface.  In 

this interface the child could delete events he/she did 

not wish to talk about, and also annotate events with 

simple opinions (evaluations), such as I liked it, using 

the evaluation buttons on the interface, generating ap-

propriate utterances according to the last narrated event 

or message.(see Fig. 2).  

     When editing was finished, the NLG system generat-

ed texts describing the events and messages, which the 

child communicated using a simple narration interface 

(which was similar to the editing interface). Emphasis 

was placed on providing quick access to messages to 

minimize the length of pauses between utterances due to 

the physical accessing difficulties of the users. The 

narrative model is based on the Labov social narrative 

model (Labov 1972) which emphasizes the highpoint 

and evaluation. The dialogue model from beginning 

through to highpoint to the end with the user being able 

to add evaluations at any point of the narration. Stories 

are initially chronological order but interactively under 

the control of the user. This control of narration differs 

significantly from current AAC interventions where 

narrative tends to be output in a monologue format.  

 From an NLG perspective, the system was fairly 

straightforward. The most challenging microplanning 

tasks were choosing connectives, time phrases, lexical 

variety in embellishments, and pronouns based on dis-

course context. Connectives and time phrases were ne-

cessary since children could narrate events in different 

orders (for example, “I went to maths.  Then I went to 

lunch” versus “I went to lunch.  Before lunch, I went to 

maths”).  Document structuring  was simple because we 

Short range RFID reader 

and microphone for voice 

message recording 

Visual interface 

Access switch in head 

rest 

Long range RFID reader 
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assumed that the children would choose their own order 

in which to narrate events. In fact some children are not 

able to do this; such children would need to be sup-

ported by a more sophisticated document planner that 

had a model of appropriate text structures in this do-

main. 

 We asked two children to use the system for one 

week for a qualitative formative evaluation.  Research-

ers supplied ongoing support during this, primarily trial 

observing how the children used the system, and dis-

cussing it with teachers, therapists and parents.  Gener-

ally it worked well for one child, Julie
2
, who had severe 

motor impairment (no independent means of mobility 

and interacted with a computer using a head switch with 

row/column scanning, see Fig. 1). Her expressive abili-

ties were limited but her comprehension skills were 

comparable to her non-disabled peers with some deve-

lopmental delay. The other child, Jessica, had more 

cognitive impairment, and found the interface too diffi-

cult. 

 

 

 
 

Fig. 2: Example screenshot from interface 

1: Navigation: Day and date of story, maximum of five 

story events, exit; 2: Event messages, numbers vary for 

each event. Here: 2 computer-generated messages, 3 

recorded messages, 1 user added evaluation; 

3: Sequential message navigation: previous, repeat, 

next; 4: Evaluation: delete event, negative evaluation, 

positive evaluation; 

 

   

 In a second evaluation, a third child, Eric, joined and 

all three children used the system over two weeks each. 

In this evaluation, we asked teachers and other staff to 

use the system without on-site support from the re-

searchers. This highlighted many practical usability 

issues, such as delays caused by starting the system in 

the morning, and problems caused by limited battery 

life. We eliminated the long-range RFID sensor because 

of its difficult setup; instead we asked staff to swipe 

                                                           
2 The names of the children mentioned in this paper are 

changed to ensure anonymity. 

door cards when children entered rooms.  However, this 

strategy was not successful, as it was difficult for staff 

to remember to swipe both interactions and location 

changes. 

 The participants took the system home for use with 

their parents who gave positive feedback but also re-

ported issues with system usability (e.g. lack of access 

to stories from previous days) or suitability (too compli-

cated interface for Jessica).   

 Eric’s timetable was different from Julie and Jessi-

ca’s, because he visited college one morning a day, and 

we could not collect data during this period. Since some 

of the most exciting events in a school day happen out-

side the school building (sports and school trips as well 

as college), in the long term we do need to see if we can 

collect data outside as well as inside the school.  

3.2 HWST example 

     Julie used the system on her DynaVox™ Vmax™ 

Voice Output Communication Aid (VOCA) via head 

switch using row/column scanning. The above transcript 

shows an extract of a conversation Julie had with her 

Speech and Language Therapist (SLT) on day three 

about her experiences during day two. The researcher 

(RA) had been present all day for technical support. The 

conversation extract starts with Julie reporting about her 

morning break.  

     In this example Julie is able to quickly reply to con-

text related questions from her communication partner 

using the evaluations (“So what happened?” – “It was 

fun!”). Compared to conversations usually observed 

between aided and unaided partners Julie is able to con-

trol the conversation when starting a new topic after 

talking about the morning break, inviting her communi-

cation partner to prompt for more detailed information. 

Julie provides this with her next generated phrase. 

When she is asked about the event she replies with an 

evaluation the system has generated in relation to its 

previously generated message “A visitor was there.”. 

We note that the system is able to refer to the correct 

gender of the visitor. 

 

1 Julie {next} [I had break.] 

2 Julie {next} [Lesley was there.] 

3 SLT Lesley was there?  

4 Julie ((Opens mouth in agreement, then turns back 

to screen)) 

5 SLT Ok mhmh. So what happened? 

6 Julie {positive evaluation} [It was fun.] 

7 SLT Oh good! ((laughs)) I’m glad to hear it! 

8 RA We like Lesley. 

9 SLT ((nods in direction of RA)) 

10 Julie ((smiles)) 

11 Julie:  {next} [Then I went to Junior Primary in-

stead of Reading Class.] 

1 

2 

3 

4 
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12 SLT: Right, you went to Junior Primary? I wonder 

why that was?  

13 Julie: {next} [A visitor was there.] 

14 SLT:  Oh, a visitor, right. Wonder what the visitor 

was doing?  

15 Julie: {next} [“The dental hygienist came to give a 

talk.”] 

16 SLT: Oh, dental hygienist. 

17 Julie:  {previous} [A visitor was there.] 

18 SLT: That was the visitor, okay. That’s why you 

went to junior primary, uhm, what did you 

think of the talk? 

19 Julie:  {positive evaluation} [She was nice.] 

20 SLT: She was nice, that was good! ((laughs)) 

 

Notation: 

- Switch selected button by Julie: {curly brackets} 

- Natural speech: standard text.  

- Computer generated language accessed using one 

button: [standard text in square brackets].  

- Recorded messages accessed using one button: 

[“quoted standard text in square brackets”]. 

- Paralinguistic behaviors:  

((standard text in double brackets)).  

 

3.3  “How was School Today” – in the Wild 

We have now started a new project to further develop 

our work, called “How was School today…?” – in the 

Wild (‘in the wild’ indicates that the focus is on how the 

technology works in a real school environment). The 

basic goal is to improve the system sufficiently so that it 

can be tried out over a period of several months, with 

children with varying levels and types of impairments; 

we will also work with several schools in the initial 

phase, although for practical reasons the evaluations 

may be at just one school. 

     During this project we will do some work on the 

issues described in Section 4; in particular we will try to 

make the system usable by children with different im-

pairments and ability levels (Section 4.1). This means 

having a very simple interface for children with consi-

derable cognitive impairments (such as Jessica); but 

also giving children with more cognitive abilities the 

opportunity to exert more control over the story (during 

both editing and narration), for example by supporting a 

richer range of annotations, and by making it easier to 

describe events and messages in any order. 

     Another intermediate goal is to improve the integra-

tion of voice messages entered by staff with the com-

puter-generated messages. This could be done by some 

combination of training staff to enter messages in a spe-

cific way (referring to the child in the first person); ask-

ing staff to annotate the messages so the computer 

knows something about their content; and/or using 

speech recognition to analyze the voice messages. In 

general there is a lot of interesting information that can 

only come from staff, and we need to think about the 

best way to help staff enter information in a way that is 

easy for them and useful for our system. 

 Now that a complete system is built, we are also able 

to thoroughly and formally evaluate the system. Mul-

tiple baseline single case study methodology will be 

used (Schlosser 2003) to evaluate the use and impact of 

our system. We intend to have up to four children (with 

varying ability levels) use the system for a period of 3 

months. This will give us a chance to observe the im-

pact of the system on the users and their environment 

such as the children’s interaction with the system and 

how staff at the school envisage using this new tool. 

The observations will be supported by semi-structured 

interviews with the children, their classroom teacher, 

their speech and language therapist and a parent. 

 We will look at the children’s conversations (with 

and without using our system) about interesting, staged 

events with different partners, analyzing them conversa-

tional characteristics such as narrative initiation, struc-

ture, length and evaluation. Analysis methods will 

include the Revised Edinburgh Functional Communica-

tion Profile (REFCP) (Wirz, Skinner et al. 1990). 

     However, much of our focus will be on addressing 

the practical issues that make it difficult to use our cur-

rent research prototype over a period of months.  We 

have identified many such issues, both from our pre-

vious evaluations (Section 3.1) and also from a ques-

tionnaire that was distributed to school staff during an 

in-service day. 

      Location tracking – There are problems with both 

of the techniques we have tried to date (automatically 

reading RFID tags on doors, and asking staff to swipe 

location information).  In this project we intend to try 

tracking the location of a child using Wi-Fi location 

tracking, which seems to be rapidly gaining popularity 

in the commercial world (Liu, Sen et al. 2008). 

 Data entry, 2D bar codes – We need to allow staff 

to easily enter and update information about the children 

(for example, their timetables) and sensor tags (e.g., if a 

new tag is given to a visitor).  For the latter, we want to 

investigate 2D bar codes, which could allow encoding 

of alphanumeric input data without reference to a cen-

tral database. 

 Portability, battery life – The current system runs on 

a tablet PC (8”-12” touch screen, generic or VOCA 

hardware). During the evaluation, late powering up, run-

down batteries or simply forgetting a component caused 

significant data loss and usability issues. A future proto-

type should favor an ‘always-on’ system, such as a mo-

bile phone, allowing for easy portability and extended 

battery life. 

 Story generation – The prototype system was only 

able to create a story towards the end of a day and gave 
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only access to stories generated on that day. However, 

often the user desired to tell stories that had occurred on 

previous days, or to, say, tell a story at lunch that oc-

curred in the morning.  When data was insufficient for 

the system to create a story, the only output was an error 

message “Can’t generate story right now.” This fru-

strated users, so future systems should be able to deliver 

a story with incomplete data.  

 Voice messages – as mentioned above, we want to 

handle these in a more sophisticated way.  From a more 

practical perspective, we also want to make it easier for 

staff to listen to and change previously recorded mes-

sages.  We also want to allow parents to record messag-

es about events at home. 

4 Long-term vision and issues 

4.1 Supporting children with different levels 

and types of impairment 

A key issue in AAC is of course the diversity of AAC 

users. Children with CCN differ enormously in terms of 

cognitive ability, motor ability, and social ability. This 

was clear even in our initial evaluation where we 

worked just with two children, and discovered that our 

interface worked well for Julie but not Jessica. 

 Julie has little functional speech and severe physical 

impairments, and accesses her VOCA using a head 

switch through the slow process of scanning the inter-

face. Her VOCA interface consists of a grid of 15 to 30 

buttons per page, with more than 20 pages of vocabu-

lary. However, her cognitive skills were sufficient for 

her to master the interface on the second day. She used 

the system quite successfully, as shown in the example 

in Section 3.2.  

 Jessica also has severe physical impairments but 

does not use technology to support her communication 

(she has functional speech).  She has cognitive impair-

ments, which (amongst other things) affect her ability to 

remember and place events correctly in time. She had 

more difficulty mastering the interface than Julie. We 

simplified the interface for her (no editing, minimal 

control of narration), and then she displayed pragmatics 

known from typical language development in children, 

by telling her story with no room for interaction of her 

communication partner.  

 We also need to keep in mind that abilities are not 

static, but are likely to progress with age (see also Sec-

tion 4.2) and (hopefully) with the assistance of commu-

nication aids. For example, the WriteTalk project 

showed how pupils were both able to initiate and con-

trol communication more effectively with Talk:About 

and how their formal writing skills improved over time 

(Waller et al., 1999). 

 In summary, some children may need a very simple 

interface because of cognitive impairments, but this 

should grow with them.  For example, the best narration 

tool for Jessica at her current stage of development is 

probably a single button that advances sequentially 

through the computer-generated story. The challenge is 

to provide an interface that Jessica can initially use via 

repeatedly pressing an ‘Advance’ button, but which 

gives her the possibility of exerting more control as her 

skills and abilities develop. 

 Other children (such as Julie) may have motor diffi-

culties that restrict the way in which they can interact 

with computer systems, and thus may require simple 

controls although they have reasonable cognitive skills. 

Restricted motor skills make certain tasks, such as en-

tering an arbitrary word, quite difficult and time con-

suming; hence the interface must avoid such tasks, and 

instead endeavor to give the child as much control as 

possible with a minimum amount of data entry.  Once 

these users master a basic story telling structure, it may 

help them develop their conversation skills if they use a 

wide variety of conversation patterns.  For this purpose, 

it may be worthwhile for the system to randomly vary 

the structure and language used in the narratives. 

 Still other children, for example on the autistic spec-

trum, may have good cognitive and motor abilities, but 

not have the experience of expressive communication 

necessary to develop interactive skills. These children 

are more likely to benefit from a system that supports 

the pragmatics of language in general and personal narr-

ative in particular.  For example, children on the high 

functioning end of autism may be comfortable with ra-

ther advanced software, which can help them adapt their 

storytelling according to the intended listener.  Indeed, 

giving these children more complex controls, if done 

correctly, can make the software fun and challenging in 

a positive way. 

     In the long term, as we broaden the range of children 

we work with, there may be overlaps between our work 

and research on tools to help typically developing child-

ren create stories, such as Robertson and Good (2005), 

and also between our work and research on tools to help 

adults with CCN tell personal narratives, such as Demp-

ster (2008).  Ideally it would be very nice to combine 

these efforts and create a story telling tool that could be 

used across the age and impairment spectrum. 

4.2 Narrative across the lifespan 

We would like our tool to be able to support children 

over time, as their abilities grow and as their expe-

riences accumulate. From the perspective of changing 

abilities, the challenge is to offer children an interface 

which is not only appropriate for their current stage of 

development (Sect 4.1), but also allows and indeed en-
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courages them to exert more control over story content, 

language, and narration as their abilities grow. 

 We would also like our tool to become a repository 

of a child’s personal stories. The ability to relate rele-

vant stories can influence the quality of life, as well as 

social development and successful transitions. The life 

stories of people who use AAC are often held by parents 

and siblings (e.g., stories relating to health care 

(Hemsley, Balandin et al. 2007)), and there is the inevit-

able concern that these stories and others are lost as 

parents age and siblings move away.  

 Technology has the potential both to support the 

acquisition of conversational skills for people who use 

AAC and to provide a repository for life stories. In the 

context of our work, it is essential that we provide ways 

of enabling children to develop their narrative skills so 

that they are more able to manage their own story repo-

sitory. In terms of development, young children will 

narrate recent stories regardless of conversational con-

text. By enabling the child to develop story structure by 

scaffolding interaction and enabling children to easily 

annotate stories, the child will begin to anticipate and 

control conversation. 

 Conversational narratives have traditionally not been 

supported by AAC tools partly due to the fact that they 

are so nebulous; they emerge during interactive conver-

sation (to date, events have to be manually input into a 

system and it is difficult to predict what events will be-

come a story); ‘new’ stories are repeated often (to date it 

is difficult to save conversation online); as stories age 

they are repeated in context (retrieval is often contextual 

e.g. topic based) and they grow longer having more em-

bellishments added to them. The technology we are de-

veloping provides an opportunity for children to access 

information about personal events over time, which they 

can communicate and narrate during a conversation. 

They can also evaluate (annotate) their stories, thereby 

embellishing and lengthening the stories.  However this 

will only be possible if the children can easily access 

previously experienced, generated and saved stories.  

 We can provide fast access to recent stories while 

anticipating the use of older stories such as for example 

those which closely match the current conversation top-

ic. In a research prototype called PROSE (Waller and 

Newell 1997), stories had to be physically tagged; there 

is now the potential to automate topic matching by re-

cognizing topic words spoken by a listener and parsing 

stored information for appropriate stories. Over a life-

time, some stories may fall into disuse, while others will 

be weighted more strongly depending on frequency of 

use and relevance. 

4.3 True dialogue in narration 

The ultimate goal of our research is to enable children to 

tell stories in the context of a social dialogue; for exam-

ple, we want children to be able to chat to their parents 

and other interested parties about what they did during 

the day.  

 Our current system incorporates a simple model of a 

conversation, where children are restricted at any point 

to choosing from a small number of options. The child 

chooses an event to talk about, and then goes through 

the sequence of messages associated with that event.  

The child has the freedom to switch to a different event, 

hence controlling the conversation, and to add annota-

tions/evaluations (for example “it was fun!”). 

     This is adequate in many cases, but in the long term 

we would like to support more complex conversations; 

for example interrupting a discussion about today’s 

events to talk about what happened yesterday, or to dis-

cuss a particular teacher instead of an event.  We would 

also like children to easily be able to add conversational 

phrases, such as “Guess what happened today at 

school”. 

 Because our children have motor and cognitive im-

pairments, we cannot present them with a large number 

of options for conversational moves. Ideally, the system 

would detect what the conversational partner wishes to 

talk about, and from this present the child with a small 

number of appropriate choices. For example, if the con-

versational partner asks the child what happened over 

the past week, our system would detect this and then 

give the child the option of talking about any individual 

weekday or the week in general. 

 One way of detecting what the conversational part-

ner intends is to use speech recognition and Natural 

Language Processing (NLP) technology to analyze what 

he or she says. Speech and NLP technology tend to 

work best when it is possible to train the system to the 

user’s voice, and also (in essence) train the user to un-

derstand what the speech/NLP system can and cannot 

do. This should be possible in our context, at least for 

people (such as parents) with whom the child regularly 

interacts. 

 Another possibility is to create a graphical user in-

terface for the conversational partner, perhaps on the 

same device that the child uses, which the partner could 

use to indicate what he/she wants to talk about.  This is 

probably technically easier, but does move away from 

the goal of having as natural a dialogue as possible. 

4.4 Pragmatics of interacting with others 

Currently, “How was School today…?” supports story-

telling between language-impaired children and adults 

who are the children’s parents, carers, teachers, and 

therapists.  But of course for normally developing child-

ren, many of their most important social interactions are 

with other children. 

 An interesting example here is the STANDUP sys-

tem, which was developed to help children who use 
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AAC create and tell novel punning riddles. The study 

results suggested that children saved the jokes so that 

they could retell them to friends and family (Waller, 

Black et al. 2009). Whilst the evidence is anecdotal, 

there did also appear to be a marked increase in joke 

telling by participants, both amongst their peers and 

with adults in the home environment. Hence STANDUP 

succeeded in supporting interaction with other children 

as well as with adults. 

 One of the key challenges in interacting with other 

children, and indeed with adults who are not formally 

involved in the care or teaching of the child, is to adapt 

the story to the interests of the recipients. In other 

words, a child’s parents and teachers will not insist on 

stories that are interesting to them, but other conversa-

tional partners will.  These conversational partners may 

also need additional information.  For example “Jane 

came to take me to the OT room” makes more sense if 

the recipient knows that Jane is the occupational therap-

ist; parents and teachers already know this, but other 

people may need to be told this. Also if the conversa-

tional partner was present at an event, this should be 

acknowledged and indeed used in the story. For exam-

ple, "Did you really enjoy maths? I thought it was bor-

ing!” 

 In short, telling stories to peers and adults who do 

not know the child well requires adapting the story to 

the interests, knowledge, and involvement of the part-

ner; this is part of learning pragmatics. This is not some-

thing we are looking at currently, but it is something 

that we hope to look at in the future. 

4.5 Security and privacy issues 

We need to ensure that data about the children is private 

and secure.  Taken to its logical conclusion, our project 

would result in an intimate record of the child's life at 

school, home and beyond.  It is important that both the 

raw data and the generated content are under the control 

of the child and his/her guardians, with the child exer-

cising as much control as possible. This is especially 

important since children with learning difficulties are 

very vulnerable; there is potential for great harm if data 

about a child’s activities got into the hands of a mali-

cious outsider. 

 In a study on the software tool TalksBac, which 

supports personal narrative (Waller, Dennis et al. 1997), 

privacy issues were coded along with stories. This al-

lowed the NLG process to decide the appropriateness of 

telling a story to a specific communication partner. 

Children in general do not care who they tell their sto-

ries to. Only when older children learn to distinguish 

which story is appropriate for a conversation partner. 

This process could be embedded into the prediction 

algorithm that presents stories for narration. Currently 

prediction on AAC devices only support character, word 

or phrase selection.   

 Another concern is information that is embarrassing 

or otherwise puts the child in a negative light; for exam-

ple, imagine a staff member entered the voice message 

"I refused to eat my lunch today".  We believe that the 

child should be free to delete such messages; she should 

never be forced to include material in a story that she 

does not want to include. 

 A related issue is whether we should allow stories 

generated for one child to use information acquired 

about another child.  In principle this is very valuable, 

for example it allows messages such as “Jane didn’t eat 

her lunch today”. But is this acceptable from the pers-

pective of ensuring the privacy of data about Jane’s ac-

tivities? On the other hand, this is exactly the sort of 

thing that a normally developed child would say about a 

classmate. 

5 Conclusion 

In addition to having difficulty in communicating de-

sires and needs, language-impaired children also find it 

hard to participate in social linguistic interaction that 

would help create and build up friendships and other 

interpersonal relationships.  We believe that we can help 

these children participate in such interactions by giving 

them a tool that helps them tell a story about their day at 

school, by using an NLG system that has access to sen-

sor and other data about the child’s activities. We are 

still at an early stage in this work, but our initial proto-

type system has shown great potential to improve the 

quality of life of children with limited speech. Our cur-

rent work plans to explore this potential further while 

evaluating the efficacy of the system for four children 

with varying ability levels.  

Acknowledgements 

We would like to express our thanks to the children, 

their parents and staff and the special school where this 

project had its base. Without their valuable contribu-

tions and feedback this research would not have been 

possible. We would also like to thank DynaVox Sys-

tems Ltd for supplying the communication devices to 

run our system on. 

 This research was supported by the UK Engineering 

and Physical Sciences Research Council under grants 

EP/F067151/1, EP/F066880/1, EP/E011764/1, 

EP/H022376/1, and EP/H022570/1. 

8



References 

Agrawal, R. and Ramakrishnan, S. (2000) Privacy-

preserving data mining. ACM International 

Conference on Management of Data, pp. 439--450, 

Bart, H., V. Riny, et al. (2008). LinguaBytes. 

Proceedings of the 7th international conference on 

Interaction design and children. Chicago, Illinois, 

ACM: 17-20. 

Beukelman, D. R. and P. Mirenda (2005). Augmentative 

and Alternative Communication: Management of 

Severe Communication Disorders in Children and 

Adults. Baltimore, Paul H. Brookes Publishing Co. 

Bruner, J. (1975). "From communication to language: A 

psychological perspective." Cognition 3: 255-289. 

Cheepen, C. (1988). The predictability of  informal 

conversation. Oxford, Printer Publishers Ltd. 

Clarke, H. H. and E. V. Clarke (1977). Psychology and 

Language. New York, Harcourt Brace Jovanovich. 

Dempster, M. (2008). Using natural language 

generation to encourage effective communication in 

nonspeaking people. Proceedings of Young 

Researchers Consortium, ICCHP'08. 

DeRuyter and Fried-Oken. (2010). "Context-sensitive 

messaging with RFID technology."   Retrieved 2010, 
April 10, from http://aac-rerc.psu.edu/index.php/projecttypes/list 

Gatt, A., F. Portet, et al. (2009). "From Data to Text in 

the Neonatal Intensive Care Unit: Using NLG 

Technology for Decision Support and Information 

Management." AI Communications 22: 153-186. 

Goldberg, E., N. Driedger, et al. (1994). "Using natural-

language processing to produce weather forecasts." 

IEEE Expert 9(2): 45-53. 

Harris, M. (2008). Building a Large-Scale Commer-cial 

NLG System for an EMR. Proc of INLG-2008. 

Hemsley, B., S. Balandin, et al. (2007). "Family 

caregivers discuss roles and  needs in supporting 

adults with cerebral palsy and complex 

communication needs in the hospital setting." 

Journal of Developmental and Physical Disabilities 

19(2): 115-124. 

Higginbotham, D. J., H. Shane, et al. (2007). "Access to 

AAC: Present, past, and future." Augmentative & 

Alternative Communication 23(3): 243-257. 

Labov, W. (1972). Language in the inner city: Studies in 

the Black English Vernacular. Philadelphia, 

University of Pennsylvania Press. 

Light, J., C. Binger, et al. (1994). "Story Reading 

interactions between preschoolers who use AAC and 

their mothers." Augmentative and Alternative 

Communication 10: 255-268. 

Light, J. and K. Drager (2007). "AAC Technologies for 

Young Children with Complex Communication 

Needs: State of the Science and Future Research 

Directions." Augmentative and Alternative 

Communication 23(3): pp. 204 – 216. 

Liu, X., A. Sen, et al. (2008). A Software Client for Wi-

Fi Based Real-Time Location Tracking of Patients. 

Medical Imaging and Informatics. 

Berlin/Heidelberg, Springer. 4987/2008: 141-150. 

Péréz, R. P. y. and M. Sharples (2004). "Three 

Computer-Based Models of StoryTelling: BRUTUS, 

MINSTREL, and MEXICA." Knowledge-Based 

Systems 17: 15-29. 

Peterson, C. and A. McCabe (1983). Developmental 

psycholinguistics: Three ways of looking at a child’s 

narrative. New York, Plenum. 

Reiter, E. (2007). An Architecture for Data-to-Text 

Systems. ENLG-2007. 

Reiter, E. and R. Dale (2000). Building Natural-

Language Generation Systems., Cambridge 

University Press. 

Reiter, E., S. Sripada, et al. (2005). "Choosing Words in 

Computer-Generated Weather Forecasts." Artificial 

Intelligence 167: 137-169. 

Reiter, E., R. Turner, et al. (2009). Using NLG to Help 

Language-Impaired Users Tell Stories and 

Participate in Social Dialogues. ENLG2009. Athens, 

Greece, Association for Computational Linguistics. 

Robertson, J. and J. Good (2005). "Story creation in 

virtual game worlds." Communications of the ACM 

48: 61-65. 

Schlosser, R. W. (2003). The Efficacy of Augmentative 

and Alternative Communication. San Diego, 

Elsevier Science. 

Soto, G., E. Hartmann, et al. (2006). "Exploring the 

Elements of Narrative that Emerge in the 

Interactions between an 8-Year-Old Child who uses 

an AAC Device and her Teacher." Augmentative 

and Alternative Communication 22(4): pp. 231 - 

241. 

Sripada, S., E. Reiter, et al. (2005). Evaluating an NLG 

System using Post-Edit Data: Lessons Learned. 

Proceedings of ENLG-2005, 10th European 

Workshop on Natural Language Generation, 

Aberdeen, Scotland. 

Waller, A. (2006). "Communication Access to 

Conversational Narrative." Topics in Language 

Disorders 26(3): 221-239. 

Waller, A., R. Black, et al. (2009). "Evaluating the 

STANDUP Pun Generating Software with Children 

with Cerebral Palsy." ACM Trans. Access. Comput. 

1(3): 27. 

Waller, A., F. Dennis, et al. (1997). "Evaluating the use 

of TalksBac, a predictive communication device for 

non-fluent aphasic adults." International Journal of 

Language and Communication Disorders 33: 45-70. 

Waller, A. and A. F. Newell (1997). "Towards a 

narrative based communication system." European 

Journal of Disorders of Communication 32: 289-

306. 

 

9



Proceedings of the NAACL HLT 2010 Workshop on Speech and Language Processing for Assistive Technologies, pages 10–18,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Automatic generation of conversational utterances and narrative for 

Augmentative and Alternative Communication: a prototype system 

Martin Dempster & Norman Alm Ehud Reiter 
School of Computing Computer Science Department 
University of Dundee University of Aberdeen 

Dundee, Scotland, DD1 4HN, UK Aberdeen, Scotland, AB24 3UE, UK 
m.k.dempster@dundee.ac.uk 

nalm@computing.dundee.ac.uk 

e.reiter@abdn.ac.uk 

 

 

 

Abstract 

We detail the design, development and evalua-

tion of Augmentative and Alternative Com-

munication (AAC) software which encourages 

rapid conversational interaction. The system 

uses Natural Language Generation (NLG) 

technology to automatically generate conver-

sational utterances from a domain knowledge 

base modelled from content suggested by a 

small AAC user group. Findings from this 

work are presented along with a discussion 

about how NLG might be successfully applied 

to conversational AAC systems in the future. 

1 Introduction 

Augmentative and Alternative Communication 

(AAC) systems assist non-speaking people communi-

cate. Reasons for lack of speech are varied and can be 

complex, but they are typically related to some pro-

found cognitive and/or motor impairment.  

Most AAC systems are computer based, utilize syn-

thesized speech output and employ a phrase-

construction approach to input. This approach requires 

the user to construct the majority of their utterances live 

during conversation. Undoubtedly this facilitated com-

munication is hugely important to those without natural 

speech. However, this process is often unacceptably 

slow and can lead to problematic and stilted interac-

tions, mostly due to the rapid nature of unimpeded face-

to-face communication. 

Previous work has shown that it is possible to hold 

mutually rewarding conversations using wholly pre-

stored material, known as the phrase-storage approach.  

Utterances are authored ahead of time and can be se-

lected and output immediately leading to quicker com-

munication rates. However, this approach suffers from 

several drawbacks which may have affected its more 

general adoption. 

Furthermore, Natural Language Processing (NLP) 

technology has proven to be a fruitful line of inquiry 

within the field. It has offered a powerful means to im-

prove system productivity and usability. We are current-

ly investigating how Natural Language Generation 

(NLG) might be applied in a useful way within an AAC 

device geared towards fast-paced and rewarding social 

interactions. It is hoped that the linguistic control and 

automaticity offered by NLG may go some way towards 

addressing the previous criticisms of pre-stored material 

regarding its inflexibility and cost in effort. 

2 Background 

2.1 Limitations of current AAC 

 High-tech AAC systems typically augment commu-

nication for non-speaking people by allowing live mes-

sage construction through some orthographic means. 

Completed messages are generally sent to a speech syn-

thesis engine for output during communication with 

others. Many people who require AAC have associated 

physical disabilities which reduce the speed achievable 

using input methods such as keyboards, pointing devic-

es or touch-screens. The rate achievable using most 

commercial AAC systems is highly dependent on the 

nature of the user‟s disabilities but a generally accepted 

figure is in the region of 2-15 words per minute (Hig-

ginbotham, Shane et al. 2007), at least an order of mag-

nitude slower than most natural speakers. 

This relatively slow rate of input is a crucial factor in 

some of the issues that arise in AAC-facilitated commu-

nication. Because of the effort and time required to 

create utterances, the user may not be able to construct 

messages quickly enough to take active roles in fast 
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paced conversations. As a result users may become pas-

sive while also typically using a smaller communicative 

repertoire than natural speakers (Light 1988).  

Narrative, an important type of interpersonal com-

munication, is not well handled in most communication 

aids (Waller 1992). Delayed response and slow rate of 

aided-communication are correlated with higher inci-

dence of breakdown in communication and lesser per-

ceptions of the AAC user (Todman and Rzepecka 2003; 

McCarthy and Light 2005). This is primarily due to 

conflict between the relatively long time necessary to 

formulate an utterance and the fast paced nature of con-

versation.  

These problems are particularly critical in social con-

texts. AAC users typically have small social circles and 

are dependent on contact with families and carers. They 

often lack self-esteem and have negative self-image.  As 

a result, developing new relationships and experiencing 

new things can be difficult, despite being a major priori-

ty in their lives (Datillo, Estrella et al. 2007). 

Some work has suggested that the use of pre-stored 

conversational material based on conversation models 

could help increase communication rate and conversa-

tion quality. Alm (1988) showed that it is possible to 

successfully model short „chat‟ conversations involving 

greetings, personal enquiries and small-talk.  Further-

more, the TALK system allowed a user to pre-store a 

large volume of material on specific topics so that 

whole utterances could be selected and output. The sys-

tem also made heavy use of quick-fire phrases, classes 

of regularly used utterance which could be accessed 

quickly, and showed that communication using solely 

pre-stored material was viable (Todman and Alm 2003). 

Despite encouraging results and the development of a 

commercial product, the phrase-storage approach to 

social communication has not gained wide popularity. 

The reasons for this are complex, but include: the rela-

tive inflexibility of pre-stored material; the costs asso-

ciated with authoring the material and keeping the 

material up-to-date; and the vastly different nature of 

the approach and different training requirements neces-

sary to achieve success. 

2.2 The role of NLP in AAC 

NLP technology has provided many benefits to AAC 

system designers. Possibly the first technology to be 

included in many commercial systems to date was word 

prediction and completion. There have also been many 

research prototypes exploring the applicability of more 

emerging technologies such as named entity recognition 

from synthesized speech (Wisenburn and Higginbotham 

2008), the generation of well-formed utterances from 

telegraphic input (McCoy, Pennington et al. 1998) and 

the automatic identification of contextual vocabulary 

from the web (Higginbotham, Bisantz et al. 2008). 

Netzer and Elhadad (2006) used NLG to allow the se-

mantic authoring of utterances. 

However, NLG, in the sense of data-to-text (Reiter 

and Dale 2000), has had limited application within AAC 

thus far, although Reiter et al. (2009) showed it is possi-

ble to generate stories from sensor data which allow a 

child using AAC to tell others about their day at school. 

2.3 System Rationale 

This project is exploring the use of NLG to produce 

conversational utterances in AAC systems designed for 

social interaction.  At the outset it was hoped that using 

NLG might address some of the difficulties observed in 

pre-storage systems. For instance, the generation com-

ponent could theoretically produce a range of utterances 

and speech act types automatically from the same un-

derlying data and adapt these somewhat to the interac-

tional context.  Using NLG would also have the benefit 

of offering control over the well-formedness of the out-

put, an important consideration given the difficulty 

some AAC users have in achieving literacy (Sandberg 

and Hjelmquist 1997). The fact that the system has an 

inherent awareness of the semantic content of the lin-

guistic output, rather than simply being stored as canned 

text, is also a potential benefit. In other words, NLG 

might offer a level of automaticity and flexibility that 

traditional pre-storage systems cannot offer, as well as 

potentially reducing the level of pre-authoring required 

from the user.  

3 System Development 

3.1 User-centered methodology 

To try to assess how useful NLG could be in this 

context we adopted a user-centered approach to the de-

sign of the system. A group of 3 AAC users has been 

recruited, all of whom currently use some form of high-

tech AAC. Literacy amongst the group is varied. Two of 

the individuals use the alphabetic keyboard-based 

Lightwriter communication device currently, and have 

normal cognitive and visual-perceptive skills.  All of the 

users have cerebral palsy and dysarthria, and have been 

involved in previous software evaluations.  

Weekly or twice weekly sessions were held with 

each user for several months while the software was 

being produced. Sessions consisted of various activities: 

11



discussion about the user‟s ideas for the software and 

technology; the identification of topics and collation of 

input data to the system; demonstrations of the new fea-

tures or changes since the last session; system training; 

and dry-run test conversations between the investigators 

and the users. 

3.2 System Architecture 

A growing line of inquiry in the NLG community is 

the generation of language from ontologies (Mellish and 

Sun 2005).  An ontology is a logical and hierarchical 

model of the different concepts and the nature of rela-

tionships between concepts in a particular domain. 

These concepts and relationships can be mapped onto 

linguistic constructs to allow for the production of natu-

ral language descriptions (Karakatsiotis, Galanis et al. 

2008) of parts of the ontology. 

In the case of our system, we are trying to model 

conversational topics that would be of interest in social 

conversation between users of the system and their co-

conversationalists. The current categories of topic we 

are experimenting with include travelling, listening to 

music, watching films and attending concerts.  Many 

categories are based on a simple event model which 

defines the basic characteristics common to all events, 

such as a time of occurrence (see Fig.1). We have also 

included concepts such as Person and Place which are 

associated with events to form a logical model of a par-

ticular event type.  

A separate file is created unique to each user which is 

linked to the original model. This is filled with individ-

uals consisting of data from the user. In other words, 

rather than defining the concept of an event as we did 

with the original ontology, here we are creating a de-

scription of an actual event and any other details, such 

as people or places, associated with it. We have defined 

our ontology in OWL, a standard language for the defi-

nition of ontologies, and each piece of knowledge is 

effectively stored as a RDF Triple consisting of a sub-

ject, predicate and object.   

 

 

 

 

 

 

 

 

 

 

Figure 1: The abstract event model 

The user‟s knowledge base is turned into useful con-

versational utterances through a template-driven utter-

ance generation system (e.g. Van Deemter, Krahmer et 

al. 2005).  A large set of templates has been authored, 

using the SimpleNLG programming interface, which 

turn data from the onotlogy into natural language utter-

ances. The templates are created as concrete syntax 

trees containing unspecified „slots‟ and parameters (See 

Fig.2).  These syntax trees map out the syntactic struc-

ture of the template), and are linked to a particular class 

in the ontology so that only appropriate templates are 

applied to each individual.   Slots are used to add con-

textually relevant clauses to our utterances. For exam-

ple, a template might contain a ‘time’  slot, the contents 

of which are derived from the time of the event in ques-

tion.  For instance, the slot might be filled with “next 

Tuesday evening”, “a month ago” or “this morning” 

depending on the context. Example parameters include 

the tense with which the utterance should be generated, 

and whether a pronoun or full noun phrase should be 

used to refer to the subject of the utterance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: An example syntax tree with empty slots 

In addition to the language produced from the model 

and knowledge base we have included the ability to add 

canned text phrases to each individual.  

This is necessary because there may be things that 

you wish to be able say about a topic which it is not 

feasible to model.  Because we have a fairly diverse set 

of topics it is simply not possible to model all aspects of 

these topics in a reasonable time.  There is effectively a 

trade-off between complexity of the model and how 

maintainable and representative it is. A more complex 

model will lead to more expressive generated language, 

but will cost a great deal more to design and maintain. 

In the case of our system, a „lowest common denomina-

tor‟ domain model combined with additional canned 

text has proven to be a relatively straightforward and 

inexpensive design. 
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The system has also been designed to learn over time 

the sequences of utterances a user selects and suggest 

next moves based on past behavior.  The system does 

this by maintaining a directional weighted graph which 

records sequences of utterances as they are used.  The 

graph works by recording each individual utterance as a 

node in the graph and creating relationships between 

these nodes as they occur. The more often two utter-

ances appear in sequence the higher the value given to 

the edge between the two corresponding nodes. 

3.3 Conversation model and interface issues 

Perhaps the most challenging aspect of taking the 

system from initial concept to working prototype has 

been finding the most effective way of interfacing the 

technology. We have found that due to the complexity 

of the underlying technology, reaching the stage where 

generated utterances are both useful and accessible to 

the user during conversation has required careful con-

sideration and the trialing of several approaches with the 

user group. 

It was envisaged that the generative power of NLG 

would be its most powerful benefit. The system could 

realize the same piece of data as numerous speech act 

types and, within a speech type, in several different 

phrasings. This offered the ability to counteract the in-

flexibility and uniformity of pre-stored utterances 

somewhat.  However, we have had mixed success in 

achieving this goal as it has proven difficult to find an 

effective way to interface this enhanced choice and va-

riety to the user.  If there is a large volume of generated 

utterances available to choose from we must provide an 

efficient means by which the material is presented or 

organized so that the desired utterance can be located 

quickly. If a large choice results in a delayed selection 

and thus conversational turn, we may then lose any rate 

and speed of response benefits which would negate the 

need to use pre-stored and generated material at all. 

To address this problem, we attempted to design a 

conversational model which controlled the generation of 

utterances so that only the utterances deemed most like-

ly were presented to the user, thus reducing the cogni-

tive load required to search through a large set. This was 

done using a basic system where the templates were 

tagged according to where it might be most likely to be 

used in a conversation on a topic. For instance, a tem-

plate might produce a pre-sequence, an introduction, 

elaboration or concluding remark, or it may produce a 

interrogative. With the addition of historical sequential 

moves from our directional graph we could begin to 

present subsets of utterances to the user according to 

where they were in topic development. 

Another approach trialed was inspired by the Gricean 

maxim of quantity. Each template contains meta-data 

about the information it expresses. For each generated 

utterance selected, we can „rule out‟ further generation 

of the same information. This is based on the assump-

tion that speakers will generally avoid repetition. We 

have found that this technique provides a useful way of 

supporting discourse coherence within conversations. 

Finally, using the logical model of topics we have 

created, it is possible to support and model stepwise 

topic progression. We can suggest, based on the model 

and the user knowledge base, other topics linked to the 

one currently selected. For example, if we were talking 

about an upcoming holiday to London with a friend 

called Bob we may want to the change topical perspec-

tive to related aspects of the trip. We might want to talk 

about London as a place, Bob as a friend, and other trips 

we have taken with Bob or to London. Because these 

concepts are all distinct within the model, they each 

have their own set of associated templates and result in 

sets of candidate utterances with differing perspectives. 

Navigating to related topics in this manner should be 

quicker since related topics do not have to be located 

manually. Although the users are still being trained in 

this approach to topic change, early evaluations are 

promising. It enables a „one-click‟ transition to related 

topics, allowing the user to elaborate on certain aspects 

of a previous topic and respond quickly to questions 

from their conversational partners. 

Building on the last two mechanisms, we can also 

generate bridging phrases which allow for more cohe-

sive changes in topic. This allows for a more eloquent 

transition to a new topic and also aids the discourse co-

herence.  

All of these approaches in fact belie, to some degree, 

the complexity of conversation. By its very nature, con-

versation is unpredictable, and the purpose and meaning 

of sequential moves are highly dependent on their con-

text (Clark 1996). However, any form of context identi-

fication, such as speech recognition (Wisenburn and 

Higginbotham 2008), is likely to present a major tech-

nical challenge in any production AAC system at the 

current time. The above are simply at attempt to model, 

using the NLP/AI techniques available, aspects of 

communication process, to show the potential benefits 

when using NLG-produced utterances rather than sim-

ple canned text utterances. 

Application of some of the above techniques resulted 

in a highly fluid interface in which the utterances dis-

played changed rapidly according to the conversation 

model. This presented a major challenge to users learn-

ing the system, with all displaying a strong preference 

for a static interface where the same utterances could be 

found in the same location each time they were desired.  
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Table 1: An example conversation produced 

using the system. Speaker A is the user and speaker 

B is an unaided speaker. The right-hand column 

shows the interface selections necessary prior to 

selecting the utterance from a set of possibilities. 

The marker G represents a generated utterance, C 

represents canned text. The remainder are quick-

fire utterances. 

We believe this does not suggest that use of such 

conversational models and semantic processing is not 

feasible, but simply that in the scope of the current 

work it has not been possible to fully evaluate their 

potential. Thus we have chosen to generate candidate 

phrases in a static manner without the predictive as-

pects described above. These changes have allowed for 

quicker achievement of proficiency and have lowered 

the cognitive effort required to navigate the interface.    

In the latest version of the software, we have de-

fined a set of templates for each topic which when 

realized in series produce a coherent narrative. They 

can still be selected individually by the user for output, 

so they retain ultimate control of what is said, but the 

utterances are presented in a natural order. This means 

that the user can easily make use of the utterances as a 

narrative or can choose according to the particular sit-

uation and context.  Any interrogative templates are 

displayed in a different part of the interface. We have 

set up a two column display so that interrogatives and 

other statements are clearly delineated.  

This approach has had very promising results as we 

have found that users no longer have to search through 

a list of suggestions which changes after each conver-

sational turn. They can also use the structured nature 

of the generated utterances to confidently introduce the 

different topics in conversation.  We are finding some 

evidence of increased self-selection at the end of their 

current turn as the user is easily able to continue their 

narrative automatically without having to worry about 

the location of their next turn in the interface. There is 

some other evidence of this structured application of 

NLG to narrative as being a promising area (Reiter, 

Turner et al. 2009). 

We also believe that the passivity and lack of initia-

tion observed in AAC users could be positively ad-

dressed if AAC systems can better support a more 

varied communicative repertoire and suitable training 

is administered to show users how to confidently use 

these different constructs (e.g. Todman 2000). Early 

training sessions with our user group have again 

proved positive with increased use of the trained fea-

tures and interaction styles.  

 UTTERANCE USER 

SELECTION 

A: Hi Robert [GREET] 

B:      Oh, Hi. Nice to see you.  

A: And you. [GREET] 

A: How’s it going? [INTRO] 

B: Fine. And you?  

A: Not too bad. [INTRO] 

B: So you been keeping busy?  

A: Yeah [YES] 

A: I certainly have! [YES] 

 

A: 

 

I was out at a concert on Thursday 

night. (G) 

[GIGS] 

[Select ‘Mar-

tin Taylor’] 

B: Great. Who did you go to see?  

 

A: 

 

Have you heard of Martin Taylor? 

(G) 

[ARTIST] 

[Select ‘Mar-

tin Taylor’] 

B: No.....I don‟t think so.  

A: He is a Jazz guitarist. (G) [Select ‘Mar-

tin Taylor’] 

B: Oh, great. I like jazz music.  

A: Me too. [AGREE] 

B: So how was the concert?  

 

A: 

 

It was really good. (G) 

[GIGS] 

[Select ‘Mar-

tin Taylor’] 

A: John and David came with me. (G)  

A: We all enjoyed it. (C)  

A: We had a bit of an interesting jour-

ney home because it was snowing 

heavily, but we made it back safe. 

(C) 

 

B:     Well that‟s good news. Where was 

the concert? 

 

 

A: 

 

 

It was at the Tron Theatre in Glas-

gow. (G) 

I’ve been to Glasgow a few times 

lately. [G] 

[GIGS] 

[Select ‘Mar-

tin Taylor’] 

[Select ‘Glas-

gow’] 

A: Anyway, I best be getting on. [WRAP UP] 

A: It was great talking to you. [WRAP UP] 

B:      Yes, likewise.  

B: See you soon.  

A: OK. Cheerio. [FINISH] 

B: Bye  
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3.4 Authoring user content 

Currently we have not managed to produce a tool that 

the user can use to update their knowledge base them-

selves. The ontology editing tool used in the program, 

Protégé, is a free academic software package designed 

for knowledge engineers and thus has a high degree of 

internal complexity and takes time to learn. It is also not 

a particularly accessible piece of software. 

We have worked with the users to build up their 

knowledge bases over a series of meetings by allowing 

them to suggest individuals to add while entering the 

details for them into the system. The process of defining 

new individual is very quick, usually requiring the input 

of just a few words and selection of the associated indi-

viduals. However, one of the main criticisms on the part 

of the users is that for the system to be useful in the long 

term, it must be kept up to date, as old material will 

quickly become less relevant and useful in less frequent 

situations.  For this reason it is critical to the success of 

any NLG-driven communication system that the data 

input is as simple and seamless as possible. 

We have shown in our system that it is possible to get 

some limited data automatically from online sources, 

rather than having to input it manually. Many web ser-

vices are being made available which enable program-

mers to access data from online services in their 

applications. For instance, both Amazon and YouTube 

have their own APIs which allow 3
rd

 party applications 

to request content information from these services.  

The notion of the semantic web is also related to this. 

There is a large effort underway to define how we might 

structure and link information on the web in such a way 

that more of it can be processed automatically by com-

puters and made available in interchangeable formats. 

Shared data and semantic web technologies such as 

these operate on the same premise as our proposed 

communication system in that they map out the basic 

vocabulary required to describe a domain, and allow 

people describe aspects of the domain in these terms.  

We have used an API provided by social music web-

site Last.fm to show that it is possible to create relevant 

conversational utterances without any authoring re-

quirement whatsoever. By supplying the users Last.fm 

username, we can use a web service supplied by the site 

to query the user‟s recent activity, for instance the songs 

they have listened to, songs rated highly or events which 

they have signed up to attend. Because the output from 

these services comes as structured XML document we 

can simply map it‟s schema onto our own vocabulary 

and feed the appropriate data to our templates to pro-

duce utterances. 

If web services are to be used we must have an 

equivalent local vocabulary to which we can map the 

data returned from any queries we send the service. 

However, in the case of semantic web sources, for ex-

ample the FOAF (friend-of-a-friend) vocabulary (Brick-

ley) describing online social networks, the process is 

simpler as we can simply use the pre-existing vocabu-

lary standard ourselves rather than having to develop 

our own. Despite the semantic web being in its infancy, 

the notion of shared data is growing in popularity and 

many popular websites and organizations are providing 

access to their information in a structured way. 

One problem with using these types of data acquisi-

tion methods for our purposes is that the data is largely 

generic and any personal opinion or evaluative informa-

tion personal to the user is limited. In some cases we 

may be able to query the data source for a rating 

awarded to a particular piece of content, for instance the 

star rating system on YouTube, but it is not clear how 

expressive the produced language will be since the 

process is likely to be a simple mapping from the rating 

to a suitable adjective. As in our system, the potential 

usefulness of the generated language is likely to be in-

creased if it is possible for the user to annotate the top-

ics with their own canned text expressions and 

evaluations. This will enable the system to express more 

of the individual‟s personality and opinions. 

We believe this is an area of great interest for AAC. 

There is growing evidence of the importance of the in-

ternet in the lives of disabled people, particularly its role 

as a communication medium for people with communi-

cation impairments (Cohen 1999). By harnessing the 

large volumes of data created when using modern hard-

ware and software systems and transforming it into use-

ful utterances, we can begin to address one of the main 

criticisms of whole utterance approaches to AAC since 

there would be no authoring requirement on the part of 

the users.   This is certainly by no means a simple 

process and this approach will require further investiga-

tion, but as semantic web technologies reach maturity 

Figure 3 - System interface 
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and gain wider adoption it should be clearer what the 

potential of the technology is. 

4 Formal Evaluation Methodology 

In our evaluations so far, we have concentrated on 

training the users in its operation, updating conversa-

tional material and implementing changes based on the 

user feedback. We have recently begun testing the sys-

tem in real conversational encounters and the results 

have been promising. We have found it is possible to 

hold pleasing conversations lasting up to 20 minutes 

with unfamiliar partners, with the aided communicator 

achieving a rate of upwards of 40 wpm. 

There also seems to be higher incidences of initia-

tions on the part of the user, with them making good use 

of both the scripted NLG material, the quick fire phrases 

and their own pre-stored material. The topic progression 

feature is currently being underused but subjects are 

responding well to training sessions on how to incorpo-

rate this to reduce their response time and expand on 

topics to extend the amount they are able to say. 

Formal evaluations are now being undertaken. An 

AB multiple-baseline study design is being conducted in 

which each aided communicator has a series of conver-

sations with 12 unknown and unaided conversation 

partners.  In the A condition, the aided participants use 

their existing AAC system, while in the B condition 

they use our prototype system. Each conversation will 

be limited to approximately 10 minutes, and the ses-

sions will be split across a three non-consecutive days to 

avoid user fatigue.  

There will be at least 3 conversations in both the A 

and B conditions, and the intervention point will be ran-

domized across the remaining 6 conversations to allow 

for valid inferences to be made despite the small n value 

(Todman and Dugard 2001). This also reduces the bias 

introduced by any training effects and avoids the need 

to use a response-guided intervention after baseline per-

formance has been established. The difficulty and ex-

pense of recruiting large numbers of subjects in AAC 

studies is a known problem (Higginbotham 1995) and 

therefore any findings from quantitative analysis per-

formed cannot be generalized across the AAC popula-

tion. However, we expect to be able to achieve a p value 

using the randomization design of <0.05 so the results 

should at least be internally robust and give a good indi-

cation of whether further investigation is warranted.   

The conversations will be audio-recorded and ana-

lyzed for a number of metrics. Primarily we are interest-

ed in measuring the rate at which people are able to 

communicate using the new system as this seems to be 

one of the clearest indicators of success when evaluating 

a new AAC intervention. We expect to the effect size 

observed across the conditions to be large.  

We are also particularly interested whether it is poss-

ible to use automatically generated material while main-

taining or enhancing the enjoyment and quality of the 

encounter for all participants.  It is still unclear how 

acceptable generated material will be to the user so we 

will measure the relative frequency of generated and 

canned-text utterances.  

In previous studies it has also been shown that the 

use of a whole-utterance approach can change the dy-

namics of communication, such as relative speech act 

distribution and number and type of initiation, so we are 

interested to see how the availability generated material 

might impact this and what role it might play. A coding 

schema based on Wang (2007) will be used to categor-

ize the utterances used. 

We are also asking the aided and unaided conversa-

tion partners to complete questionnaires regarding vari-

ous subjective ratings of the interactions and, in the case 

of the unaided speakers, impressions of the aided com-

municator. The questions will be based on a re-

evaluation of those suggested by Todman (2000) and 

answers will be requested on a 7-point rating scale. Pre-

vious work has shown that quicker, flowing interactions 

with less breakdowns or delays can lead to more re-

warding interactions for both participants. We expect to 

observe these effects in our system but it‟s as yet un-

clear what impact the automatically generated phrases 

will have, if any, on perceptions of the user.  

Although the relatively small number of participants 

means it is unlikely that we will be able to make robust 

inferences from this data, we hope that results will be 

indicative of the naturalness and acceptability of auto-

matically generated utterances. 

5 Discussion & Future Plans 

One of the primary reasons that AAC systems featur-

ing NLP technology prove useful is that they go some 

way to leveling the playing field for many users. They 

have the potential to support the user in ways which 

reduce the effort required to communicate yet may im-

prove the quality of the communication. There are many 

NLP technologies, such as NLG, that deserve further 

attention within the field of AAC to determine what 

they can offer.  

Although our system has shown some encouraging 

preliminary results there are still many unanswered 

questions with regards to the role NLG can play.  For 

example, it is not clear how appealing NLG utterances 
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are to use. Given that the user has not authored the form 

of the utterances themselves there is an argument that 

using them may feel unnatural. After the formal evalua-

tions we should be able provide analysis indicating 

whether NLG phrases are being used and in which sit-

uations they are proving most useful.  

One of the most challenging aspects of designing the 

system was the HCI challenge of incorporating some of 

these technologies. While it is obvious to the user that 

phrases are being generated automatically, and that 

these phrases are generated when a topic is selected, it is 

still important to note that the technologies have been 

intentionally kept largely transparent to the user. When 

using a communication system, the most important 

thing is the ability to say what you want to say, but is 

not yet clear whether the technical nature of the soft-

ware  may be an alienating factor since the user current-

ly has no access to the template construction or domain 

modeling aspects of the system. 

At the current time, the domain modeling and tem-

plate construction processes are quite complex and ex-

pensive. Tools are becoming available, from the NLG 

community, which go some way to addressing the diffi-

culty of interfacing these types of technology to non-

experts (Bilidas, Theologou et al. 2007; Power, Stevens 

et al. 2009) but these are largely unsolved problems. 

Domain modeling itself is problematic in that one 

persons notion of what defines a particular concept is 

often different to someone else‟s. For instance, one per-

son‟s idea of sport might encompass the sporting activi-

ties they take part in, while another person‟s idea of 

sport is that which they follow or watch on the televi-

sion. This has clear implications for the general usabili-

ty of the system.  Using semantic web vocabularies may 

address this somewhat since they are likely to be more 

specific to a particular purpose and be more mature and 

interoperable than the ‘home-brew’ domain models we 

have used for the prototype. 

Using whole-utterance approaches to communication 

clearly requires the adoption of a different mindset. Ra-

ther than being able to construct a novel message the 

user has to „make do’ with whatever is available in the 

system. Despite the advantages observed while using 

such systems, they have still not become generally pop-

ular. It is likely that any NLG whole utterance system 

would similarly not gain immediate acceptance because 

it is vastly different to other systems and approaches to 

communication available. To some degree we are ask-

ing the user of our NLG system to think in an object 

orientated manner since they must understand the un-

derlying model and the way the concepts are structured 

to make the most of the system. Again it is not yet clear 

how natural this process is and how much training is 

required to become an expert user of such a system. 

However perhaps the major strength of these types of 

system is the way in which they help scaffold interac-

tion so the AAC user can be much more active in con-

versation and use an increased repertoire. The design of 

the software is such that it encourages the use of types 

of phrases often underused by AAC users, for example, 

initiations, elaborating moves, questions and the differ-

ent classes of quick-fire remarks. One interesting ques-

tion is whether the use of NLG might make it easier to 

encourage the user to use new types of conversational 

move. Since no full text-authoring is required the user 

does not even have feel confident authoring the utter-

ance, it is simply provided and can be used or experi-

mented with.  Scaffolding interactions in this way may 

be one of the most interesting avenues for NLP and AI 

technologies with AAC in the future. 

 The architecture of the prototype, although effective, 

lacks efficiency and may be difficult to reuse. A great 

deal of work is being done by NLG researchers investi-

gating how NLG architectures might be made more 

modular and reusable. This is an ongoing problem but it 

seems sensible to consider how a pipeline architecture 

(Reiter and Dale 2000) might work in practice for this 

type of system. 

At the moment, the system requires a reasonable lev-

el of literacy because the interface is mainly text based. 

However, semiotic systems are preferred because of the 

literacy problems observed in many AAC users. It is not 

clear how NLG may impact on semiotic message con-

struction but systems such as Compansion (McCoy, 

Pennington et al. 1998) show there may useful applica-

tions in this area too. 

6 Conclusion 

Despite having only been able to perform informal 

evaluations so far, we believe we have seen some en-

couraging signals that NLG may have potential as an 

augmentative communication technology to assist in 

generating conversational utterances.  We believe that 

the rapid access to well-formed, contextually generated 

material offered in our system could lead to significant 

benefits for the AAC user and their interlocutors. 

There are further exciting possibilities with regards to 

the technology, particularly the ability to harvest per-

sonal data from the internet and other computer usage 

so that it can be transformed into useful phrases for in-

clusion in communication aids. We hope to have a rich-

er set of data and results in the coming months after the 

system training and formal evaluations have been com-

pleted.  
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Abstract 

Utterance-based AAC systems have the poten-
tial to significantly speed communication rate 
for someone who relies on a speech generat-
ing device for communication. At the same 
time, such systems pose interesting challenges 
including anticipating text needs, remember-
ing what text is stored, and accessing desired 
text when needed. Moreover, using such sys-
tems has profound pragmatic implications as a 
prestored message may or may not capture 
exactly what the user wishes to say in a par-
ticular discourse situation. In this paper we 
describe a prototype of an utterance-based 
AAC system whose design choices are driven 
by findings from theoretically driven studies 
concerning pragmatic choices with which the 
user of such a system is faced. These findings 
are coupled with cognitive theories to make 
choices for system design.  

1 Introduction 

There are more than 3.5 million Americans with 
disabilities who cannot effectively use speech to 
communicate (Beukelman & Mirenda, 2005). 
There are many conditions that can result in such 
severe speech impairments including cerebral pal-
sy, autism spectrum disorders, multiple sclerosis, 
amyotrophic lateral sclerosis (ALS), brain-stem 
stroke, Parkinson’s disease, and traumatic brain 
injury (TBI). Any one of these conditions can have 
a negative effect on the quality of life of these 
people. The field of Augmentative and Alternative 
Communication (AAC) has, especially over the 
last ten years, dramatically enhanced access to 
communication for these individuals through the 
use of high-tech systems. These electronic systems 

allow the entering of text that is then converted to 
natural-sounding synthetic speech. While the popu-
lation using AAC systems is quite diverse with 
regard to their linguistic and cognitive skills, here 
we focus on AAC systems for cognitively high-
functioning literate adults with motor impairments.   

Even with a focus on this population, the com-
munication rates of people who use AAC systems 
differ greatly based on their motor abilities and 
available interface choices (Trnka et al., 2009). 
Nevertheless, overall communication rates are 
slow to the extent that they are acknowledged as 
one of the most problematic areas of AAC interac-
tions.  Rates of 10-15 words per minute have been 
identified as upper limits for letter-by-letter selec-
tion on a keyboard (e.g., Wobbrock & Myers, 
2006)—a significant contrast to 130-200 words per 
minute for spoken communication. These slow 
rates and long pauses continue to be a major bar-
rier to the social, educational, and vocational suc-
cess, particularly when communicating with 
unfamiliar partners who have little or no expe-
rience in conversing with someone who uses AAC. 

One method that holds a great deal of promise 
for enhancing communication rate is the use of 
systems that offer a selection of prestored messag-
es. With these systems, a phrase or full sen-
tence/utterance can be selected at once. In such 
systems, sometimes called utterance-based AAC 
systems, people compose whole utterances in ad-
vance and store them for later use. These systems 
appear to be best suited for situations where rela-
tively predictable conversational routines take 
place.  Examples include short, transactional ex-
changes in stores, restaurants, or other public plac-
es where services are provided. 

Although it might appear that utterance-based 
technology could solve the problem of slow com-
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munication, at least in these predictable exchanges, 
the individual who uses these prestored messages 
must deal with additional challenges to use the 
prestored messages that have been stored in their 
system. Users must be able to: 1) remember that 
they have messages prestored that are appropriate 
for a given situation; 2) remember where these 
messages are stored; and 3) access the desired 
prestored messages with few keystrokes. In addi-
tion, it must be recognized that the prestored mes-
sages are not always going to exactly fit the 
communicative situation in which the user finds 
him/herself (e.g., a prestored message may not 
have enough information for the needs of the part-
ner).This results in a fourth challenge to the user—
to decide if it is better to use the message as stored, 
or either edit or construct a new one. Each chal-
lenge, or trade-off choice, directly affects commu-
nication rate.  

An adequate solution to these challenges has 
proven elusive over the years, despite a long tradi-
tion of research in utterance-based technologies 
(e.g., Todman, 2000; Todman & Alm, 1997; Tod-
man et al., 2008; Vanderheyden et al., 1996). What 
has been lacking is a design process that employs a 
theoretical framework (or perspective) dealing 
with conversation conventions, empirical evidence 
to identify priorities, and systematic testing to de-
termine whether the design enables the communi-
cator to achieve the goals of an interaction.  

A hierarchy of conversational rule violations 
based on a series of experimental studies has a 
great deal of potential to positively influence the 
design of future utterance-based technologies. In 
this paper we first describe a set of such studies 
and the resulting hierarchy. We then discuss the 
implications of this hierarchy on the design of an 
utterance-based AAC system, while integrating 
considerations from cognition and Natural Lan-
guage Processing. Finally, we present our partially 
implemented prototype system and describe plans 
for evaluating this technology. 

2 Theoretical Background 

To shed light on the design of future utterance-
based technologies, studied conversational trade-
off choices that a person faces when using an ut-
terance-based system in goal-directed public situa-
tions with service providers who are unfamiliar 
with AAC, and how the particular choices made 

affect the attitudes and conversational behaviors of 
these providers (Bedrosian et al., 2003; Hoag et al., 
2007; Hoag et al., 2004, 2008; McCoy, et al., 
2007). We were interested in determining which 
message choices resulted in the most favorable 
attitudes and conversational responses leading to 
the success of the AAC customer’s goal in these 
transactional exchanges.  

Notice that no matter how well a user anticipates 
text need, it is inevitable that some prestored mes-
sages are not going to exactly fit the pragmatic 
context in which the user finds him or herself. Four 
public situations (i.e., bookstore, movie theater, 
small convenience store, hair salon) where such 
mismatches could occur were studied in a series of 
investigations. Possible pragmatic mismatches 
were characterized in terms of rule violations ac-
cording to Grice (1975) who articulated a set of 
classic conversational maxims that implicitly guide 
people in exchanging information. Using video-
taped interactions across experiments, these viola-
tions were scripted in messages that involved 
trade-off choices between prestored message use 
and real time message construction. Specifically, 
the trade-offs examined in these investigations 
were between speed of message delivery and a 
message with either: 1) repetitive information with 
repetitive words or phrases; 2) excessive informa-
tion, with more information than was needed by 
the listener but where the information was still top-
ically relevant; 3) inadequate information, lacking 
some of the information needed by the listener, or 
4) partly relevant information, where some of the 
content was not topically relevant. An example of 
such a trade-off involved the message choice of a 
quickly delivered (i.e., 4 seconds) prestored mes-
sage with excessive information or one that was 
delivered slowly (i.e., 90 seconds) to allow editing 
of the excessive information. 

In essence, these experiments simulated situa-
tions where the user was faced with a choice: 
whether to quickly deliver a prestored message that 
was not exactly what was desired because of the 
pragmatic mismatch, or whether to take the time to 
edit the message so that it was exactly what was 
needed. The experiments looked at goal oriented 
situations with unfamiliar partners. This is an ex-
tremely important set of circumstances where the 
attitudes and actions of the communication partner 
can greatly affect whether or not the user can inde-
pendently meet his or her goals. 
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The experimental hypothesis was that there ex-
isted a hierarchy of conversational maxims involv-
ing the maxims of speed, relevance, repetition, and 
Informativeness, such that adherence to some of 
these maxims would result in more positive eval-
uations by public service providers than others. 
With regard to the results of the experiments, simi-
lar hierarchies of conversational rule violations  
were found across experiments, such that some 
violations, regardless of degree or particular public 
setting, were indeed consistently responded to 
more or less favorably than others. Consistently at 
the bottom of the hierarchy (i.e., responded to least 
favorably in all experimental situations, and with 
less success in meeting the target customer’s goal) 
were quickly delivered messages with only partly 
relevant information. The finding places a high 
priority on selecting entirely relevant messages. As 
such, it suggests the development of a system ar-
chitecture that makes it easy and fast to retrieve 
entirely relevant messages and difficult to retrieve 
messages that are only partly relevant to the cur-
rent exchange.  

On the other hand, consistently at the top of the 
hierarchy were quickly delivered messages with 
repetitive information. These messages were re-
sponded to the most favorably and with much suc-
cess in meeting the target customer’s goal. The 
limited negative impact of the messages with repe-
tition indicated that modification of system design 
to remedy this message flaw would yield less bene-
fit for the user.  

The other trade-off choices, the fast inadequate 
message, the slow adequate message, and the fast 
excessive message, occupied the middle of the hie-
rarchy across the experiments, although their posi-
tions with regard to each other were not exactly the 
same. Thus, the implications of these findings for 
system design are a little less clear, but suggest that 
users given options to edit or easily construct mes-
sages with respect to Informativeness.  

In sum, these findings have several important 
implications for future utterance-based technolo-
gies. A system design must provide a mechanisms 
to maximize the availability of situationally rele-
vant prestored messages.  Additionally, utterance-
based technologies must be integrated seamlessly 
into an AAC system design that allows these pres-
tored messages to be easily edited for their exces-
sive or inadequate information.  Finally, this 
design must also support the on-line construction 

of new messages, while still easily accessing pres-
tored messages when appropriate.  

3 Prototype Development 

The research findings cited above, particularly 
those regarding the critical role of relevance in 
conversation, led to the underlying structure of the 
prototype we are in the process of developing. 
Specifically, we are interested in a prototype that 
will support relevant conversation in familiar rou-
tine exchanges with relatively predictable content, 
such as those that occur in public settings, as it is 
these types of exchanges that provide the best situ-
ations in which to use prestored text. Schank and 
Abelson (1977) suggested that people develop 
mental scripts in such familiar situations (e.g., 
going to a restaurant), and that these scripts 
(representing typical sequences of events) are ac-
cessed by people in order to act appropriately in 
these situations, and understand/interpret what is 
being said. Each script consists of a series of 
scenes (subevents) that previous experience has led 
one to expect to occur. According to the cognitive 
theory, when faced with a new situation (e.g., 
going to a new restaurant), a person can pull up 
his/her mental script and step through the scenes in 
order to participate appropriately.  

We propose an underlying organizational struc-
ture for prestored utterances that leverages this 
mental script notion from cognitive science, as it 
nicely supports the Bedrosian, Hoag, McCoy, and 
Bedrosian findings about relevance. A slightly dif-
ferent notion of scripts has been used in previous 
research in utterance-based technologies (e.g., Dye 
et al., 1998; Alm et al., 2000). The notion referred 
to here is inspired by the early work of Vander-
heyden (1995). In particular, in our prototype sys-
tem the prestored utterances are organized 
(grouped and ordered) according to scenes within a 
script. For example, a “going-to-a-restaurant” 
script may have scenes associated with entering, 
ordering drinks, ordering entree, paying, etc. Asso-
ciated with each of these scenes are the prestored 
utterances appropriate for use during that scene 
(e.g., utterances pertaining to entering might in-
clude, “Hello.” “Fine, thank you.”, “Non-
smoking.”). 

Not only would this organization ensure the re-
levance of utterances to the current situation, but it 
would also significantly aid the user in remember-
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ing where these messages are stored so that they 
can be accessed. Essentially the user could direct 
the system to step through messages appropriate 
for each scene of a given script as he/she is actual-
ly experiencing the scene. The utterance-based sys-
tem would have a “now point” which corresponds 
to the scene in which the user is currently located 
in the script. Utterances useful for the conversation 
during that scene are easily available using very 
few keystrokes. Moreover, because the script mir-
rors the way a user thinks about a typical situation 
and how it flows from one scene to the next, the 
interface could lead the user to utterances appro-
priate for the next scenes to be encountered. Thus, 
users do not need to remember exactly which ut-
terances are stored; they need only to activate the 
appropriate scene in the script to be shown relevant 
messages that can be selected, as well as other 
scenes that may follow. 

At the same time, this underlying structure can 
also provide time-saving benefits to the user with 
respect to entering text. This is in part because of 
its hierarchical organization [see Figure 1, influ-
enced by Vanderheyden (1995)]. At the top of any 
given hierarchy, are the most general scripts which 
can be used in a multitude of new situations (e.g., a 
new type of restaurant that the user has never gone 
to). As shown in the figure, the most general script 
here involves a “going-to-a-restaurant” script with 
scenes containing “general purpose text”. For in-
stance, in the ordering scene, slot fillers appropri-
ate for many different kinds of restaurants are 
shown. Below this script, are scripts that pertain to 
more specific types of restaurants (only two are 
explicitly shown in the figure). In these scripts, 
notice some scenes and text are inherited verbatim 
from above, but text may also be added to or mod-
ified as appropriate for the situation and according 
to the preferences of the user. By inherited we 
mean that one or more scenes, with the corres-
ponding messages, from the most general script 
would automatically be made available in the more 
specific instances. Unavailable in other prestored 
text systems, this feature is a significant benefit to 
users, because they only have to enter the informa-
tion one time at the highest level of the hierarchy, 
and yet they will have access to it again in other 
scripts further down in the hierarchy.  

Another advantage of the inheritance is that it 
results in a consistent organization of messages 

across scripts. When accessing any script within 
the restaurant hierarchy, for example, not only can 
users expect to find the entering scene that was 
inherited from the “parent” script, they can also 
expect to find the prestored utterances “Hello” and 
“Fine, thank you” near the beginning of that scene. 
This illustrates a memory enhancement feature of 
this system that is not available in other prestored 
text systems – consistency in placement of mes-
sages from one particular script to another. Over-
all, this underlying organizational structure, which 
we will refer to as a deep structure, represents a 
significant change in the way that utterance-based 
systems in AAC have been designed. With respect 
to appearance, or surface structure, some current 
systems may have, for example, a restaurant 
“page” consisting of a grid of small rectangular 
boxes forming rows and columns across the com-
puter screen. Although each box would contain a 
prestored message appropriate for use in a restau-
rant, there is no deep structure specifying how the 
messages on that page should be organized 
(grouped and ordered) nor how the messages might 
be related (the notion of consistency) to those 
stored on other pages. The only organizing prin-
ciple is that these messages are “things I can say in 
a restaurant.” If the messages are not ordered (ei-
ther by row or column) in a way that steps the user 
through a scripted sequence of events for a given 
situation, the user must search through a set of 
messages, some of which are unlikely to occur at 
that stage in the interaction. This search process, 
which is likely to include irrelevant messages, may 
slow down the selection process and negatively 
impact the rate of communication. Even if health 
providers or manufacturers programmed messages 
in these boxes to follow such a sequence, this 
would still remain a surface structure “fix.” The 
strength of our prototype is the deep structure—the 
machinery—such that the consistent location of the 
messages can be easily remembered and accessed 
in a few keystrokes to enhance communication 
rate. Additionally, the hierarchical advantage of the 
deep structure provides the user with a choice of 
scripts (depending on the specificity of the situa-
tion), and saves the user time and energy in enter-
ing text, making the user more independent in 
meeting individual communication needs. 
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Figure 1: Hierarchical Script Representation 
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4 Communicating with the system 

In this section we discuss the user interface and 
what the user does in order to actually communi-
cate using the system which has been our focus to 
date. Future work will investigate issues in enter-
ing prestored text into scripts and adapting the 
scripts to the individual user. In a situation where 
the user anticipates using prestored text, he or she 
will be taken to a window menu where the desired 
script (and scene) can be selected. The user may 
then navigate to the script that best fits the actions 
in which he or she is about to engage.  Upon se-
lecting the script, the user will be taken to a screen 
such as that displayed in Figure 2. 

The large window at the top is the display win-
dow. This is where the words of the utterances se-
lected by the user to be spoken will be displayed. 
There is a clear button to clear the display window 
(on the left of the display) and a speak button (the 
arrow on the right-hand-side of the display) that 
causes the display window contents to be sent to 
the speech synthesizer to be spoken. 

The next area of the display helps users keep 
their place and navigate within the chosen script. 
First is the scene map which is a numerical repre-
sentation of the scenes in the current script. From 
this, for instance, users can see that the script they 
have selected contains seven scenes, and the scene 
they are currently performing is scene number one 

which corresponds to the “enter” scene. The num-
ber of the current scene is colored differently than 
the rest. Below the scene map is a line of tabs, un-
der which are boxes containing prestored text that 
can be selected by the user. In this case, the text for 
the first five scenes of the script are displayed (or 
partially displayed). These scenes are named “en-
ter”, “drinks”, “appetizer”, “soup/salad”, and 
“entrée”.  Under each of these scene-name tabs is 
the list of possible prestored utterances associated 
with the scene. For example, there are three pieces 
of text displayed that would be appropriate for the 
“enter” scene. As is the case with the scene-map, 
the current scene (tab and utterances) is colored 
differently from the others so that it is more salient 
to the user. 

Under the boxes are four tabs which bring up 
overlays with some general prestored text that 
might be needed at any time during the script. Ask-
ing for some assistance, talking with the waiter, 
small talk with the table mate, and quickfires are 
just some examples of the kinds of pages that 
might be accessible. Finally, at the bottom of the 
page are some navigation buttons for navigating in 
the device. Here we see buttons that allow the user 
to go to the device home page, move the script 
backward and forward, and go to a page containing 
a keyboard so a novel utterance can be composed. 

The system is set up in a way that allows users 
to select text that they might need while perform-

 
Figure 2: View of Interface with "Entering Scene" Active 
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ing an action as they step through a scene. Thus, it 
is assumed that the user would select text in left-to-
right order with the left-most scene being the ac-
tive scene (i.e., the scene the user is currently per-
forming).  The user may select one of the boxes in 
the active scene, and the text would be automati-
cally put up into the display window at the top. 
The speak button (arrow in the upper-right corner) 
is used to actually say the desired text. The user 
could select and speak any number of utterances in 
the active scene without any significant changes in 
the display. If the actions the user is performing 
have progressed to the next scene, then the user 
may navigate to the appropriate text in two dif-
ferent ways. First, the user could click on the 
scene map or displayed tabs to have the context 
shift to the new scene. Once selected that scene 
tab and associated text boxes will be shown on 
the left-hand-side of the device. Second, if the 
utterance that the user wishes to say is currently 
visible on the screen, the user may simply select 
that utterance. In this case, in addition to putting 
the utterance in the display window making it 
ready to be spoken, the screen will automatically 
scroll over to display the scene from which the 
utterance was chosen on the far left (revealing 
subsequent scenes to the right of it on the 
screen). Figure 3 displays an example of this kind 
of movement, resulting from the user selecting the 
“I’ll have the nachos” text from the appetizer scene 
displayed in Figure 2. Notice that the scenes have 
been shifted over--the appetizer scene (scene 3) is 
now the active scene, and the text associated with 
the button is now in the display window. 

 

Figure 3 illustrates another feature of the system 
– slot fillers that are specific to a script or scene. 
Notice that “nachos” is colored differently than the 
other words in this prestored text. This is an indica-
tion that it is a slot-filler and that other options for 
filling that slot are available. To edit that text, the 
user clicks on the highlighted word in the display 
window, and a window such as that in Figure 4 is 
displayed. The user may then select the filler 
he/she desires, and it will replace “nachos” in the 
display.  

The system described is currently being imple-
mented. Yet to be integrated is a facility that will 
enable more extensive editing of the text in the 
display window and the specifics of easy access to 
typing via an on-screen keyboard (for instances 
where the user wishes to type an utterance from 
scratch rather than using a prestored utterance). 

5 Planned Evaluation 

Two separate comparative efficacy evaluations 
will be conducted to test both the efficiency and 
effectiveness (Schlosser, 1999) of the prototype 
system in contrast to a differently organized pres-
tored text system. In each evaluation, efficiency 
will involve a comparison of the two systems, in a 
training session, with respect to user learning va-
riables (e.g., which system is learned faster, with 
less instruction time, fewer errors/trials). Effec-
tiveness will involve a comparison, in a virtual 
public setting environment with a service provider 
as the partner, dealing with user behavior changes 
and satisfaction (e.g., which system results in faster 
rates of prestored message selection, goal attain-
ment, more satisfaction) and partner attitude and 

Figure 3: Shifting scenes by selecting text from 
appetizer scene 

 
Figure 4: Editing a slot-filler 
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behavior changes (e.g., which system leads to more 
positive attitudes toward the user, more effective 
conversational behaviors in meeting user goals).  

In the first efficacy evaluation, typically speak-
ing, nondisabled adults will be the participants, 
eliminating bias due to the fact that they will have 
had no previous experience using AAC systems. A 
randomized controlled trial will be employed whe-
reby participants will be assigned to either the pro-
totype system group or the standard system group. 
Each system will contain the same prestored mes-
sages, and the same virtual public setting will be 
used in each group. Results will be used to refine 
the training phase and modify the prototype soft-
ware if necessary. In the second evaluation, a sin-
gle subject experimental design involving an 
adapted alternating treatment design will be em-
ployed with cognitively intact, literate, adult partic-
ipants who currently use prestored text systems. 
Although such a design would expose each partici-
pant to each system (i.e., the prototype system and 
the standard system), carryover effects are elimi-
nated due to counterbalancing the order of the two 
conditions across participants, ensuring that there 
are two equivalent and functionally independent 
instructional sets for the conditions (Schlosser, 
1999) (in this case, the instructional sets would 
involve two virtual public settings and correspond-
ing prestored messages), and counterbalancing the 
sets between conditions.    

6 Related Work 

Storing and retrieving full utterances has been the 
focus of a long tradition of work; Todman et al. 
(2008) contains a nice overview of some of these 
systems. The ScripTalker system (Dye et al. 
1998a) is closest in theory to our system wit per-
haps the biggest difference being the variety of 
utterances available (and the fact that their proto-
type seemed more geared toward people with low 
literacy skills. While the overall architecture did 
rely on the notion of scripts, the actual utterances 
stored was one per task the user might want to per-
form. I.e., the scripts themselves were linguistic in 
nature. Similar uses were found in other work from 
that same group, for instance see (Alm et al. 1995) 
and (Dye et al. 1998). In contrast we target users 
with higher literacy skills and more variety in the 
prestored text they might want to have available. 
The script is used to organize the messages but 

there are many messages available within a partic-
ular scene.  

Other work such as the Talk System (Todman & 
Alm, 1997) is intended for social conversation and 
the organization is quite different. As its intention 
is so different, one would expect the stored content 
to need to be updated very often in order to keep it 
current. This is in contrast to the relatively endur-
ing nature expected in the types of conversations 
we envision. 

Another notable system is the FrameTalker 
Project (Higgenbotham & Lesher, 2005) uses a 
looser notion of communication contexts. Our hy-
pothesis is the structure used there does not impose 
enough organization over the utterances, especially 
in the type of situations we envision for use. The 
Contact system is a system that combines notions 
from both Talk and the FrameTalker projects. 

Finally, Langer & Hickey (1997) describe a 
whole utterance system that retrieved utterances 
related to keywords via a keyword search on a 
large database of utterances. In contrast, our sys-
tem would provide access to presumably a series of 
utterances relevant to the current situation. 

7 Conclusions 

AAC systems that use prestored text have a great 
deal of potential to speed communication rate and 
improve attitudes of unfamiliar speaking partners 
towards AAC users in public goal-oriented situa-
tions. In this work we applied empirical evidence 
summarized in a hierarchy of conversational rule 
violations (Bedrosian et al. 2000) to identify im-
portant principles of successful interaction with 
AAC text. We then attempted to match appropriate 
NLP technologies with these principles in order to 
develop a different viewpoint for an AAC system 
that used prestored text. Our design is based on 
schema-theory (Schank & Abelson, 1977) and en-
forces a structure over the prestored text that will 
minimize irrelevant text and constrain the rest of 
the text so as to facilitate remembering what text is 
stored while minimizing keystrokes needed to se-
lect the text. 
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Abstract
We present preliminary experiments of a
binary-switch, static-grid typing interface
making use of varying language model contri-
butions. Our motivation is to quantify the de-
gree to which language models can make the
simplest scanning interfaces – such as show-
ing one symbol at a time rather than a scan-
ning a grid – competitive in terms of typing
speed. We present a grid scanning method
making use of optimal Huffman binary codes,
and demonstrate the impact of higher order
language models on its performance. We also
investigate the scanning methods of highlight-
ing just one cell in a grid at any given time
or showing one symbol at a time without a
grid, and show that they yield commensurate
performance when using higher order n-gram
models, mainly due to lower error rate and a
lower rate of missed targets.

1 Introduction
Augmentative and Alternative Communication
(AAC) is a well-defined subfield of assistive tech-
nology, focused on methods that assist individuals
for whom conventional spoken or written communi-
cation approaches are difficult or impossible. Those
who cannot make use of standard keyboards for text
entry have a number of alternative text entry meth-
ods that permit typing. One of the most common of
these alternative text entry methods is the use of a
binary switch – triggered by button-press, eye-blink
or even through event related potentials (ERP) such
as the P300 detected in EEG signals – that allows
the individual to make a selection based on some
method for scanning through alternatives (Lesher et
al., 1998). Typing speed is a challenge, yet critically
important for usability. One common approach is
row/column scanning on a matrix of characters,
symbols or images (a ‘spelling grid’), which allows
the user of a binary yes/no switch to select the row
and column of a target symbol, by simply indicating
‘yes’ (pressing a button or blinking an eye) when the

row or column of the target symbol is highlighted.
Figure 1 shows the 6×6 spelling grid used for the
P300 Speller (Farwell and Donchin, 1988).

For any given scanning method, the use of a bi-
nary switch to select from among a set of options
(letter, symbols, or images) amounts to the assign-
ment of binary codes to each symbol. For example,
the standard row/column scanning algorithm works
by scanning each row until a selection is made, then
scanning each column until a selection is made, and
returning the symbol at the selected row and column.
This can be formalized as follows:

1 for i = 1 to (# of rows) do
2 HIGHLIGHTROW(i)
3 if YESSWITCH
4 for j = 1 to (# of columns) do
5 HIGHLIGHTCOLUMN(j)
6 if YESSWITCH
7 return (i, j)
8 return (i, 0)
9 return (0, 0)

where the function YESSWITCH returns true if the
button is pressed (or whatever switch event counts as
a ‘yes’ response) within the parameterized latency.
If the function returns (0, 0) then nothing has been
selected, requiring rescanning. If the function re-
turns (i, 0) for i > 0, then row i has been selected,
but columns must be rescanned. Under this scanning
method, the binary code for the letter ‘J’ in the ma-
trix in Figure 1 is 010001; the letter ‘T’ is 000101.

The length of the binary code for a symbol is re-
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Figure 1: Spelling grid such as that used for the P300
speller (Farwell and Donchin, 1988). ‘ ’ denotes space.
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lated to the time required to type it. In the ma-
trix in Figure 1, the space character is in the bot-
tom right-hand corner, yielding the maximum binary
code length for that grid size (12), despite that, in
typical written English we would expect the space
character to be used about 20% of the time. A more
efficient strategy would be to place the space charac-
ter in the upper left-hand corner of the grid, leading
to the much shorter binary code ‘11’.

Ordering symbols in a fixed grid so that frequent
symbols are located in the upper left-hand corner is
one method for making use of a statistical model of
the language so that likely symbols receive the short-
est codes. Such a language model, however, does
not take into account what has already been typed,
but rather assigns its code identically in all contexts.
In this paper we examine alternative fixed-grid scan-
ning methods that do take into account context in the
language models used to establish codes, i.e., the
codes in these methods vary in different contexts,
so that high probability symbols receive the short-
est codes and hence require the fewest keystrokes.
We show that n-gram language models can provide
a large improvement in typing speed.

Before presenting our methods and experimental
results, we next provide further background on alter-
native text entry methods, language modeling, and
binary coding based on language models.

2 Preliminaries and background
2.1 Alternative text entry
Of the ways in which AAC typing interfaces differ,
perhaps most relevant to the current paper is whether
the symbol positions are fixed or can move dynam-
ically, because such dynamic layouts facilitate in-
tegration of richer language models. For example,
if we re-calculate character probabilities after each
typed character, then we could re-arrange the char-
acters in the grid so that the most likely are placed
in the upper left-hand corner for row/column scan-
ning. Conventional wisdom, however, is that the
cognitive overhead of processing a different grid ar-
rangement after every character would slow down
typing more than the speedup due to the improved
binary coding (Baletsa et al., 1976; Lesher et al.,
1998). The GazeTalk system (Hansen et al., 2003),
which presents the user with a 3×4 grid and captures
which cell the user’s gaze fixates upon, is an instance
of a dynamically changing grid. The cell layouts
are configurable, but typically one cell contains a set
of likely word completions; others are allocated to
space and backspace; and around half of the cells are

allocated to the most likely single character contin-
uation of the input string, based on language model
predictions. Hansen et al. (2003) report that users
produced more words per minute with a static key-
board than with the predictive grid interface, illus-
trating the impact of the cognitive overhead that goes
along with this sort of scanning.

The likely word completions in the GazeTalk sys-
tem illustrates another common way in which lan-
guage modeling is integrated into AAC typing sys-
tems. Much of the language modeling research
within the context of AAC has been for word com-
pletion/prediction for keystroke reduction (Darragh
et al., 1990; Li and Hirst, 2005; Trost et al., 2005;
Trnka et al., 2006; Trnka et al., 2007; Wandmacher
and Antoine, 2007). The typical scenario for this is
allocating a region of the interface to contain a set of
suggested words that complete what the user has be-
gun typing. The expectation is to derive a keystroke
savings when the user selects one of the alternatives
rather than typing the rest of the letters. The cogni-
tive load of monitoring a list of possible completions
has made the claim that this speeds typing contro-
versial (Anson et al., 2004); yet some results have
shown this to speed typing under certain conditions
(Trnka et al., 2007).

One innovative language-model-driven AAC typ-
ing interface is Dasher (Ward et al., 2002), which
uses language models and arithmetic coding to
present alternative letter targets on the screen with
size relative to their likelihood given the history.
Users can type by continuous motion, such as eye
gaze or mouse cursor movement, targeting their cur-
sor at the intended letter and moving the cursor
from left-to-right through the interface, while its
movements are tracked. This is an extremely effec-
tive typing interface alternative to keyboards, pro-
vided the user has sufficient motor control to per-
form the required systematic visual scanning. The
most severely impaired users, such as those with
locked-in syndrome (LIS), have lost the voluntary
motor control sufficient for such an interface.

Relying on extensive visual scanning, such as that
required in dynamically reconfiguring spelling grids
or Dasher, or requiring complex gestural feedback
from the user renders a typing interface difficult or
impossible to use for those with the most severe im-
pairments. Indeed, even spelling grids like the P300
speller can be taxing as an interface for users. Re-
cent attempts to use the P300 speller as a typing
interface for locked-in individuals with ALS found
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1 A← V � initialize A as symbol set V
2 k ← 1 � initialize bit position k to 1
3 while |A| > 1 do
4 P ← {a ∈ A : a[k] = 1}
5 Q← {a ∈ A : a[k] = 0}
6 Highlight symbols in P
7 if selected then A← P
8 else A← Q
9 k ← k + 1
10 return a ∈ A � Only 1 element in A

Figure 2: Algorithm for binary code symbol selection

that the number of items in the grid caused prob-
lems for these patients, because of difficulty orient-
ing attention to specific locations in the spelling grid
(Sellers et al., 2003). This is another illustration of
the need to reduce the cognitive overhead of such in-
terfaces. Yet the success of classification of ERP in
a simpler task for this population indicates that the
P300 is a binary response mechanism of utility for
this task (Sellers and Donchin, 2006).

Simpler interactions via brain-computer inter-
faces (BCI) hold much promise for effective text
communication. Yet these simple interfaces have yet
to take full advantage of language models to ease or
speed typing. In this paper we will make use of a
static grid, or a single letter linear scanning inter-
face, yet scan in a way that allows for the use of
contextual language model probabilities when con-
structing the binary code for each symbol.

2.2 Binary codes for typing interfaces
Row/column scanning, as outlined in the previous
section, is not the only means by which the spelling
grid in Figure 1 can be used as a binary response
typing interface. Rather than highlighting full rows
or full columns, arbitrary subsets of letters could be
highlighted, and letter selection again driven by a
binary response mechanism. An algorithm to do this
is as follows. Assign a unique binary code to each
symbol in the symbol set V (letters in this case). For
each symbol a ∈ V , there are |a| bits in the code
representing the letter. Let a[k] be the kth bit of the
code for symbol a. We will assume that no symbol’s
binary code is a prefix of another symbol’s binary
code. Given such an assignment of binary codes to
the symbol set V , the algorithm in Figure 2 can be
used to select the target symbol in a spelling grid.

One key question in this paper is how to produce
such a binary code, which is how language models
can be included in scanning. Figure 3 shows two
different binary trees, which yield different binary
codes for six letters in a simple, artificial example.
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Figure 3: Two binary trees for encoding letters based on
letter probabilities: (1) Huffman coding; and (2) Linear
coding via a right-branching tree (right-linear). Expected
bits are 2.55 for Huffman and 2.89 for linear coding.

Huffman coding (Huffman, 1952) builds a binary
tree that minimizes the expected number of bits ac-
cording to the provided distribution. There is a lin-
ear complexity algorithm for building this tree given
a list of items sorted by descending probability.

Another type of binary code, which we will call a
linear code, provides a lot of flexibility in the kind of
interface that it allows, relative to the other methods
mentioned above. In this binary code, each itera-
tion of the WHILE loop in the Figure 2 algorithm
would have a set P on line 4 with exactly one mem-
ber. With such a code, the spelling grid in Figure
1 would highlight exactly one letter at a time for
selection. Alternately, symbols could be presented
one at a time with no grid, which we call rapid serial
visual presentation (RSVP, see Fig.7). Linear cod-
ing builds a simple right-linear tree (seen in Figure
3) that preserves the sorted order of the set, putting
higher probability symbols closer to the root of the
tree, thus obtaining shorter binary codes. Linear
coding can never produce codes with fewer expected
bits than Huffman coding, though the linear code
may reach the minimum under certain conditions.

The simplicity of an interface that presents a sin-
gle letter at a time may reduce user fatigue, and even
make typing feasible for users that cannot maintain
focus on a spelling grid. Additionally, single symbol
auditory presentation would be possible, for visually
impaired individuals, something that is not straight-
forwardly feasible with the sets of symbols that must
be presented when using Huffman codes.

2.3 Language modeling for typing interfaces
The current task is very similar to word prediction
work discussed in Section 2.1, except that the pre-
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diction interface is the only means by which text
is input, rather than a separate window with com-
pletions being provided. In principle, the symbols
that are being predicted (hence typed) can be from
a vocabulary that includes multiple symbol strings
such as words. However, a key requirement in a
composition-based typing interface is an open vo-
cabulary – the user should be able to type any word,
whether or not it is in some fixed vocabulary. In-
cluded in such a mechanism is the ability to repair:
delete symbols and re-type new ones. In contrast,
a word prediction component must be accompanied
by some additional mechanism in place for typing
words not in the vocabulary. The current problem is
to use symbol prediction for that core typing inter-
face, and this paper will focus on predicting single
ASCII and control characters, rather than multiple
character strings. The task is actually very similar
to the well known Shannon game (Shannon, 1950),
where text is guessed one character at a time.

Character prediction is done in the Dasher and
GazeTalk interfaces, as discussed in an earlier sec-
tion. There is also a letter prediction component to
the Sibyl/Sibylle interfaces (Schadle, 2004; Wand-
macher et al., 2008), alongside a separate word pre-
diction component. Interestingly, the letter predic-
tion component of Sibylle (Sibyletter) involves a lin-
ear scan of the letters, one at a time in order of proba-
bility (as determined by a 5-gram character language
model), rather than a row/column scanning of the
P300 speller. This approach was based on user feed-
back that the row/column scanning was a much more
tiring interface than the linear scan interface (Wand-
macher et al., 2008), which is consistent with the
results previously discussed on the difficulty of ALS
individuals with the P300 speller interface.

Language modeling for a typing interface task of
this sort is very different from other common lan-
guage modeling tasks. This is because, at each sym-
bol in the string, the already typed prefix string is
given – there is no ambiguity in the prefix string,
modulo subsequent repairs. In contrast, in speech
recognition, machine translation, optical character
recognition or T9 style text input, the actual pre-
fix string is not known; rather, there is a distribu-
tion over possible prefix strings, and a global in-
ference procedure is required to find the best string
as a whole. For typing, once the symbol has been
produced and not repaired, the model predicting the
next symbol is given the true context. This has sev-
eral important ramifications for language modeling,

including the availability of supervised adaptation
data and the fact that the models trained with rel-
ative frequency estimation are both generative and
discriminative. See Roark (2009) for extensive dis-
cussion of these issues. Here we will consider n-
gram language models of various orders, estimated
via smoothed relative frequency estimation (see §
3.1). The principal novelty in the current approach
is the principled incorporation of error probabilities
into the binary coding approaches, and the experi-
mental demonstration of how linear coding for grids
or RSVP interfaces compare to Huffman coding and
row/column scanning for grids.

3 Methods
3.1 Character-based language models
For this paper, we use character n-gram models.
Carpenter (2005) has an extensive comparison of
large scale character-based language models, and
we adopt smoothing methods from that paper. It
presents a version of Witten-Bell smoothing (Wit-
ten and Bell, 1991) with an optimized hyperparam-
eter K, which is shown to be as effective as Kneser-
Ney smoothing (Kneser and Ney, 1995) for higher
order n-grams. We refer readers to that paper for de-
tails on this standard n-gram language modeling ap-
proach. For the experimental results presented here,
we trained unigram and 8-gram models from the NY
Times portion of the English Gigaword corpus.

We performed extensive normalization of this
corpus, detailed in Roark (2009). We de-cased
the resulting corpus and selected sentences that
only included characters that would appear in
our 6×6 spelling grid. Those characters are:
the 26 letters of the English alphabet, the space
character, a delete symbol, comma, period, double
and single quote, dash, dollar sign, colon and
semi-colon. We used a 42 million character subset
of this corpus for training the model. Finally, we
appended to this corpus approximately 112 thou-
sand words from the CMU Pronouncing Dictionary
(www.speech.cs.cmu.edu/cgi-bin/cmudict),
which also contained only the symbols from the
grid. For hyper-parameter settings, we used a 100k
character development set. Our best performing
hyper-parameter for the Witten-Bell smoothing was
K = 15, which is comparable to optimal settings
found by Carpenter (2005) for 12-grams.

3.2 Binary codes
Given what has been typed so far, we can use a char-
acter n-gram language model to assign probabilities
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Figure 4: Row/column scanning interface.

to all next symbols in the symbol set V . After sort-
ing the set in order of decreasing probability, we can
use these probabilities to build binary coding trees
for the set. Hence the binary code assigned to each
symbol in the symbol set differs depending on what
has been typed before. For Huffman coding, we
used the algorithm from Perelmouter and Birbaumer
(2000) that accounts for any probability of error in
following a branch of the tree, and builds the optimal
coding tree even when there is non-zero probability
of taking a branch in error. Either linear or Huffman
codes can be built from the language model proba-
bilities, and can then be used for a typing interface,
using the algorithm presented in Figure 2.

3.3 Scanning systems
For these experiments, we developed an interface
for controlled testing of typing performance under
a range of scanning methods. These include: (i)
row/column scanning, both auto scan (button press
selects) and step scan (lack of button press selects);
(ii) Scanning with a Huffman code, either derived
from a unigram language model, or from an 8-gram
language model; and (iii) Scanning with a linear
code, either on the 6×6 grid, or using RSVP, which
shows one symbol at a time. Each trial involved giv-
ing subjects a target phrase with instructions to type
the phrase exactly as displayed. All errors in typing
were required to be corrected by deleting (via←) the
incorrect symbol and re-typing the correct symbol.

Figure 4 shows our typing interface when config-
ured for row/column scanning. At the top of the
application window is the target string to be typed
by the subject (‘we run the risk of failure’). Below
that is the buffer displaying what has already been
typed (‘we run t’). Spaces between words must also
be typed – they are represented by the underscore
character in the upper left-hand corner of the grid.
Spaces are treated like any other symbol in our lan-
guage model – they must be typed, thus they are pre-

Figure 5: Error in row/column scanning interface.

dicted along with the other symbols. Figure 5 shows
how the display updates when an incorrect character
is typed. The errors are highlighted in red, followed
by the backarrow symbol to remind users to delete.

If a row has not been selected after a pass over all
rows, scanning begins again at the top. After row
selection, column scanning commences; if a column
is not selected after three passes from left-to-right
over the columns, then row scanning re-commences
at the following row. Hence, even if a wrong row is
selected, the correct symbol can still be typed.

Note that the spelling grid has been sorted in uni-
gram frequency order, so that the most frequent sym-
bols are in the upper left-hand corner. This same grid
is used in all grid scanning conditions, and provides
language modeling benefit to row/column scanning.

Figure 6 shows our typing interface when config-
ured for what we term Huffman scanning. In this
scanning mode, the highlighted subset is dictated by
the Huffman code, and is not necessarily contiguous.
Not requiring contiguity of highlighted symbols al-
lows the coding to vary with the context, thus allow-
ing use of an n-gram language model. As far as we
know, this is the first time that contiguity of high-
lighting is relaxed in a scanning interface to accom-
modate Huffman coding. Baljko and Tam (2006)
used Huffman coding for a grid scanning interface,
but using a unigram model and the grid layout was
selected to ensure that highlighted regions would al-
ways be contiguous, thus precluding n-gram models.

In our Huffman scanning approach, when the se-
lected set includes just one character, it is typed. As
with row/column scanning, when the wrong charac-
ter is typed, the backarrow symbol must be chosen
to delete it. If an error is made in selection that does
not result in a typed character – i.e., if the incorrectly
selected set has more than one member – then we
need some mechanism for allowing the target sym-
bol to still be selected, much as we have a mecha-
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Figure 6: Huffman scanning interface.

nism in row/column scanning for recovering if the
wrong row is selected. Section 3.4 details our novel
method for recalculating the binary codes based on
an error rate parameter. At no point in typing is any
character ruled out from being selected.

The grids shown in Figures 4-6 can be straightfor-
wardly used with linear coding as well, by simply
highlighting one cell at a time in descending proba-
bility order. Additionally, linear coding can be used
with an RSVP interface, shown in Figure 7, which
displays one character at a time.

Each interface needs a scan rate, specifying how
long to wait for a button press before advancing. The
scan rate for each condition was set for each individ-
ual during a training/calibration session (see §4.1).

3.4 Errors in Huffman and Linear scanning
In this section we briefly detail how we account for
the probability of error in scanning with Huffman
and linear codes. The scanning interface takes a pa-
rameter p, which is the probability that, when a se-
lection is made, it is correct. Thus 1−p is the proba-
bility of an error. Recall that if a selection leads to a
single symbol, then that symbol is typed. Otherwise,
if a selection leads to a set with more than one sym-
bol, then all symbol probabilities (even those not in
the selected set) are updated based on the error prob-
ability and scanning continues. If a non-target (in-
correct) symbol is selected, the delete (backarrow)
symbol must be chosen to correct the error, after
which the typing interface returns to the previous
position. Three key questions must be answered in
such an approach: (1) how are symbol probabilities
updated after a keystroke, to reflect the probability
of error? (2) how is the probability of backarrow es-
timated? and (3) when the typing interface returns
to the previous position, where does it pick up the
scanning? Here we answer all three questions.

Consider the Huffman coding tree in Figure 3. If
the left-branch (‘1’) is selected by the user, the prob-
ability that it was intended is p versus an error with

Figure 7: RSVP scanning interface.

probability 1−p. If the original probability of a sym-
bol is q, then the updated probability of the symbol
is pq if it starts with a ‘1’ and (1−p)q if it starts with
a ‘0’. After updating the scores and re-normalizing
over the whole set, we can build a new binary cod-
ing tree. The user then selects a branch at the root
of the new tree. A symbol is finally selected when
the user selects a branch leading to a single symbol.
The same approach is used with a linear coding tree.

The probability of requiring the delete (backar-
row) character can be calculated directly from the
probability of keystroke error – in fact, the probabil-
ity of backarrow is exactly the probability of error
1−p. To understand why this is the case, consider
that a non-target (incorrect) symbol can be chosen
according to the approach in the previous paragraph
only with a final keystroke error. Any keystroke
error that does not select a single symbol does not
eliminate the target symbol, it merely re-adjusts the
target symbol’s probability along with all other sym-
bols. Hence, no matter how many keystrokes have
been made, the probability that a selected symbol
was not the target symbol is simply the probability
that the last keystroke was in error, i.e., 1−p.

Finally, if backarrow is selected, the previous po-
sition is revisited, and the probabilities are reset as
though no prior selection had been made.

4 Empirical results
4.1 Subjects and scan rate calibration
We recruited 10 native English speakers between the
ages of 24 and 48 years, who had not used our typ-
ing interface, are not users of scanning interfaces
for typing, and have typical motor function. Each
subject participated in two sessions, one for training
and calibration of scan rates; and another for testing.
We use the phrase set from MacKenzie and Souko-
reff (2003) to evaluate typing performance. Of the
500 phrases in that set, 20 were randomly set aside
for testing, the other 480 available during training
and calibration phases. Five of the 20 evaluation
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strings were used in this study. We used an Ablenet
Jellybean R© button as the binary switch. For these
trials, to estimate error rates in modeling, we fixed
p = 0.95, i.e., 5% error rate.

The scan rate for row/column scanning is typi-
cally different than for Huffman or linear scanning,
since row/column scanning methods allow for an-
ticipation: one can tell from the current highlight-
ing whether the desired row or column will be high-
lighted next. For the Huffman and linear scanning
approaches that we are investigating, that is not the
case: any cell can be highlighted (or symbol dis-
played) at any time, even multiple times in a row.
Hence the scan rate for these methods depends more
on reaction time than row/column scanning, where
anticipation allows for faster rates.

The scan rate also differs between the two
row/column scanning approaches (auto scan and
step scan), due to the differences in control needed
to advance scanning with a button press versus se-
lecting with a button press. We thus ran scan rate
calibration under three conditions: row/column step
scan; row/column auto scan; and Huffman scan-
ning, using a unigram language model. The Huff-
man scanning scan rate was then used for all of the
Huffman and linear scanning approaches.

Calibration involved two stages for each of the
three approaches, and the first stage of all three is
completed before running the second stage, thus fa-
miliarizing subjects with all interfaces prior to final
calibration. The first stage of calibration starts with
slow scan rate (1200 ms dwell time), then speeds up
the scan rate by reducing dwell time by 200 ms when
a target string is successfully typed. Success here
means that the string is correctly typed with less than
10% error rate. The subject gets three tries to type a
string successfully at a given scan rate, after which
they are judged to not be able to complete the task
at that rate. In the first stage, this stops the stage for
that method and the dwell time is recorded. In the
second stage, calibration starts at a dwell time 500
ms higher than where the subject failed in the first
stage, and the dwell time decreases by 100 ms in-
crements when target strings are successfully typed.
When subjects cannot complete the task at a dwell
time, the dwell time then increases at 50 ms incre-
ments until they can successfully type a target string.

Table 1 shows the mean (and std) scan rates (dwell
time) for each condition. Step scanning generally
had a slower scan rate than auto scanning, and Huff-
man scanning (unsurprisingly) was slowest.

4.2 Testing stage and results
In the testing stage of the protocol, there were
six conditions: (1) row/column step scan; (2)
row/column auto scan; (3) Huffman scanning with
codes derived from the unigram language model; (4)
Huffman scanning with codes derived from the 8-
gram language model; (5) Linear scanning on the
6×6 spelling grid with codes derived from the 8-
gram language model; and (6) RSVP single letter
presentation with codes derived from the 8-gram
language model. The ordering of the conditions for
each subject was randomized. In each condition, in-
structions were given (identical to instructions dur-
ing calibration phase), and the subjects typed prac-
tice phrases until they successfully reached error rate
criterion performance (10% error rate or lower), at
which point they were given the test phrases to type.

Recall that the task is to type the stimulus phrase
exactly as presented, hence the task is not com-
plete until the phrase has been correctly typed. To
avoid non-termination scenarios – e.g., the subject
does not recognize that an error has occurred, what
the error is, or simply cannot recover from cascad-
ing errors – the trial is stopped if the total errors
in typing the target phrase reach 20, and the sub-
ject is presented with the same target phrase to type
again from the beginning, i.e., the example is re-
set. Only 2 subjects in the experiment had a phrase
reset in this way (just one phrase each), both in
row/column scanning conditions. Of course, the
time and keystrokes spent typing prior to reset are
included in the statistics of the condition.

Table 1 shows the mean (and std) of several mea-
sures for the 10 subjects. Speed is reported in char-
acters per minute. Bits per character represents
the number of keypress and non-keypress (timeout)
events that were used to type the symbol. Note that
bits per character does not correlate perfectly with
speed, since a non-keypress bit due to a timeout
takes the full dwell time, while the time for a key-
press event may be less than that full time. For any
given symbol the bits may involve making an error,
followed by deleting the erroneous symbol and re-
typing the correct symbol. Alternately, the subject
may scan pass the target symbol, but still return to
type it correctly, resulting in extra keystrokes, i.e., a
longer binary code than optimal. In addition to the
mean and standard deviation of bits per character,
we present the optimal could be achieved with each
method. Finally we characterize the errors that are
made by subjects by the error rate, which is the num-
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Scan rate (ms) Speed (cpm) Bits per character Error rate Long code rate
Scanning condition mean (std) mean (std) mean (std) opt. mean (std) mean (std)
row/column step scan 425 (116) 20.7 (3.6) 8.5 (2.6) 4.5 6.3 (5.1) 29.9 (19.0)

auto scan 310 (70) 19.1 (2.2) 8.4 (1.2) 4.5 5.4 (2.8) 33.8 (11.5)
Huffman unigram 475 (68) 12.5 (2.3) 8.4 (1.9) 4.4 4.4 (2.2) 39.2 (13.5)

8-gram 475 (68) 23.4 (3.7) 4.3 (1.1) 2.6 4.1 (2.2) 19.3 (14.2)
Linear grid 8-gram 475 (68) 23.2 (2.1) 4.2 (0.7) 3.4 2.4 (1.5) 5.0 (4.1)
RSVP 8-gram 475 (68) 20.3 (5.1) 6.1 (2.6) 3.4 7.7 (5.4) 5.2 (4.0)

Table 1: Typing results for 10 users on 5 test strings (total 31 words, 145 characters) under six conditions.

ber of incorrect symbols typed divided by the total
symbols typed. The long code rate is the percent-
age of correctly typed symbols for which a longer
than optimal code was used to type the symbol, by
making an erroneous selection that does not result in
typing the wrong symbol.

We also included a short survey, using a Likert
scale for responses, and mean scores are shown in
Table 2 for four questions: 1) I was fatigued by the
end of the trial; 2) I was stressed by the end of the
trial; 3) I liked this trial; and 4) I was frustrated by
this trial. The responses showed a consistent prefer-
ence for Huffman and linear grid conditions with an
8-gram language model over the other conditions.

Survey Row/Column Huffman Linear
Question step auto 1-grm 8-grm grid RSVP
Fatigued 3.2 2.4 3.6 2.0 2.4 2.8
Stressed 2.7 2.4 2.7 1.5 1.8 2.6
Liked it 2.2 3.3 2.3 4.2 3.8 3.2
Frustrated 3.2 1.7 3.1 1.7 1.7 2.3

Table 2: Mean Likert scores to survey questions
(5 = strongly agree; 1 = strongly disagree)

4.3 Discussion of results
While this is a preliminary study of just 10 sub-
jects, several things stand out from the results. First,
comparing the three methods using just unigram fre-
quencies to inform scanning (row/column and Huff-
man unigram), we can see that Huffman unigram
scanning is significantly slower than the other two,
mainly due to a slower scan rate with no real im-
provement in bits per character (real or optimal). All
three methods have a high rate of longer than opti-
mal codes, leading to nearly double the bits per char-
acter that would optimally be required.

Next, with the use of the 8-gram language model
in Huffman scanning, both the optimal bits per char-
acter and the difference between real and optimal are
reduced, leading to nearly double the speed. Inter-
estingly, use of the linear code on the grid leads to
fewer bits per character than Huffman scanning, de-
spite nearly 1 bit increase in optimal bits per charac-

ter, due to a decrease in error rate and a very large
decrease in long code rate. We speculate that this is
because highlighting a single cell at a time draws the
eye to that cell, making visual scanning easier.

Finally, despite using the same model, RSVP is
found to be slightly slower than the Huffman 8-
gram or Linear grid conditions, though commensu-
rate with the row/column scanning, mainly due to an
increase in error rate. Monitoring a single cell, rec-
ognizing symbol identity and pressing the switch is
apparently somewhat harder than finding the symbol
on a grid and waiting for the cell to light up.

5 Summary and future directions
We have presented methods for including language
modeling in simple scanning interfaces for typing,
and evaluated performance of novice subjects with
typical motor control. We found that language mod-
eling can make a very large difference in the us-
ability of the Huffman scanning condition. We also
found that, despite losing bits to optimal Huffman
coding, linear coding leads to commensurate typ-
ing speed versus Huffman coding presumably due
to lower cognitive overhead of scanning and thus
fewer mistakes. Finally, we found that RSVP was
somewhat slower than grid scanning with the same
language model and code.

This research is part of a program to make the
simplest scanning approaches as efficient as possi-
ble, so as to facilitate the use of binary switches for
individuals with the most severe impairments, in-
cluding ERP for locked-in subjects. While our sub-
jects in this study have shown slightly better perfor-
mance using a grid versus RSVP, these individuals
have no problem with visual scanning or fixation
on relatively small cells in the grid. It is encourag-
ing that subjects can achieve nearly the same perfor-
mance with an interface that simply displays an op-
tion and requests a yes or a no. We intend to run this
study with subjects with impairment, and are incor-
porating the interfaces with an ERP detection system
for use as a brain-computer interface.
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Abstract 

The use of speech production data has been 
limited by a steep learning curve and the need 
for laborious hand measurement. We are 
building a tool set that provides summary sta-
tistics for measures designed by clinicians to 
screen, diagnose or provide training to assis-
tive technology users.  This will be achieved 
by extending an existing shareware software 
platform with “plug-ins” that perform specific 
measures and report results to the user. The 
common underlying basis for this tool set is a 
Stevens’ paradigm of landmarks, points in an 
utterance around which information about ar-
ticulatory events can be extracted. 

1 Introduction 

 
To date, the use of speech production data has been 
limited by a steep learning curve and the need for 
laborious hand measurement.  Many speech-related 
studies result in voluminous acoustic data. Many 
clinicians who design and use assistive technology 
would like to incorporate acoustic analysis, but 
have been discouraged because of these technical 
challenges. We are in the process of developing a 
set of tools that considerably streamlines the proc-
ess of analyzing speech production details. 

 
We are building a tool set to provide summary sta-
tistics for measures designed by clinicians to 
screen, diagnose or provide training to patients.  
This will be achieved by extending an existing 
shareware software platform with “plug-ins” that 
perform specific measures and report results to the 
user. At present, our goal is to use the existing 
shareware software tool Wavesurfer (Wavesurfer, 
2005). The new modules will be set up to report 
data from a single audio file, or groups of audio 
files in a standard table format, for easy input to 
statistical or other analysis software.  For example, 
the data may be imported into a program that cor-
relates speech data with scalp electrode and medi-
cation data.   
 
Our tool will include alternative and independently 
tested algorithms for clinically relevant measures, 
as well as guidance as to what the speech data may 
mean.  
 
The common underlying basis for this tool set is a 
focused set of landmarks derived from Stevens’ 
Lexical Access from Features (LAFF) paradigm 
(Stevens, 1992, 2002; Liu, 1995; Slifka et al., 
2004).  In this approach, landmarks are points in an 
utterance around which information about articula-
tory events can be extracted.   
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In what follows, we will describe (1) the theoreti-
cal rationale of landmarks, (2) the general utility of 
landmark processing and several examples of clin-
ically related measures, and (3) our current work 
on developing tools to make landmark analysis 
more widely available.  
   

2 Landmarks reflect articulation 

Landmark analysis is based on the fact that differ-
ent sounds produce different patterns of abrupt 
changes in the acoustic signal simultaneously 
across wide frequency ranges.   For instance, the 
abrupt increase in amplitude for a broad range of 
frequencies above 3 kHz can be used to indicate 
the onset of bursts.  Likewise, an abrupt decrease 
in the same frequency bands can be used to indi-
cate the end of frication.  The use of onset and off-
set data in other frequency bands can be used to 
indicate sonorancy; i.e., intervals when the oral 
cavity is relatively unconstricted.   Examples based 
on Liu [1995] are listed below. 

 
g(lottis): marks the onset (+g) or offset (-g) of 
voicing. 

 
s(yllabicity): marks the onset (+s) or offset (-s) of 
syllabicity, i.e. onsets and releases of voiced sono-
rant consonants such as /l/ or /r/, vocal tract clo-
sures due to voiced stop consonants such as /b/ or 
/d/. 

 
b(urst): marks the onset (+b) of the burst of air 
following stop or affricate consonant release, or the 
onset of frication noise for fricative consonants. 
Offsets (-b) mark points where aspiration or frica-
tion noise ends abruptly due to a stop closure. 

 
V(owel):  marks points of peak amplitude in a so-
norant region—that is, a region where voicing is 
evident [Howitt, 2000].   

 
Although much of the past work using landmark 
processing has been focused on employing a wide 
variety of landmarks to recognize the lexical con-
tent of speech [Juneja and Espy-Wilson 2003, Slif-
ka, et al. 2004], the power of these measures is 
even more apparent when applied to non-lexical 
attributes. 

3 Applications of Landmark Analysis to 
Assistive Technology 

3.1 Tracking Articulatory Precision 

Measuring articulatory precision is important to 
evaluating efficacy of a treatment or in monitoring 
disease progression, e.g. in Parkinson’s disease. 

 
Given that landmarks reflect articulation, tools 
based on landmarks may be useful for measuring 
and monitoring articulatory precision [Boyce et al. 
2005, 2007]. The technique relies on setting em-
pirically derived thresholds for the detection of 
abrupt acoustic changes in specified frequency 
bands.  Recall that changes in the acoustic signal 
occur simultaneously across wide frequency 
ranges. When the onset of energy does not exceed 
threshold in a particular frequency band, i.e., not 
quite abrupt enough to trigger the detection of a 
landmark, then no landmark may be assigned. 
However, since different sounds produce different 
patterns, changes detected in other bands at that 
point in time are either a) assigned to a different 
landmark, or b) considered to be extraneous. Thus, 
small acoustic differences in the way speech is 
produced can be tracked as different patterns of 
landmarks.  

 
In addition to requirements that a tool for general 
clinical use must be fast and robust, it must be able 
to handle a wide variety of speaking styles, dia-
lects, and voices.  By focusing on landmarks that 
specify syllable structure and broad phoneme 
classes, distinctive differences between phonemes 
can be ignored.  Therefore, the tool is less likely to 
break down due to problems recognizing specific 
vocabulary while remaining sensitive to changes in 
the acoustic signal that reflect articulatory preci-
sion of speech.  

3.2 Evaluating phonological complexity 

Development of speech in early infancy includes 
the ability to produce increasingly complex 
phonological structure.   Patterns of syllable struc-
ture in speech output can be tracked using land-
marks, again without reference to specific 
phonemes or words.   In Fell et al. [2002], land-
marks were grouped into standard syllable patterns 
and syllables were grouped into utterances.   Statis-
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tics based on these patterns were then reported to 
the clinician for various uses in training, screening 
or diagnosis.  Patterns of syllable complexity were 
used to compute a "vocalization age."  This was 
used in turn to derive screening rules that clinically 
distinguish infants who may be at risk for later 
communication or other developmental problems 
from typically developing infants. 

 

3.3 Measuring and Evaluating “Clear 
Speech” 

“Clear Speech” is an intelligibility-enhancing style 
of speech that is used to improve communication 
outcomes.  Listeners with hearing impairment de-
rive significant benefit from being addressed with 
clearly articulated speech. Speech that is more 
clearly articulated contains more abrupt acoustic 
changes. The result is that speech with different 
levels of intelligibility shows different numbers 
and combinations of landmarks [Boyce et al. 2005, 
2007].  

3.4 Other Applications 

In the UCARE project [1995], Cress reported ana-
lyzing 40 hours of pre-existing [2005] videotaped 
sessions of children with physical or neurological 
impairments using landmark-based tools. 
 
Fell et al. [2004] reported using landmark analysis 
to follow the progress of several children with se-
vere speech delays.  In this project, 10-minute, in-
home audio recordings were processed in real-time 
on a 2002-era PC laptop. 
 
Wade and Möbius [2007] used automated land-
mark analysis to study speaking rate effects as a 
measure of disease progression in Parkinson's dis-
ease. 
 
DiCicco and Patel [2008] used automatic landmark 
analysis on dysarthric speech. This study provides 
quantitative support for the hypothesis [Deller 
1991] that dysarthric speech includes erroneous 
additional acoustic cues, not only malformed or 
missing ones. 

4 Potential Benefits of Landmark Appli-
cations 

In a small study, Warner-Czyz and Davis [2010] 
compared consonant–vowel syllable accuracy in 
early words of children with normal hearing and 
children with hearing loss who received cochlear 
implantation.  They found and evaluated, via man-
ual coding, approximately 4000 syllables from 48 
hours of recordings.  This is a project where auto-
matic landmark analysis might have greatly re-
duced the effort. 
 
Similarly, in a study on tongue-twisters, Matthew 
Goldrick (Northwestern University) collected 100 
hours of data comprising 20,000 tokens in less than 
three weeks, but found that it required another 600 
hours merely to segment and label the data for fur-
ther analysis.  In personal correspondence about 
another study on single words, he stated:  

A major ‘choke point’ for speech production 
research is the need to manually analyze 
speech data. Given that many thousands of 
data points are typically required to gain accu-
rate estimates of probability density functions 
along phonetic dimensions, hundreds of per-
son-hours are typically required to analyze da-
ta from a single simple experiment…. If we 
could gain access to reliable, highly accurate 
automated tools, we could change the speed of 
research by an order of magnitude. 

 
Researchers who currently want to use speech 
analysis as a tool must accept long periods of hand 
measurements. This discourages researchers who 
may be more interested in a particular neurological 
disease or process than in speech research per se.  
It is notoriously difficult to quantify projects not 
undertaken, or papers not written, but it is telling 
that, although each of the studies cited above re-
ported positive results from a study of speech ar-
ticulation, they exist as relative islands in their 
respective disciplines.  We contend that this situa-
tion exists largely because of barriers to entry; that 
is, we believe that many scientists would like to 
use speech assessment as part of their research, but 
elect not to do for lack of a convenient tool.  The 
existence of a convenient tool to detect, measure 
and track subtle changes in speech articulation 
would constitute an enabling technology.   
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5 Tools 

5.1 Description 

In our own work, we have developed an automatic 
tool for detecting, counting and analyzing acoustic 
events in the speech signal that are commonly used 
by scientists to measure differences in speech ar-
ticulation. 
 
We are now integrating our system with Wave-
surfer for certain researchers (linguists, speech-
language pathologists, certain engineering and 
cognitive-science researchers) with a primary in-
terest in inspecting and interpreting the articula-
tion-related features in the waveforms of a corpus: 
e.g., the placement of landmarks of each type, pat-
terns of clustering, or identification of non-speech 
sounds to be excised.  (See Figure 1).) 
 

For this version, we are implementing user controls 
(“widgets”) to produce automated measures or 
types of analyses for speech research such as: 
• Voice-onset time, VOT. 

• Detection of non-harmonic (and harmonic) 
voicing. 

• Identification and suppression or removal of 
stray sounds, i.e., non-speech. 

• Grouping of landmarks into syllable-like clus-
ters. 

 (Note that Wavesurfer already provides a general 
pitch-tracking capability for harmonic voicing.) 
 
The Wavesurfer plug-in will also allow the user to 
output information about an audio file or a direc-
tory of audio files, e.g. all the recordings of a child. 
This information will be in a tab-delimited text file 
or a spreadsheet.  This will allow the speech scien-
tist

 

 
 
Figure 1: Wavesurfer with landmarks/waveform pane filtered to show only +/-g landmarks, and tran-
scription pane (top) with +/-g and +/-s landmarks 
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This information will be in a tab-delimited text file 
or a spreadsheet.  This will allow the speech scien-
tist to analyze the output and, for example, to 
summarize and compare the typically developing 
children to those diagnosed with autism. 

 

5.2 User Testing 

We are currently recruiting potential users to test 
the system including graduate students and senior 
researchers in neurosciences and speech-related 
sciences.  So that these users can test the system on 
a realistic problem, we will provide them with a 
corpus of annotated, de-identified recordings of 
children with and without a diagnosis of autism.  
This will provide context for specific training tasks 
that we ask of the users and enable them to formu-
late their own appropriate, if small, research ques-
tions that the system can help to answer.  We will 
probe their experiences by logging the questions 
they have about the system, watching their actions 
as they attempt to answer the research questions, 
and asking their opinions of the experience after-
ward. 

6 Requested Features 

In an early trial of our Waversurfer plug-in, a user 
requested the VOT (voice-onset time) measure.  In 
response to this request, we are now adding a 
VOT-transcription pane to display the automati-
cally computed voice onset times aligned with the 
waveform, spectrogram, and displayed informa-
tion.  The information in this pane is also auto-
matically saved to a text file that can be analyzed 
with other software. 
 
This request also led us to include a popup window 
to show the vowel-space in a recording. Vowel-
space measures are conventionally labor-intensive, 
thus limited to a few instances of specific vowels, 
and require that the researcher first identify spe-
cific instances of these vowels.  On the other hand,  
vocalic landmarks identify the instants where for-
mant frequencies may be reliably estimated, so our 
tools can quickly and automatically evaluate the 
full vowel space of a passage.  (See Figure 2.)  
 

Figure 2: Automatic Vowel-Space Evaluation.  Com-
puting the resonant frequencies (formants) at vowel 
landmarks allows plotting the vowel space, i.e., the scat-
ter of the first two formants against each other.  In this 
case, a female read the complete Rainbow Passage (a 
standard passage of 3 paragraphs, approx. 90 sec of 
reading).  The system automatically identified all the 
consonantal and vocalic landmarks, evaluated the for-
mants at ~ 140 stressed vowels, and computed the con-
vex hull (“rubber-band”) area, 0.88 kHz2. Total 
computation time on a commodity 3 GHz PC was 143 
sec (and is directly proportional to the duration of the 
passage). 

7 Challenges for Software development, 
Challenges for availability 

Our algorithms are implemented in MATLAB.  
Though toolkits that run in MATLAB might be 
available free, or for a modest price, the MATLAB 
platform itself is costly, especially for non-
academic users. On the other hand, shareware or 
freeware may have minimal documentation; sup-
port that depends entirely on the presence (or ab-
sence!) of a knowledgeable user community; and 
variable standards for testing, correctness, and per-
formance.   

 
A critical hidden cost for any system is the learn-
ing curve.  For those systems with little documen-
tation and training, this can dwarf the overt costs.  
Our goal is to make learning easier by creating 
landmark-processing plug-ins that people can use 
within software that they already employ. 
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Such a plan requires a careful balance between the 
flexibility of a general, extensible system and the 
simplicity of a small, fixed set of easily docu-
mented plug-in capabilities.  Our project therefore 
includes both a small set of simple functions, such 
as VOT, and software design centered on the needs 
identified by users from the appropriate research 
communities.  Our design relies on an iterative 
process of structured interviews and web-based 
surveys, combined with observations of user expe-
riences with our plug-ins. 

 
This user study extends beyond the matter of func-
tionality and documentation.  It also addresses the 
expectations or requirements for convenient avail-
ability, training, and support, and the costs that 
these imply. 

8 Future work 

8.1 R – statistical analysis system 

We will integrate our software with R 
(http://www.r-project.org/) for those with a pri-
mary interest instead in the derived articulatory-
precision information: e.g., syllable production 
rate, fraction of syllables of a given complexity, or 
range of vowels. 
 
For this platform, we will implement further user-
level functions, with corresponding graphical user 
interfaces as appropriate, to produce:  
• Number of landmarks, optionally excluding 

those that are automatically detected as noise-
related. 

• Syllable complexity and statistics of same. 

• Utterance complexity. 

• Syllable production rate. 

• Articulatory precision. 

• Vowel space measures. 

8.2 Other Platforms 

We plan to expand our work to include plugins or 
packages for integration with a wider (and more 
powerful) collection of research tools, for example 
PRAAT, CSL, or even Excel. 

8.3 Other Features 

We are soliciting input from user communities 
about the features they would like to see in these 
tools.   
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Abstract 

Today, the technology used for voting does 
not fully address the issues that disabled vot-
ers are confronted with during elections.  Vot-
ers, including those with most disabilities, 
should be able to vote and verify his or her 
ballot during elections without the assistance 
of others.  In order for this to happen, a uni-
versal design should be incorporated into the 
development of all voting systems.  The re-
search presented here embraces the needs of 
those who are disabled.  The primary objec-
tive of this research was to develop a system 
in which a person, can efficiently, anony-
mously, and independently write-in a candi-
date’s name during an election.  The method 
presented here uses speech interaction and 
name prediction to allow voters to privately 
spell the name of the candidate they intend to 
write-in.  A study was performed to determine 
the effectiveness and efficiency of the system.  
The results of the study showed that spelling a 
name using the predictive method developed 
is an effective and efficient solution to the 
aforementioned issues. 

1 Introduction* 

                                                             
 
 
 
 
 
 
 

The 2000 United States Presidential Election will 
always be remembered for its voting irregularities.  
The issues with the ballot design during that elec-
tion led to skepticism of other voting systems and 
technologies.  Not only were there questions re-
garding the difficulty interpreting the voter's inten-
tion, the focus also shifted to the issues 
surrounding disabled voters.  The key issue was 
that disabled voters needed a way to vote inde-
pendently and anonymously, while still maintain-
ing system security and efficiency. All voters, 
including those with most disabilities, should be 
able to vote and verify his or her ballot during elec-
tions privately, without assistance.  Today, a prop-
erly designed interface is one of the key aspects to 
running a successful election. 

As technology for electronic voting systems 
continues to develop, there is an increased need for 
universal design in these systems (VVSG Chapter 
3, 2007).  A universal design ensures that systems 
are as usable as possible by as many people as pos-
sible regardless of age, ability or situation (Center 
for Universal Design, 2004).  By focusing on the 
voter and their needs, the design of electronic vot-
ing systems will far surpass the ballot designs of 
the 2000 election.   

With the security of voting systems constantly 
being a major concern, it is often difficult to im-
plement voting technology that incorporates a se-
cure universal design.  Some developers today 
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address this issue through the design of their elec-
tronic voting systems (Prime III, 2009); however, 
these electronic voting systems have yet to inte-
grate universal design into the writing-in of a can-
didate’s name. 

The objective of this research is to develop a 
system in which a person, including those with 
most disabilities, can efficiently, anonymously, and 
effectively spell a candidate’s name through 
speech interaction. The method presented in this 
paper is a predictive approach to spelling through 
speech interaction.  This allows voters to quickly 
and anonymously spell a candidate’s name for any 
position or office during the voting process.  The 
study performed intends to capture and analyze the 
effectiveness of writing in a candidate’s name 
anonymously through speech.   The results of this 
study could lead to the adaptation of this system in 
search functions for various other applications. 

2 Background  

2.1 Election Write-Ins 

The method of writing in a candidate’s name for a 
particular United States governing office dates 
back to the early 19th century (Official Election 
Site, 2007).  Prior to the 1800s, voters would sim-
ply call out their choices to a judge and election 
clerks tallying the votes (Jones, 2003).  After the 
12th amendment was passed in 1804, paper ballots 
became the standard method for voting.  Voters 
would bring their own slips of paper as the ballot, 
on which they wrote candidate’s names (History of 
the Paper Ballot, 2009).  Today, a write-in candi-
date is a candidate whose name does not appear on 
the ballot.  Voters can vote for a write-in candidate 
by marking the write-in indicator, and writing the 
candidate’s name in space provided on the ballot 
(Write-in Candidate Requirements, 2010).  

2.2 Prime III Electronic Voting System 

Prime III is a research prototype electronic voting 
system.  It is a secure, multimodal electronic vot-
ing system that delivers the necessary system secu-
rity, integrity and user satisfaction safeguards in a 
user-friendly interface that accommodates all peo-
ple regardless of ability (Prime III, 2009). With 
Prime III, voters are able to cast their votes through 
visual interaction and/or through speech interac-
tion. This multimodal approach to electronic vot-

ing enables Prime III to incorporate a universal 
design, which allows nearly all voters to cast their 
votes independently and privately.   

Due to the anonymous nature of voting systems, 
the candidates that the voter selects must be kept 
private.  Since Prime III integrates speech interac-
tion into the voting process, bystanders may be 
afforded the opportunity to compromise the pri-
vacy of the voter. Bystanders must not be able to 
hear whom a voter selects for any office, or a 
voter’s decision for any proposition in order to en-
sure voter – ballot anonymity.  Therefore, during 
the voting process, voters cannot simply say the 
name of the candidates for which s/he wishes to 
vote.  The speech interface of Prime III imple-
ments an interaction in which the voter does not 
need to explicitly verbalize for which candidate 
they intend to vote. 

The Prime III system uses speech to convey the 
information on the screen to the voter (e.g. candi-
dates listed for a particular office) through the use 
of a microphone headset. When an option is pre-
sented, the voter chooses the option by speaking, 
“Vote” into the microphone. If the voter does not 
wish to choose the current option, they do not say 
anything and the system moves on to the next 
prompt.  An example dialogue is as follows: 

Prime III: “To vote for the Democratic Party, say vote 
<beep>” 

Voter: <says nothing> 
Prime III: “To vote for the Republican Party, say vote 

<beep>” 
Voter: “Vote” 

In this example, the voter chose to vote for the 
Republican Party. Bystanders only hear the voter 
saying “Vote,” instead of a voter’s actual choice, 
which ensures the privacy of the voter and the 
anonymity of the voter’s ballot.   

The universal accessibility and anonymous na-
ture of electronic voting highlights the incomplete-
ness in the design of writing in a candidate’s name 
with Prime III. Currently, voters have the ability to 
write-in a candidate’s name in one way: using an 
onscreen keyboard (Figure 1).  When a voter 
chooses not to vote for a predetermined candidate 
and to write-in a candidate’s name, the keyboard is 
shown, and the user must use the touchscreen to 
type the candidate’s name. Since this portion of the 
system is not a multimodal design, the voter must 
be sighted to write-in a candidate’s name. 
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Figure 1. Prime III On-screen Keyboard 

2.3 Universal Accessibility in Voting 

Help America Vote Act (HAVA) of 2002, was 
created to prevent the major issues faced in the 
2000 United States Presidential Election from hap-
pening in future elections (HAVA, 2002).  From 
HAVA, the United States Election Assistance 
Commission (EAC) was established.  One of the 
goals of the EAC was to adopt Voluntary Voting 
System Guidelines (VVSG), which expand access 
for individuals with disabilities to vote privately 
and independently (VVSG, 2007). The VVSG now 
addresses the advancement of technology and pro-
vides requirements for voting systems to be tested 
against to ensure functionality, security, and acces-
sibility (VVSG, 2005). Chapter 3 of the 2007 
VVSG proposes requirements for the usability and 
accessibility of electronic voting systems (VVSG 
Chapter 3, 2007). The VVSG states that all voters 
must have access to the voting process without 
discrimination, and that the voting process must be 
accessible to individuals with disabilities, includ-
ing non-visual accessibility (VVSG, 2007).  It also 
states that voting systems should be independently 
accessible to as many voters as possible, which 
further emphasizes the need for a universal design. 

3 Motivation 

Currently, there is no solution for writing in a can-
didate’s name that is universally accessible.  As 
stated previously, developing systems with a uni-
versal design ensures that the system can be used 
by anyone, regardless of abilities or disabilities.  
Prime III, like other electronic voting systems to-
day, simply cannot accommodate a range of voters 
due to its current write-in system through an on 
screen keyboard.  In order for voters with visual or 
motor impairments to vote, a voting official must 
enter the voting booth with him or her to write, or 
type, the candidate on the ballot for which the 

voter intends to vote. The lack of multimodality 
and accessibility in these write-in methods only 
accommodates sighted voters.  This violates the 
privacy of the voter and the anonymity of the 
voter’s ballot.  

The most fitting solution to this problem of 
voter privacy is to utilize a multimodal voting sys-
tem that incorporates speech interaction.  With the 
addition of speech, voters, regardless of most 
physical disabilities, have an option to vote inde-
pendently.  In order to write-in a candidate, a voter 
could simply speak aloud the name of the person 
who they intend to write-in.  The integration of the 
speech feature alone enables the system to have a 
universal design.  However, this system is not 
practical.  During election peak times, polling 
places may have a large voter turnout (Polling 
Place and Vote Center Management, 2009).  With 
the large number of voters at polling places at any 
given time, privacy is an enormous issue. In accor-
dance with the Election Assistance Commission 
(EAC), the voting process must preserve the se-
crecy of the ballot.  The voting process should pre-
clude anyone else from determining the content of 
a voter's ballot, without the voter's cooperation.  If 
such a determination is made against the wishes of 
the voter, then his or her privacy has been violated 
(VVSG Chapter 3, 2007).  If a voter is required to 
explicitly say the name of the candidate for which 
they intend to write-in, any bystanders within the 
polling place may be able to hear that name, and 
know for whom that person voted, thereby violat-
ing the voter’s privacy and ballot anonymity. 

In order to secure voter privacy through speech 
interaction, voters must communicate with the sys-
tem using the speech interaction method of Prime 
III.  As explained in section 2.2, this approach al-
lows a voter to make selections throughout the vot-
ing process by simply saying, “vote” in response to 
the system’s prompts.  Using this method for writ-
ing in a candidate’s name has its challenges.  The 
system cannot simply prompt names to the voter 
until the system gets to the name the voter intends 
to write-in.  There are an infinite number of names 
the voter would have to choose from.  For exam-
ple, it would not be viable for the dialogue to be as 
follows: 

Prime III: “To vote for the Bob Doe, say vote [beep]” 
Voter: <says nothing> 
Prime III: “To vote for the Bill Doe, say vote [beep]” 
Voter: <says nothing> 
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Prime III: “To vote for the Billy Doe, say vote [beep]” 
Voter: <says nothing> 

… 

If the systems simply made uneducated guesses 
of the desired name, it would be impossible for the 
voter to write-in a candidate.   

A solution to this problem would be for the 
voter to spell, rather than say, the desired candi-
date’s name.  However, due to voter privacy, the 
voter cannot simply spell a name aloud.  Spelling a 
write-in candidate’s name can only be done pri-
vately if the Prime III method of getting input data 
from the voter, through speech, is applied to the 
design of the system.  Using this method, the sys-
tem would need to prompt the voter to determine 
the correct letters to spell the desired candidate’s 
name.  This would have to be done for the spelling 
of the entire name.  For example, to spell the name, 
“Bob,” the dialogue would be as follows: 

Prime III: “If the first letter of the candidate’s name is 
A, say vote <beep>” 

Voter: <says nothing> 
Prime III: “If the first letter of the candidate’s name is 

B, say vote <beep>” 
Voter: “Vote”  
Prime III: “If the second letter of the candidate’s name 

is A, say vote <beep>” 
Voter: <says nothing> 
Prime III: “If the second letter of the candidate’s name 

is B, say vote <beep>” 
Voter: <says nothing>  

… 

Prime III: “If the second letter of the candidate’s name 
is N, say vote <beep>” 

Voter: <says nothing> 
Prime III: “If the second letter of the candidate’s name 

is O, say vote <beep>” 
Voter: “Vote”  

… 

Prime III: “If the third letter of the candidate’s name is 
B, say vote <beep>” 

Voter: “Vote” 

Thus far, this is the best solution.  This approach 
to spelling a candidate’s name encompasses voter 
privacy, integrity, and universal accessibility.  
However, the above example implements a linear 
search to spell a write-in candidate’s name.  For 
each letter of the candidate’s full name, the voter 
may have to traverse each of the 26 letters of the 
alphabet.  Spelling using this method would take 
an extremely long time, especially if the letters of 
the candidate’s name were at the end of the alpha-
bet (i.e. “Robert Smith”), or if the candidate’s 

name has several letters (i.e. “Christopher Wash-
ington”).  Time is a vital factor in voting.  Voters 
want to make their selections and cast their ballots 
in a reasonable amount of time.  This straight lin-
ear approach to spell the name of a write-in candi-
date is long and undesirable, leading to the 
research presented in this paper.  The overall ob-
jective of this research is to propose a method to 
write-in a candidate’s name that addresses the is-
sues of time, privacy, and accessibility. 

Currently, there is no method to spell a name for 
writing in a candidate that incorporates a universal 
design and meets the requirements set forth by the 
EAC; no system allows an individual with visual 
or motor impairments to spell a candidate’s name 
privately and securely.  In order to solve these ma-
jor issues, a predictive spelling method was created 
using speech interaction.  The hypothesis is that 
the predictive spelling method through speech in-
teraction will take less time to spell a candidate’s 
name than the aforementioned linear approach. 

4 Design 

4.1 Design Overview 

The novel approach for writing in a candidate pre-
sented in this paper is implemented with a univer-
sal design, is private, and is time effective.  The 
proposed design solution utilizes alphabet cluster-
ing and implements name prediction as opposed to 
the linear search method discussed in the previous 
section.  This solution proves to be more time ef-
fective for letter selection, and for overall name 
selection. 

Rather than using linear search to traverse the 
alphabet, which may take an extensive duration of 
time to complete, this design breaks down the al-
phabet into clusters of letters, which are then are 
presented to the voter.  The voter then spells a can-
didate’s name by selecting from these letters and 
the system performs name prediction similar to the 
methods used in predictive text technology such as 
Nuance Communications’ XT9 (Nuance, 2009).  
Like in XT9, the voters spelling with our speech 
system have the option to select from the sugges-
tions made based on the letters spelled.  While 
XT9 utilizes a dictionary database to predict words 
that the user may intend to type, this system was 
developed using a database containing only first 
and last names that the user may intend to spell. 
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For each letter of the candidate’s name, the clus-
ters are presented to the voter for selection using 
the method discussed in Chapter Three.  The voter 
begins by making the proper selections to spell the 
candidate’s last name.  The system first prompts 
the voter with the alphabet clusters.  Once the voter 
selects the desired cluster, the system then prompts 
the voter with the letters contained in that cluster.  
The voter then chooses a letter, and the system 
moves on to get the next letter of the desired can-
didate’s name.  Following every new letter selec-
tion, the first cluster presented for the next letter is 
a cluster of the three most common letters to fol-
low the letters already chosen. 

After the voter selects the first three letters of 
the candidate’s name, the system then suggests 
three names, one of which the voter may intend to 
write-in.  The names suggested are chosen because 
they have the highest probability to be written in.  
If the voter selects one of the names suggested, the 
process is repeated for the intended candidate’s 
first name, resulting in the chosen candidate’s full 
name being written in for the corresponding office 
on the ballot.  If the voter does not intend to write-
in one of the names suggested, s/he continues the 
process of selecting clusters, then letters, until the 
correct name is suggested, or the name has been 
spelled in full (see Table 2 for a full example). 

4.2 Cluster Selection 

The alphabet is broken down into four clusters of 
five letters, and one cluster of six letters (Table 1).  
For the first letter of each of the candidate’s names, 
given name and surname, the voter is prompted to 
choose from one of the five clusters.  For each let-
ter to be spelled after the first letter, there is an ad-
ditional cluster of three letters presented to the 
voter.  This cluster contains the most common next 
letters, given the letters the candidate has already 
chosen.  For every letter, with the exception of the 
first letter, the first cluster presented to the voter is 
the most common letter cluster.  This expedites the 
selection process since the voter is able to make his 
or her selection at this point, rather than making a 
selection from the five standard clusters. If the next 
letter of the name is not in the most common letter 
cluster, the voter is then prompted to select one of 
the five standard clusters (Table 1). 

 

Cluster Letters 
A, B, C, D, E 
F, G, H, I, J 

K, L, M, N, O 
P, Q, R, S, T 

U, V, W, X, Y, Z 
Table 1. Standard Letter Clusters 

The first of these clusters presented to the voter 
is chosen at random, with the prompts for the re-
maining clusters following in alphabetical order, in 
a round robin fashion. The purpose of this ran-
domization is to secure ballot anonymity by ensur-
ing that bystanders will not be able to piece 
together for whom the voter voted. 

4.3 Letter Selection 

Once the voter selects the correct cluster contain-
ing the next letter of the desired candidate’s name, 
s/he is prompted to choose amongst those letters.  
The letters presented by the system are dependent 
on the cluster the voter selected (see Table 2). If the 
voter selects the cluster of letters {A,B,C,D,E}, 
s/he is prompted to choose from those letters 
within that cluster.  If the voter selects the cluster 
of the most common letters, for example, {R, A, 
E}, s/he is prompted to choose a letter from that 
common letter cluster.  Once the desired letter is 
chosen, the system moves on to the set of prompts 
for the voter to select the next letter of the write-in 
candidate’s name (see Table 2). 

4.4 Name Database 

This prediction system for writing in a candidate’s 
name is made possible through the use of a local 
database of names. A local database is utilized due 
to the ban of wireless devices and Internet connec-
tions in voting and tabulating machines according 
to the Voter Confidence and Increased Accessibil-
ity Act of 2009 (Holt, 2009 and VCIAA, 2009). 

This database contains the most common names 
in the United States (Butler, 2005).  Taken from 
the United States census in 2000, each name was 
given a category and a rank.  The different catego-
ries of names are surnames, male given names, and 
female given names.  Within these categories, each 
name was given a rank based on popularity.  The 
names that were used most frequently are ranked at 
the top of the list, while the names infrequently 
used are at the bottom of the list.  The database 
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used in this design contains a table of the top 1000 
ranked surnames from the 2000 US Census.  The 
database also has a table for given names; contain-
ing the top 1000 ranked male names, and the top 
1000 ranked female names.   

4.5 Name Prediction 

In order to effectively reduce the amount of time a 
voter spends to write-in a candidate’s name, this 
system utilizes a name prediction method built on 
the name database described in the previous sec-
tion.  Essentially, the predictions are suggestions to 
the voter of names that s/he may potentially spell.  
The names suggested are pulled from the name 
database depending on the letters already chosen 
by the voter.  If one of the predicted names is cor-
rect, the voter does not need to go through the en-
tire spelling process. 

The name suggestions are strictly based on the 
clusters and letters chosen by the voter.  When a 
voter selects a cluster, the system can suggest the 
most common (highest ranked) name that has a 
first initial as one of the letters in the cluster.  For 
example, if the voter is selecting the first letter of 
the candidate’s last name, and chooses the cluster 
“F, G, H, I, J,” the system can suggest “Johnson” 
to be the candidate’s last name.  Similarly, when a 
voter selects a letter, the system can suggest the 
most common name from the letters selected.  Fur-
thermore, if the voter is spelling the candidate’s 
last name, and has already selected the letters “J,” 
and “A,” the system can suggest “James” as the 
candidate’s last name. 

In a best-case scenario, the first name the system 
suggests would be the name the voter intended to 
write-in.  However, if that is not the case, each 
suggested name the voter rejects (says nothing) 
adds unnecessary interaction cycles to the spelling 
process.  For this reason, a different approach was 
taken to suggest names.  Because most names 
could be suggested correctly given the first three 
letters, the system waits to suggest names until the 
voter selects the first three letters.  Once the first 
three letters have been spelled, the system knows if 
there is a potential match in the database.  If there 
is no match, the system continues to let the voter 
spell the name intended.   

If there is a name in the database that starts with 
the letters that the voter already selected, that name 
is then suggested to the voter.  At this time, the 

system suggests up to three names for the voter to 
select from.  If after these initial three suggestions 
the system has not suggested the intended candi-
date’s name, the system prompts the voter to con-
tinue to spell the candidate’s name.  From this 
point on, the system suggests one name after the 
voter selects a cluster, and one name after the voter 
selects a letter.  If the voter rejects a name, it is 
never suggested again, so that the intended name 
has a chance at being suggested.  An example of 
the system dialogue is shown in Table 2.  

Interaction 
Mode Interaction 

Letters 
Already 
Selected 

System 
Say vote if the first letter of the 
candidate’s last name is A, B, C, D, 
or E 

-- 

Voter Vote -- 

System Say vote if the first letter of the 
candidate’s last name is A -- 

Voter <says nothing> -- 

System Say vote if the first letter of the 
candidate’s last name is B -- 

Voter <says nothing> -- 

System Say vote if the third letter of the 
candidate’s last name is C -- 

Voter Vote C 

System You have selected the letter C. Say 
vote to delete this letter. C 

Voter <says nothing> C 

System 
You have selected C as the candi-
date’s last name.  Say vote if you 
are finished spelling the last name. 

C 

Voter <says nothing> C 

System You will now select the second 
letter of the candidate’s last name. C 

System 

The next letters are the most com-
mon letters. Say vote if the second 
letter of the candidate’s last name 
is A, E, or O 

C 

Voter Vote C 

System Say vote if the second letter of the 
candidate’s last name is A C 

Voter Vote CA 
… 

System You have selected the letter R. Say 
vote to delete this letter. CAR 

Voter <says nothing> CAR 

System Say vote if the candidate’s last 
name is Carter CAR 

Voter <says nothing> CAR 

System Say vote if the candidate’s last 
name is Carroll CAR 

Voter <says nothing> CAR 

System Say vote if the candidate’s last 
name is Carpenter CAR 

Voter <says nothing> CAR 

System You will now select the fourth 
letter of the candidate’s last name CAR 

System 
The next letters are the most com-
mon letters.  Say vote if the third 
letter of the candidate’s last name 

CAR 

49



is L, P, or S 
Voter Vote CAR 

System Say vote if the candidate’s last 
name is Carlson CAR 

Voter <says nothing> CAR 

System Say vote if the third letter of the 
candidate’s last name is L CAR 

Voter Vote CARL 

System Say vote if the candidate’s last 
name is Carlisle CARL 

Voter Vote CARLISLE 
Table 2. Example Dialogue for Spelling Last Name, 

"Carlisle" 

5 Experiment and Evaluation 

The primary objective of this study was to observe 
and analyze how people interact with the predic-
tive write-in system through speech.  The goal of 
the study is to determine the time it takes a voter to 
use the write-in system developed. It is expected 
that the predictive system will perform signifi-
cantly faster when spelling a name than the linear 
system.  Additionally, it is expected that the par-
ticipants in the study will be able to use the system 
effectively, meaning they will be able to spell their 
intended names. 

5.1 Experimental Method 

The participants were directed to fill out a pre-
questionnaire to obtain their demographic informa-
tion and prior usage with computing.  Once the 
pre-questionnaire was completed, a scenario was 
given, introducing them to the write-in voting 
process, and to encourage them to treat the study as 
if it were an actual election.  The students then re-
corded in writing the name they intended to spell, 
which could be any first and last name of their 
choosing, with the exception of their own to keep 
the results anonymous. It was explained to the stu-
dent that the speech from the system would be 
coming from the speakers for observational pur-
poses, and that the headset was strictly for the use 
of the microphone. Data collected during the ex-
periment included the name each participant chose 
to write-in and the times taken to spell that name.  

5.2 Evaluation 

A total of 40 participants participated in this study, 
of which more than 80 percent were undergradu-
ates, Caucasians, and males.  Presented in this sec-
tion are calculated best-case comparisons between 
the predictive write-in method versus the linear 

search approach, as well as the experimental re-
sults from the study. 

Predictive Write-In Results: For the study, 
participants were required to provide a name to 
spell so that there was no bias amongst the names 
spelled.  The average length of the full names cho-
sen was 10.43 letters, with a standard deviation of 
2.22.  The shortest full name was 7 letters in 
length, and the longest full name was 16 letters in 
length.  Of the 80 first and last names chosen, 
71.3% of the names were in the database and sug-
gested to the user.  The average time it took for a 
participant to spell a candidate’s full name was 
9.52 minutes, with a standard deviation of 3.83.  
The median time was 8.42 minutes.  The average 
time, for the names given, per letter was 1.09 min-
utes, with a standard deviation of 45 seconds.   

Figure 2 shows a breakdown of times based on 
the number of letters in the full name spelled.  This 
figure shows the average times taken by partici-
pants to spell names of various lengths for the pre-
dictive method.  Removing the outliers of this 
chart, the average full name was between 8 and 16 
letters, and took an average of 9.23 minutes.  These 
results show that in practice, this system takes 
much longer than anticipated (see Comparison). 
Additional observations from the study showed 
that participant errors were the primary reason that 
the actual times were much different than what was 
calculated for the best-case times to spell the same 
names.   

 
Figure 2. Average Time to Spell Full Names 

Comparison: We calculated, at best case, 
how long it should take someone to spell the 
names from the study for both systems. In order to 
determine how long it would take to spell a name, 
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each interaction cycle for the system was broken 
down and timed.  For each method, the sequence 
of prompts presented to the voter to spell a name is 
different.  The sequences were determined for each 
system, and compiled for each name spelled.  The 
sequences for the predictive write-in method was 
constructed under the assumption that the names to 
be spelled are in the system’s name database. 

Figure 3 shows the average times taken to spell 
names of various lengths for the predictive and 
linear methods.  The average time for the full 
names provided in the study for the calculated lin-
ear search method was 15.09 minutes, with a stan-
dard deviation of 3.86 (Table 3). The average time 
to spell the full names for the calculated predictive 
method was 4.33 minutes, with a standard devia-
tion of 0.17. The median times for the calculated 
predictive and linear methods were 4.34 and 14.73, 
respectively.  From these results, we can conclude 
that, on average, the predictive spelling approach is 
more than three times faster than the linear spelling 
approach.  The predictive spelling method was ef-
fective in that 100% of the participants were able 
to complete the spelling of the intended names. 

 
Figure 3. Best-Case Method Comparison of Times to 

Spell Full Names 

 
Time to spell full 
name - Predictive 
Method (minutes) 

Time to spell full 
name - Linear 
Method (minutes) 

Average 4.33 15.09 
Standard 
Deviation 0.17 3.86 

Median 4.34 14.73 
Table 3. Calculated Predictive and Linear  

Method Statistics 

6 Conclusion and Future Work 

The ultimate goal of electronic voting systems to-
day should be to allow anyone to vote privately 
and independently using a single design.  The EAC 

provides useful and necessary guidelines to ensure 
that all eligible citizens have the same access when 
voting, regardless of a person’s disabilities.  The 
primary objective of this research was to embrace 
these guidelines by developing a system in which a 
person, regardless of most disabilities, can effi-
ciently, anonymously, and independently write-in a 
candidate’s name during an election.  The method 
designed allows voters to spell a candidate’s name 
discretely through speech interaction, using a pre-
dictive approach for efficiency.   

The study performed was designed to test the 
hypothesis, which states that the method designed 
for predictive spelling through speech interaction 
will take much less time to spell a candidate’s 
name than the method of linear search. The results 
of the study suggest that the predictive approach to 
write-in a candidate’s name was more efficient 
than the linear spelling approach.  However, it was 
determined that, in practice, the participants took 
longer than calculated to spell a name using the 
prediction method.  

From observing the participants throughout the 
study, it was considered that the number of errors 
made during the spelling process might have been 
the primary reason for the time being so long.  Fu-
ture versions of this system will include increased 
efficiency for error correction. It may also be bene-
ficial for future studies to include participants of a 
more diverse demographic, and to collect other 
metrics for determining efficiency, such as, letters 
required to spell a name, and number of errors 
made while spelling and where said errors oc-
curred.  

As this method is further developed, it can be 
adapted by certain search functions.  Search appli-
cations that utilize a fixed directory will benefit 
greatly by using the prediction method discussed.  
This could be especially helpful for people directo-
ries, building directories, or telephony systems. 
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Abstract

Spoken dialogue systems typically do not

manage the communication channel, instead

using fixed values for such features as the

amplitude and speaking rate. Yet, the qual-

ity of a dialogue can be compromised if the

user has difficulty understanding the system.

In this proof-of-concept research, we explore

using reinforcement learning (RL) to create

policies that manage the communication chan-

nel to meet the needs of diverse users. To-

wards this end, we first formalize a prelimi-

nary communication channel model, in which

users provide explicit feedback regarding is-

sues with the communication channel, and the

system implicitly alters its amplitude to ac-

commodate the user’s optimal volume. Sec-

ond, we explore whether RL is an appropri-

ate tool for creating communication channel

management strategies, comparing two differ-

ent hand-crafted policies to policies trained

using both a dialogue-length and a novel an-

noyance cost. The learned policies performed

better than hand-crafted policies, with those

trained using the annoyance cost learning an

equitable tradeoff between users with differ-

ing needs and also learning to balance finding

a user’s optimal amplitude against dialogue-

length. These results suggest that RL can be

used to create effective communication chan-

nel management policies for diverse users.

Index Terms: communication channel, spoken di-

alogue systems, reinforcement learning, amplitude,

diverse users

1 Introduction

Both Spoken Dialog Systems (SDS) and Assistive

Technology (AT) tend to have a narrow focus, sup-

porting only a subset of the population. SDS typ-

ically aim to support the “average man”, ignoring

wide variations in potential users’ ability to hear and

understand the system. AT aims to support peo-

ple with a recognized disability, but doesn’t sup-

port those whose impairment is not severe enough

to warrant the available devices or services, or those

who are unaware or have not acknowledged that they

need assistance. However, SDS should be able to

meet the needs of users whose abilities fall within,

and between, the extremes of severly impaired and

perfectly abled.

When aiming to support users with widely differ-

ing abilities, the cause of a user’s difficulty is less

important than adapting the communication channel

in a manner that aids understanding. For example,

speech that is presented more loudly and slowly can

help a hearing-impaired elderly person understand

the system, and can also help a person with no hear-

ing loss who is driving in a noisy car. Although one

user’s difficulty is due to impairment and the other

due to an adverse environment, a similar adaptation

may be appropriate to both.

During human-human communication, speakers

manage the communication channel; implicitly al-

tering their manner of speech to increase the likeli-

hood of being understood while concurrently econo-

mizing effort (Lindblom, 1990). In addition to these

implicit actions, speakers also make statements re-

ferring to breakdowns in the communication chan-
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nel, explicitly pointing out potential problems or

corrections, (e.g. ”Could you please speak up?”)

(Jurafsky et al., 1997).

As for human-computer dialogue, SDS are prone

to misrecognition of users’ spoken utterances. Much

research has focused on developing techniques for

overcoming or avoiding system misunderstandings.

Yet, as the quality of automatic speech recognition

improves and SDS are deployed to diverse popula-

tions and in varied environments, systems will need

to better attend to possible human misunderstand-

ings. Future SDS will need to manage the commu-

nication channel, in addition to managing the task,

to aid in avoiding these misunderstandings.

Researchers have explored the use of reinforce-

ment learning (RL) to create dialogue policies that

balance and optimize measures of task success (e.g.,

see (Scheffler and Young, 2002; Levin et al., 2000;

Henderson et al., 2008; Walker, 2000)). Along these

lines, RL is potentially well suited to creating poli-

cies for the subtask of managing the communica-

tion channel, as it can learn to adapt to the user

while continuing the dialogue. In doing so, RL may

choose actions that appear costly at the time, but lead

to better overall dialogues.

Our long term goal is to learn how to manage the

communication channel along with the task, moving

away from just “what” to say and also focusing on

“how” to say it. For this proof-of-concept, our goals

are twofold: 1) to formalize a communication chan-

nel model that encompasses diverse users, initially

focusing just on explicit user actions and implicit

system actions, and 2) to determine whether RL is

an appropriate tool for learning an effective commu-

nication channel management strategy for diverse

users. To explore the above issues, we use a simple

communication channel model in which the system

needs to determine and maintain an amplitude level

that is pleasant and effective for users with differ-

ing amplitude preferences and needs. As our goal

includes decreasing the amount of potentially an-

noying utterances (i.e., those in which the system’s

amplitude setting is in discord with the user’s op-

timal amplitude), we introduce a user-centric cost

metric, which we have termed annoyance cost. We

then compare hand-crafted policies against policies

trained using both annoyance and more traditional

dialogue-length cost components.

2 Related Work

2.1 How People Manage the Channel

When conversing, speakers implicitly adjust fea-

tures of their speech (e.g., speaking rate, loudness)

to maintain the communication channel. For ex-

ample, speakers produce Lombard speech when in

noisy conditions, produce clear speech to better ac-

commodate a hard of hearing listener, and alter their

speech to more closely resemble the interlocutor’s

(Junqua, 1993; Lindblom, 1990). These changes in-

crease the intelligibility of the speech, thus helping

to maintain the communication channel (Payton et

al., 1994). Research has also shown that speakers

adjust their speaking style when addressing a com-

puter; exhibiting the same speech adaptations seen

during human-human communication (Bell et al.,

2003; Lunsford et al., 2006).

In addition to altering their speech implicitly,

speakers also explicitly point out communication

channel problems (Jurafsky et al., 1997). Exam-

ples include; requesting a change in speaking rate or

amplitude (“Could you please speak up?”), explain-

ing sources of communication channel interference

(“Oh, that noise is the coffee grinder.”), or asking

their interlocutor to repeat an utterance (“What was

that?”). These explicit utterances identify some is-

sue with the communication channel that must be

remedied before continuing the dialogue. In re-

sponse, interlocutors will rewind to a previous point

in the dialogue and alter their speech to ensure they

are understood. This approach, of adapting ones

speech in response to a communication problem, oc-

curs even when conversing with a computer (Stent et

al., 2008).

Both implicit speech alterations and explicit ut-

terances regarding the communication channel of-

ten address issues of amplitude. This is to be

expected, as speaking at an appropriate amplitude

is critical to maintaining an effective communica-

tion channel, with sub-optimal amplitude affecting

listeners’ understanding and performance (Baldwin

and Struckman-Johnson, 2002). In addition, Bald-

win (2001) found that audible, but lowered, ampli-

tude can negatively affect both younger and older

subjects’ reaction time and ability to respond cor-

rectly while multitasking, and that elderly listeners

are likely to need higher amplitudes than younger
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listeners to maintain similar performance. Just as

low amplitude can be difficult to understand, high

amplitude can be annoying, and, in the extreme,

cause pain.

2.2 How Systems Manage the Channel

Towards improving listener understanding in a po-

tentially noisy environment, Martinson and Brock

(2007) take advantage of the mobility and sensory

capabilities of a robot. To determine the best course

of action, the robot maintains a noise map of the en-

vironment, measuring the environmental noise prior

to each TTS utterance. The robot then rotates to-

ward the listener, changes location, alters its am-

plitude, or pauses until the noise abates. A similar

technique, useful for remote listeners who may be

in a noisy environment or using a noisy communica-

tion medium, could analyze the signal-to-noise ratio

to ascertain the noise level in the listener’s environ-

ment. Although these techniques may be useful for

adjusting amplitude to compensate for noise in the

listener’s environment, they do not address speech

alterations needed to accommodate users with dif-

ferent hearing abilities or preferences.

Given the need to adapt to individual users, it

seems reasonable that users themselves would sim-

ply adjust volume on their local device. However,

there are issues with this approach. First, man-

ual adjustment of the volume would prove problem-

atic when the user’s hands and eyes are busy, such

as when driving a car. Second, during an ongo-

ing dialogue speakers tend to minimize pauses, re-

sponding quickly when given the turn (Sacks et al.,

1974). Stopping to alter the amplitude could re-

sult in longer than natural pauses, which systems

often respond to with increasingly lengthy ‘time-

out’ responses (Kotelly, 2003), or repeating the same

prompt endlessly (Villing et al., 2008). Third, al-

though we focus on amplitude adaptations in this

paper, amplitude is only one aspect of the commu-

nication channel. A fully functional communication

channel management solution would also incorpo-

rate adaptations of features such as speaking rate,

pausing, pitch range, emphasis, etc. This extended

set of features, because of their number and interac-

tion between them, do not readily lend themselves

to listener manipulation.

3 Reinforcement Learning

RL has been used to create dialogue strategies that

specify what action to perform in each possible

system state so that a minimum dialogue cost is

achieved (Walker, 2000; Levin et al., 2000). To ac-

complish this, RL starts with a policy, namely what

action to perform in each state. It then uses this pol-

icy, with some exploration, to estimate the cost of

getting from each state with each possible action to

the final state. As more simulations are run, RL re-

fines its estimates and its current policy. RL will

converge to an optimal solution as long as assump-

tions about costs and state transitions are met. RL is

particularly well suited for learning dialogue strate-

gies as it will balance opposing goals (e.g., minimiz-

ing excessive confirmations vs. ensuring accurate

information).

RL has been applied to a number of dialogue

scenarios. For form-filling dialogues, in which the

user provides parameters for a database query, re-

searchers have used RL to decide what order to use

when prompting for the parameters and to decrease

resource costs such as database access (Levin et al.,

2000; Scheffler and Young, 2002). System misun-

derstanding caused by speech recognition errors has

also been modeled to determine whether, and how,

the system should confirm information (Scheffler

and Young, 2002). However, there is no known work

on using RL to manage the communication channel

so as to avoid user misunderstanding.

User Simulation: To train a dialogue strategy us-

ing RL, some method must be chosen to emulate

realistic user responses to system actions. Training

with actual users is generally considered untenable

since RL can require millions of runs. As such, re-

searchers create simulated users that mimic the re-

sponses of real users. The approach employed to

create these users varies between researchers; rang-

ing from simulations that employ only real user data

(Henderson et al., 2008), to those that model users

with probabilistic simulations based on known re-

alistic user behaviors (Levin et al., 2000). Ai et

al. suggest that less realistic user simulations that al-

low RL to explore more of the dialogue state space

may perform as well or better than simulations that

statistically recreate realistic user behavior (Ai et al.,

2007). For this proof-of-concept work, we employ a
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hand-crafted user simulation that allows full explo-

ration of the state space.

Costs: Although it is agreed that RL is a viable

approach to creating optimal dialogue policies, there

remains much debate as to what cost functions result

in the most useful policies. Typically, these costs in-

clude a measure of efficiency (e.g., number of turns)

and a measure of solution quality (e.g., the user suc-

cessfully completed the transaction) (Scheffler and

Young, 2002; Levin et al., 2000). For manag-

ing the communication channel, it is unclear how

the cost function should be structured. In this work

we compare two cost components, a more traditional

dialogue-length cost versus a novel annoyance cost,

to determine which best supports the creation of use-

ful policies.

4 Communication Channel Model

Based on the literature reviewed in Section 2.1, we

devised a preliminary model that captures essential

elements of how users manage the communication

channel. For now, we only include explicit user ac-

tions, in which users directly address issues with

the communication channel, as noted by Jurafsky

et al. (1997). In addition, the users modeled are

both consistent and amenable; they provide feed-

back every time the system’s utterances are too loud

or too soft, and abandon the interaction only when

the system persists in presenting utterances outside

the user’s tolerance (either ten utterances that are too

loud or ten that are too soft).

For this work, we wish to create policies that treat

all users equitably. That is, we do not want to train

polices that give preferential treatment to a subset of

users simply because they are more common. To ac-

complish this, we use a flat rather than normal distri-

bution of users within the simulation, with both the

optimal amplitude and the tolerance range randomly

generated for each user. To represent users with dif-

fering amplitude needs, simulated users are modeled

to have an optimal amplitude between 2 and 8, and

a tolerance range of 1, 3 or 5. For example, a user

may have a optimal amplitude of 4, but be able to

tolerate an amplitude between 2 and 6.

When interacting with the computer, the user re-

sponds with: (a) the answer to the system’s query if

the amplitude is within their tolerance range; (b) too

soft (TS) if below their range; or (c) too loud (TL)

if the amplitude is above their tolerance range. As

a simplifying assumption, TS and TL represent any

user responses that address communication channel

issues related to amplitude. For example, the user

response “Pardon me?” would be represented by TS

and “There’s no need to shout!” by TL. With this

user model, the user only responds to the domain

task when the system employs an amplitude setting

within the user’s tolerance range.

For the system, we need to ensure that the sys-

tem’s amplitude range can accommodate any user-

tolerable amplitude. For this reason, the system’s

amplitude can vary between 0 and 10, and is ini-

tially set to 5 prior to each dialogue. In addition to

performing domain actions, the system specifies the

amount the amplitude should change: -2, -1, +0, +1,

+2. Each system communication to the user consists

of both a domain action and the system’s amplitude

change. Thus, the system manages the communica-

tion channel using only implicit actions. If the user

responds with TS or TL, the system will then restate

what it just said, perhaps altering the amplitude prior

to re-addressing the user.

5 Hand-crafted Policies

To help in determining whether RL is an appropriate

tool for learning communication channel manage-

ment strategies, we designed two hand-crafted poli-

cies for comparison. The first handcrafted policy,

termed no-complaints, finds a tolerable amplitude

as quickly as possible, then holds that amplitude for

the remainder of the dialogue. As such, this policy

only changes the amplitude in response to explicit

complaints from the user. Specifically, the policy in-

creases the amplitude by 2 after a TS response, and

drops it by 2 after a TL. If altering the amplitude by

2 would cause the system to return to a setting al-

ready identified as too soft or too loud, the system

uses an amplitude change of 1.

The second policy, termed find-optimal, searches

for the user’s optimal amplitude, then maintains that

amplitude for the remainder of the dialogue. For

this policy, the system first increases the amplitude

by 1 until the user responds with TL (potentially in

response to the system’s first utterance), then de-

creases the amplitude by 1 until the user either re-
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sponds with TS or the optimal amplitude is clearly

identified based on the previous feedback. An am-

plitude change of 2 is used only when both the op-

timal amplitude is obvious and a change of 2 will

bring the amplitude setting to the optimal ampli-

tude.

6 RL and System Encoding

To learn communication channel management poli-

cies we use RL with system and user actions spec-

ified using Information State Update rules (Hender-

son et al., 2008). Following Heeman (2007), we en-

code commonsense preconditions rather than trying

to learn them, and only use a subset of the informa-

tion state for RL.

Domain Task: We use a domain task that requires

the user to supply 9 pieces of information, excluding

user feedback relating to the communication chan-

nel. The system has a deterministic way of selecting

its actions, thus no learning is needed for the domain

task.

State Variables: For RL, each state is represented

by two variables; AmpHistory and Progress. Am-

pHistory models the user by tracking all previ-

ous user feedback. In addition, it tracks the cur-

rent amplitude setting. The string contains one

slot for each potential amplitude setting (0 through

10), with the current setting contained within “[]”.

Thus, at the beginning of each interaction, the string

is “-----[-]-----”, where “-” represents no

known data. Each time the user responds, the string

is updated to reflect which amplitude settings are too

soft (“<”), too loud (“>”), or within the user’s toler-

ance (“O”). When the user responds with TL/TS,

the system also updates all settings above/below the

current setting. The Progress variable is required

to satisfy the Markov property needed for RL. This

variable counts the number of successful informa-

tion exchanges (i.e., the user did not respond with

TS or TL). As the domain task requires 9 pieces of

information, the Progress variable ranged from 1 to

9.

Costs: Our user model only allows up to 10 utter-

ances that are too soft or too loud. If the cutoff is

reached, the domain task has not been completed, so

a solution quality cost of 100 is incurred. Cutting

off dialogues in this way has the additional benefit

of preventing a policy from looping forever during

testing. During training, to allow the system to bet-

ter model the cost of choosing the same action re-

peatedly, we use a longer cutoff of 1000 utterances

rather than 10.

In addition to solution quality, two different cost

components are utilized. The first, a dialogue-length

cost (DC), assigns a cost of 1 for each user utterance.

The second, an annoyance cost (AC), assigns a cost

calculated as the difference between the system’s

amplitude setting and the user’s optimal amplitude.

This difference is multiplied by 3 when the sys-

tem’s amplitude setting is below the user’s optimal.

This multiplier was chosen based on research that

demonstrated increased response times and errors

during cognitively challenging tasks when speech

was presented below, rather than above, typical con-

versational levels (Baldwin and Struckman-Johnson,

2002). Thus, only utterances at the optimal ampli-

tude have no cost.

7 Results

With the above system and user models, we trained

policies using the two cost functions discussed

above, eight with the DC component and eight us-

ing the AC component. All used Q-Learning and

the ǫ-greedy method to explore the state space with

ǫ set at 20% (Sutton and Barto, 1998). Dialogue runs

were grouped into epochs of 100; after each epoch,

the current dialogue policy was updated. We trained

each policy for 60,000 epochs. After certain epochs,

we tested the policy on 5000 user tasks.

For our simple domain, the solution quality cost

remained 0 after about the 100th epoch, as all poli-

cies learned to avoid user abandonment. Because of

this, only the dialogue-length cost(DC) and annoy-

ance cost(AC) components are reflected in the fol-

lowing analyses.

7.1 DC-Trained Policies

By 40,000 epochs, all eight DC policies converged

to one common optimal policy. Dialogues resulting

from the DC policies average 9.76 user utterances

long. DC policies start each dialogue using the de-

fault amplitude setting of 5. After receiving the ini-

tial user response, they aggressively explore the am-

plitude range. If the initial user response is TL (or
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DC AC

AmpHistory System Amp User AmpHistory System Amp User

-----[-]----- Query1 +0 5 TS -----[-]----- Query1 +1 6 TS

<<<<<[<]----- Query1 +2 7 Answer <<<<<<[<]---- Query1 +1 7 Answer

<<<<<<-[0]--- Query2 +0 7 Answer <<<<<<<[0]--- Query2 +1 8 Answer

<<<<<<-[0]--- Query3 +0 7 Answer <<<<<<<0[0]-- Query3 +1 9 Answer

<<<<<<-[0]--- Query4 +0 7 Answer <<<<<<00[0]- Query4 +1 10 TL

<<<<<<-[0]--- Query5 +0 7 Answer <<<<<<<000[>] Query4 -2 8 Answer

<<<<<<-[0]--- Query6 +0 7 Answer <<<<<<<0[0]0> Query5 +0 8 Answer

. . . . . . . . . . . . . . . . . . . . . . . .

dialogue length cost = 10 annoyance cost = 12

Table 1: Comparison of DC (left) and AC (right) interactions with a user who has an optimal amplitude of 8 and a

tolerance range of 3. The policies continue as shown, without changing the amplitude level, until all 9 queries are

answered.

TS), they continue by decreasing (or increasing) the

amplitude by -2 (or +2) until they find a tolerable

volume, in which case they stop. Table 1 illustrates

the above noted aspects of the policy. Additionally,

if the policy receives user feedback that is contrary

to the last feedback (i.e., TS after TL, or TL after

TS), the policy backtracks one amplitude setting. In

addition, if the current amplitude is near the bound-

ary (3 or 7), the policy will change the volume by

-1 or +1 as changing it by -2 or +2 would cause it

to move outside users’ amplitude range of 2-8. In

essence, the DC policies are quite straightforward;

aggressively changing the amplitude if the user com-

plains, and assuming the amplitude is correct if the

user does not complain.

7.2 AC-Trained Policies

By 55,000 epochs, AC policies converged to one of

two optimal solutions, with an average annoyance

cost of 7.49. As illustrated in Table 1, the behav-

ior of the AC policies is substantially more complex

than the DC policies. First, the AC policies start

by increasing the amplitude, delivering the first ut-

terance at a setting of 6 or 7. Second, the policies

do not stop exploring after they find a tolerable set-

ting, instead attempting to bracket the user’s toler-

ance range, thus identifying the user’s optimal am-

plitude. Third, AC policies sometimes avoid lower-

ing the amplitude, even when doing so would con-

cretely identify the user’s optimal amplitude. By do-

ing so, the policies potentially incur a cost of 1 for

all following turns, but avoid incurring a one time

cost of 3 or 6. In essence, the AC policies attempt to

find the user’s optimal amplitude but may stop short

as they approach the end of the dialogue, favoring a

slightly too high amplitude over one that might be

too low.

7.3 Comparing AC- and DC- Trained Policies

The costs for the AC and DC trained policy sets can-

not be directly compared as each set used a different

cost function. However, we can compare them using

each others’ cost function.

First, we compare the two sets of policies in terms

of average dialogue-length. For example, in Table 1,

following a DC policy results in a dialogue-length

of 10. However, for the same user, following the AC

policy results in a dialogue-length of 11, one utter-

ance longer due to the TL response to Query4.

The average dialogue-length of the DC and AC

policies, averaged across users, is shown in the right-

most two columns of Figure 1. As expected, the DC

policies perform better in terms of dialogue-length,

averaging 9.76 utterances long. However, the AC

policies average 10.32 utterances long, only 0.52 ut-

terances longer. This similarity in length is to be ex-

pected, as system communication outside the user’s

tolerance range impedes progress and is costly using

either cost component.

We also compared the AC and DC policies’ aver-

age dialogue-length for users with the same optimal

amplitude (i.e., each column shows the average cost

across users with tolerance ranges of 1, 3 and 5), as

shown in Figure 1. From this figure it is clear that

there is little difference in dialogue-length between

AC and DC policies for users with the same optimal
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amplitude. In addition, for both policies, the lengths

are similar between users with differing optimal am-

plitudes.
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Figure 1: Comparison of the dialogue-length between AC

and DC policies for users with differing optimal ampli-

tudes.

Second, we compare the two sets of polices in

terms of annoyance costs. For example, in Table 1,

following the AC policy results in an annoyance cost

of 12. For the same user, following the DC policy re-

sults in an annoyance cost of 36; 9 for Query1 as it is

three below the user’s optimal amplitude, and 3 for

each of the following nine utterances as they are all

one below optimal.

As shown in the rightmost columns of Figure 2,

DC policies average annoyance cost was 13.35, a

substantial 78% increase over the average cost of

7.49 for AC policies. Figure 2 also illustrates that

the AC and DC policies perform quite differently for

users with differing optimal amplitudes. For exam-

ple, users of the DC policies whose optimal is at (5),

or slightly below (4), the system’s default setting (5)

average lower annoyance costs than those using the

AC policies. However, these lowered costs for users

in the mid-range is gained at the expense of users

whose optimal amplitude is farther afield, especially

those users requiring higher amplitude settings. This

substantial difference between users with different

optimal amplitudes is because, for DC policies, the

interaction is often conducted at the very edge of the

users’ tolerance. In contrast, the AC policies risk

more intolerable utterances, but use this information

to decrease overall costs by better meeting users’

amplitude needs. As such, users of the AC policies

can expect the majority of the task to be conducted

at, or only one setting above, their optimal ampli-

tude.
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Figure 2: Comparison of the annoyance cost between AC

and DC policies for users with differing optimal ampli-

tudes.

7.4 Comparing Hand-crafted and Learned

Policies

Each of the two hand-crafted policies were run with

each user simulation (i.e., optimal amplitude from

2-8 and tolerance ranges of 1, 3, or 5). In addition,

we varied the domain task size, requiring between 4

and 10 pieces of information. DC and AC policies

were also trained for these domain task sizes.

As shown in Figure 3, The no-complain policy’s

annoyance costs ranged from 7.81 for dialogues re-

quiring four pieces of information to 14.67 for those

requiring ten pieces. The cost increases linearly with

the amount of information required, because the no-

complain policy maintains the first amplitude setting

found that does not result in a user response of TS

or TL. This ensures the amplitude setting is toler-

able to the user, but may not be the user’s optimal

amplitude.

In contrast, the find-optimal policy’s annoyance

costs initially increase from 9.67 for four pieces of

information to 12.24 for seven through ten pieces.

The cost does not continue to increase when the

amount of information required is greater than seven

because, for dialogues long enough to allow the sys-

tem to concretely identify the user’s optimal ampli-

tude, the cost is zero for all subsequent utterances.

Figure 3 also includes the mean annoyance cost

for the DC and AC policies. Although one might

expect the DC trained policies to resemble the

no-complain policy, the learned policy performs

slightly better. This difference is because the DC

policies learn the range of users’ optimal amplitude

settings (2-8), and do not move the amplitude below

2 or above 8. In contrast, the no-complain policies
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Figure 3: Average user annoyance costs for hand-crafted,

DC and AC policies across dialogues requiring differing

amounts of information.

behave consistently regardless of the current setting,

and thus will incur costs for exploring settings out-

side the range of users’ optimal amplitudes. Simi-

larly, AC policies could be anticipated to closely re-

semble the find-optimal policy. However, the AC

policies average cost is lower than the costs for ei-

ther hand-crafted policy, regardless of the amount

of information required. This difference is, in part,

due to differences in behavior at the ends of the

users’ optimal amplitude range, like the DC poli-

cies. However, additional factors include the AC

policies’ more varied use of amplitude changes and

their balancing of the remaining duration of the di-

alogue against the cost to perform additional explo-

ration, as discussed in subsection 7.2.

8 Discussion and Future Work

The first objective of this work was to create a model

of the communication channel that takes into ac-

count the abilities and preferences of diverse users.

In this model, each user has an optimal amplitude,

but will answer a system query delivered within a

range around that amplitude, although they find non-

preferred, especially too soft, amplitudes annoying.

When outside the user’s tolerance, the user pro-

vides explicit feedback regarding the communica-

tion channel breakdown. For the system, the model

specifies a composite system action, pairing a do-

main action with a possible communication chan-

nel management action to change the amplitude. By

modeling explicit user actions, and implicit system

actions, this model captures some essential elements

of how people manage the communication channel.

The second objective was to determine whether

RL is appropriate for learning communication chan-

nel management. As expected, the learned policies

found and maintained a tolerable amplitude setting

and eliminated user abandonment. We also com-

pared the learned policies with handcrafted solu-

tions, and found that the learned policies performed

better. This is primarily due to RL’s ability to auto-

matically balance the opposing goals of finding the

user’s optimal amplitude and minimizing dialogue-

length.

An added benefit of RL is that it optimizes the sys-

tem’s behavior for the users on which it is trained.

In this work, we purposely used a flat distribution of

users, which caused RL to find a policy (especially

when using annoyance costs) that does not penal-

ize the outliers, which are usually those with special

needs. In fact, we could modify the user distribution,

or the simulated users’ behavior, and RL would op-

timize the system’s behavior automatically.

In this work, we contrasted dialogue length (DC)

against annoyance cost (AC) components. We found

that the AC and DC policies share the objective of

finding an amplitude setting within the user’s tol-

erance range because both incur stepwise costs for

intolerable utterances. But, AC policies further re-

fine this objective by incurring costs for tolerable,

but non-optimal, amplitudes as well. AC policies

are using information that is not explicitly commu-

nicated to the system, but which none-the-less RL

can use while learning a policy.

As this was exploratory work, the user model does

not yet fully reflect expected user behavior. For ex-

ample, as the system’s amplitude decreases, users

may misunderstand the system’s query or fail to re-

spond at all. In future work we will use an enhanced

user model that includes more natural user behavior.

In addition, because we wanted the system to focus

on learning a communication channel management

strategy, the domain task was fixed. In future work,

we will use RL to learn policies that both accom-

plish a more complex domain task, and model con-

nections between domain tasks and communication

channel management. Ultimately, we need to con-

duct user-testing to measure the efficacy of the com-

munication channel management policies. We feel

confident that learned policies trained using a com-

munication channel model which reflects the range

of users’ abilities and preferences will prove effec-

tive for supporting all users.
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Abstract 

Existing Augmentative and Alternative Com-

munication vocabularies assign multimodal 

stimuli to words with multiple meanings. The 

ambiguity hampers the vocabulary effective-

ness when used by people with language dis-

abilities. For example, the noun “a missing 

letter” may refer to a character or a written 

message, and each corresponds to a different 

picture. A vocabulary with images and sounds 

unambiguously linked to words can better 

eliminate misunderstanding and assist com-

munication for people with language disorders. 

We explore a new approach of creating such a 

vocabulary via automatically assigning se-

mantically unambiguous groups of synonyms 

to sound and image labels. We propose an un-

supervised word sense disambiguation (WSD) 

voting algorithm, which combines different 

semantic relatedness measures. Our voting al-

gorithm achieved over 80% accuracy with a 

sound label dataset, which significantly out-

performs WSD with individual measures. We 

also explore the use of human judgments of 

evocation between members of concept pairs, 

in the label disambiguation task. Results show 

that evocation achieves similar performance to 

most of the existing relatedness measures.  

1 Introduction 

In natural languages, a word form may refer to dif-

ferent meanings. For instance, the word “fly” 

means “travel through the air” in context like “fly 

to New York,” while it refers to an insect in the 

phrase “a fly on the trashcan.” Speakers determine 

the appropriate sense of a polysemous word based 

on the context. However, people with language 

disorders and access/retrieval problems, may have 

great difficulty in understanding words individual-

ly or in a context. To overcome such language bar-

riers, visual and auditory representations are intro-

duced to help illustrate concepts (Ma et al., 

2009a)(Ma et al., 2010). For example, a person 

with a language disability can tell the word “fly” 

refers to “travel through the air” when he sees a 

plane in the image (rather than an insect); likewise 

he can distinguish the meaning of “fly” given the 

plane engine sound vs. the insect buzzing sound.  

This approach has been employed in Augmentative 

and Alternative Communication (AAC), in the 

form of multimodal vocabularies in assistive de-

vices (Steele et al. 1989)(Lingraphica, 2010). 

However, current AAC vocabularies assign vis-

ual stimuli to words instead of specific meanings, 

and thus bring in ambiguity when a user with lan-

guage disability tries to comprehend and commu-

nicate a concept. For example, for the word “fly,” 

Lingraphica only has an icon showing a plane and 

a flock of birds flying. Confusion arises when a 

sentence like “I want to kill the fly (the insect)” is 

explained using the airplane/bird icon. Similarly, it 

will lead to miscommunication if the sound of keys 

jingling is used to express “a key is missing” when 

the person intends to refer to a key on the keyboard. 

People with language impairment are relying on 

the AAC vocabularies for language access, and any 

ambiguity may result in communication failure.  

To address this problem, we propose building a 

semantic multimodal AAC vocabulary with visual 

and auditory representations expressing concepts 

rather than words (Figure 1), as the backbone of 

the language assistant system for people with 

aphasia (Ma et al. 2009b). Our work is exploratory 

with the following innovations: 1) we target the 

insufficiency of current assistive vocabularies by 

resolving ambiguity; 2) we enrich concept invento-

ry and connect concepts through language, envi-

ronmental sounds, and images (little research has 

looked into conveying concepts through natural 

nonspeech sounds); and 3) our vocabulary has a 

dynamic scalable semantic network structure rather 
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than simply grouping words into categories as 

conventional assistive devices do.  

One intuitive way to build a disambiguated mul-

timodal vocabulary is to manually assign meanings 

to each word in the existing vocabulary. However, 

the task is time consuming with poor scalability – 

no new multimedia representations are generated 

for concepts that are missing in the vocabulary. 

ImageNet (Jia et al., 2009) was constructed by 

people verifying the assignment of web images to 

given synonym sets (synsets). ImageNet has over 

nine million images linked to about 15 thousands 

noun synsets in WordNet (Fellbaum, 1998). De-

spite the huge human effort, ImageNet, with the 

goal of creating a computer vision database, does 

not yet include all the most commonly used words 

across different parts of speech. It is not yet suita-

ble for a language support application. 

We explore a new approach for generating a vo-

cabulary with concept to sound/image associations, 

that is, conducting word sense disambiguation 

(WSD) techniques used in Natural Language 

Processing on sound/image label datasets. For ex-

ample, the labels “car, drive, fast” for the sound 

“car – passing.wav” are assigned to synsets “car: a 

motor vehicle,” “drive: operate or control a ve-

hicle,” and “fast: quickly or rapidly” via WSD. It 

means the sound “car – passing.wav” can be used 

to depict those concepts. This approach is viable 

because the words in the sound/image labels were 

shown to evoke one another based on the audito-

ry/visual content, and their meanings can be identi-

fied by considering all the tags generated for a 

given sound or image as a context.  With the avail-

ability of large sound/image label datasets, the vo-

cabulary created from WSD can be easily 

expanded. 

A variety of WSD methods (e.g. knowledge-

based methods (Lesk, 1986), unsupervised me-

thods (Lin, 1997), semi-supervised methods 

(Hearst, 1991) (Yarowsky, 1995), and supervised 

methods (Novischi et al., 2007)) were developed 

and evaluated with corpus data and other text doc-

uments like webpages. Compared to the text data 

that WSD methods work with, labels for sounds 

and images have unique characteristics. The labels 

are a bag of words related to the visual/auditory 

content; there is no syntactic or part of speech in-

formation, nor are the words necessarily contextual 

neighbors. For example, contexts suggest land-

scape senses for the word pair “bank” and “water”, 

whereas in an image, a person may drink water 

inside a bank building. Furthermore, few annotated 

image or sound label datasets are available, making 

it hard to apply supervised or semi-supervised 

WSD methods.  

To efficiently and effectively create a disambi-

guated multimodal vocabulary, we need to achieve 

two goals. First, optimize the accuracy of the WSD 

algorithm to minimize the work required for ma-

nual checking and correction afterwards. Second, 

construct a semantic network across different parts 

of speech, and thus explore linking semantic rela-

tedness measures that can capture aspects different 

from existing ones. In this paper, we target the first 

goal by proposing an unsupervised sense disam-

 
Figure 1. Disambiguated AAC multimedia vocabulary; dash arrows are semantic relations between concepts. 
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biguation algorithm combining a variety of seman-

tic relatedness measures. We chose an unsuper-

vised method because of the lack of a large 

manually annotated gold standard. The measure-

combined voting algorithm presented here draws 

advantages from different semantic relatedness 

measures and has them vote for the best-fitting 

sense to assign to a label. Evaluation shows that 

the voting algorithm significantly exceeds WSD 

with each individual measure. 

To approach the second goal, we proposed and 

tested a semantic relatedness measure called evo-

cation (Boyd-Graber et al., 2006) in disambigua-

tion of sound/image labels. Evocation measures 

human judgements of relatedness between a di-

rected concepts pair. It provides cross parts of 

speech evocativeness information which supple-

ments most of the knowledge-based semantic rela-

tedness measures. Evaluation results showed that 

the performance of WSD with evocation is no 

worse than most of the relatedness measures that 

we applied, despite the relatively small size of the 

current evocation dataset. 

2 Dataset: Semantic Labels for Environ-

mental Sounds and Images 

Our ultimate goal is to create an AAC vocabulary 

of associations between environmental sounds and 

images and groups of synonymous words that are 

relevant to the content. We are working with two 

datasets of human labels for multimedia data, 

SoundNet and the Peekaboom dataset. 

2.1 SoundNet Sound Label Dataset 

The SoundNet Dataset (Ma, Fellbaum, and Cook, 

2009) consists of 327 environmental “soundnails” 

(5-second audio clips) each with semantic labels 

collected from participants via a large scale Ama-

zon Mechanical Turk (AMT) study. The sound-

nails cover a wide range of auditory scenes, from 

vehicle (e.g. car starting), mechanical tools (e.g. 

handsaw) and electrical devices (e.g. TV), to natu-

ral phenomena (e.g. rain), animals (e.g. a dog bark-

ing), and human sounds (e.g. a baby crying). In the 

AMT study, participants were asked to generate 

tags for each soundnail labeling its source, possible 

location, and actions involved in making the sound.  

Each soundnail was labeled by over 100 people. 

The tags were clustered into meaning units that 

SoundNet refers to as “sense sets.” A sense set in-

cludes a set of words with similar meanings. For 

instance, for the soundnail pre-labeled “bag, zipO-

pen” which is the sound of opening the zipper of a 

bag, the following sense sets were generated:  

(a) “zipper” {zipper, zip up, zip, unzip};  

(b) “bag” {bag, duffle bag, nylon bag, suitcase, 

luggage, backpack, purse, pack, briefcase};  

(c) “house” {house, home, building}, and 

(d) “clothes” {clothes, jacket, coat, pants, jeans, 

dress, garment}.  

 The word in bold is was judged by SoundNet to 

be the best representative of the sense set, and oth-

er words, possibly belonging to different parts of 

speech are included in the curly brackets enclosing 

the sense sets. SoundNet uses sense sets rather than 

single words because 1) people may use different 

words to describe the same underlying concept, 

(e.g. “baby” and “infant;” “rain” as a noun and as a 

verb); 2) people cannot draw fine distinctions be-

tween objects and events that generate similar 

sounds, and thus may come up with different but 

related categories (e.g. “plate,” “cup,” and “bowl” 

for the dish clinking sound); and 3) people may 

perceive objects and events that are not explicitly 

presented in the sound very differently (e.g. “bag” 

vs. “clothes” for the sound made by a zipper). In 

this experiment, only sense sets (labels) that were 

generated by at least 25% of the labelers were 

used.  

In our disambiguation experiment, two kinds of 

contexts were explored. In the Context 1 scheme, 

each label is treated separately: all its members 

plus the representatives of the other sense sets are 

considered. Take the soundnail “bag, zipOpen” as 

an example. The context for disambiguating label 

(a) “zipper” {zipper, zip up, zip, unzip} is: 

zipper, zip up, zip, unzip, bag, house, clothes. 

The context for label (d) “clothes” {clothes, jacket, 

coat, pants, jeans, dress, garment} is:  

clothes, jacket, coat, pants, jeans, dress, garment, 

zipper, bag, house.   

In the Context 1 scheme, all representative 

words will be disambiguated multiple times. The 

final result will be the synset that gets the most 

votes. In the Context 2 scheme, as for the image 

dataset described below, all members from each 

sense set are put together to create the context, and 

each word is disambiguated only once. 

2.2 Peekaboom Image Label Dataset 
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The ESP Game Dataset (Von Ahn and Dabbish, 

2004) contains a large number of web images and 

human labels produced via an online game. For 

example, an image of a glass of hard liquor is la-

beled “full, shot, alcohol, clear, drink, glass, beve-

rage.” The Peekaboom Game (Von Ahn et al., 

2006) is the successor of the ESP Game. In our 

experiment, part of the Peekaboom Dataset (3,086 

images) was used. For each image, all the labels 

together form the context for sense disambigua-

tion.  

The Peekaboom labels are noisier than the 

SoundNet labels for several reasons. First, random 

objects may appear in a picture and thus be in-

cluded in the labels. For example, an image is la-

beled “computer, shark” because there is a shark 

picture on the computer screen. Second, texts in 

the images are often included in the labels. For 

example, the word “green” is one of the labels for 

an image with a street sign “Green St.” Third, the 

Peekaboom labels are not stemmed, which adds 

another layer of ambiguity. For example, the labels 

“bridge, building” could refer to a building event 

or to a built entity. In the experiment, all labels for 

an image are used in their unstemmed form to con-

struct the context for WSD.  

3 Evocation and Other Semantic Related-

ness Measures 

A set of measures were selected to assess the rela-

tedness between possible senses of words in the 

sound/image labels. Apart from existing methods, 

an additional measure, evocation, is introduced. 

3.1 Evocation 

Evocation (Boyd-Graber et al., 2006) measures 

concept similarity based on human judgment. It is 

a directed measure, with evocation(synset A, syn-

set B) defined as how much synset A brings to 

mind synset B. The evocation dataset has been ex-

tended to scores for 100,000 directed synset pairs 

(Nikolova et al., 2009).  

The evocation data were collected independently 

of WordNet or corpus data. We propose the use of 

evocation in WSD for image and sound labels for 

the following reasons. First, the sound and image 

labels are generated based on human perception of 

the content and common knowledge. In SoundNet 

in particular, many of the evoked labels reflected 

the most obvious objects or events in a sound 

scene. For example, “bag” and “coat” were evoked 

from the zipper soundnail. In this case, the evoca-

tion score may be a good evaluation of the related-

ness between the labels. Second, evocation 

assesses relatedness of concepts across different 

parts of speech, which is suitable for identifying 

image and sound labels containing nouns, verbs, 

adjectives, adverbs, etc. 

This paper is a first attempt to compare the ef-

fectiveness of the use of evocation measure in 

sense disambiguation to the conventional, relative-

ly better tested similarity measures, in the context 

of assigning synsets to sound/image labels. Consi-

dering that the evocation dataset is small in size 

and susceptible to noise given the method by 

which it was collected, we have not yet incorpo-

rated evocation into the measure-combined voting 

algorithm described in the Section 4. 

3.2 Semantic Relatedness Measures 

Nine measures of semantic relatedness
1
 between 

synsets are used in the experiment, both as contri-

butors to the voting algorithm and as baselines for 

comparison, including: 

1) WordNet path based measures. 

• “path” – shortest path length between syn-

sets,  inversely proportional to the number 

of nodes on the path. 

• “wup” (Wu and Palmer, 1994) – ratio of the 

depth of the Least Common Subsumer 

(LCS) to the depths of two synsets in the 

Wordnet taxonomy. 

• “lch” (Leacock and Chodorow, 1998) – 

considering the length of the shortest path 

between two synsets to the depth of the 

WordNet taxonomy. 

2) Information and content based measures. 

• “res” (Resnik, 1995) – the informational 

content (IC) of a given corpus of the LCS 

between two synsets. 

• “lin” (Lin, 1997) – the ratio of the IC of the 

LCS to the IC of the two synsets. 

• “jcn” (Jiang and Conrath, 1997) – inversely 

proportional to the difference between the 

IC of the two synsets and the IC of the LCS. 

                                                           
1 “hso” (Hirst and St-Onge, 1998) extensively slows down the 

WSD process with over five context words, and thus, is not 

included in the experiment. 
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3) WordNet definition based measures. 

• “lesk” (Banerjee and Pedersen, 2002) – 

overlaps in the definitions of two synsets.  

• “vector” (Patwardhan and Pedersen, 2006) 

– cosine of the angle between the co-

occurrence vector computed from the defi-

nitions around the two synsets. 

• “vector_pairs” – co-occurrence vectors are 

computed from definition pairs separately. 

The computation of the relatedness scores using 

measures listed above were carried out by codes 

from the WordNet::Similarity (Pedersen et al., 

2004) and WordNet::SenseRelate projects (Peder-

sen and Kolhatkar, 2009). In contrast to Word-

Net::SenseRelated, which employs only one 

similarity measure in the WSD process, this paper 

proposes a strategy of having several semantic re-

latedness measures vote for the best synset for each 

word. The voting algorithm intends to improve 

WSD performance by combining conclusions from 

various measures to eliminate a false result. Since 

there is no syntax among the words generated for a 

sound/image, they should all be considered for 

WSD. Thus, the width of the context window is the 

total number of words in the context. 

4 Label Sense Disambiguation Algorithm 

 
Figure 2 shows the overall process of the measure-

combined voting algorithm for disambiguating 

sound/image labels. After the context for WSD is 

generated, the process is divided into two steps. In 

Step I, the relatedness scores of each sense of a 

word based on the context is computed by each 

measure separately. Step II combines results from 

all measures and generates the disambiguated syn-

sets for all words in the sound/image labels. Evo-

cation did not participate in Step II. 

4.1 Step I: Generate Candidate Synsets Based 

on Individual Measures 

Given the context of M words (w1, …, wM), and K 

relatedness measures (k = 1, …, K), the task is to 

assign each word wj (j = 1, …, M) to the synset 

sx,wj that is the most appropriate within the context. 

Here, the word wj has Nj synsets, denoted as sn,wj (n 

= 1, …, Nj). Step I is to calculate the relatedness 

score for each synset of each word in the context. 
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The synset that evocation assigns to word j is the 

one with the highest score. 
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4.2 Step II: Vote for the Best Candidate 

Three voting schemes were tested, including un-

weighted simple votes, weighted votes among top 

candidates, and weighted votes among all synsets. 

1) Unweighted Simple Votes 

Synset sn,wj of word wj gets a vote from related-

ness measure k if its scorek is the maximum among 

all the synsets for wj, and it becomes the candidate 

synset for wj elected by measure k (Ck,wj): 
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The candidate list for word wj (candidates(Swj)) 

is the union of all candidate synsets elected by in-

dividual relatedness measures. 
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( ) ( ( ))

j jw k w
k K
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=  

For each candidate in the list, the votes from all 

measures are calculated. The one receiving the 

most votes becomes the proposed synset for wj. 

, ,

1

( ) ( )
j j

K

i w k i w

k

voteCount s vote s
=

=∑  

Figure 2. Measure-Combined Voting Algorithm. 
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2) Weighted Votes among Top Candidates 

The weighted voting scheme avoids a situation 

where the false results win by a very small margin. 

The weight under relatedness measure k for si,wj is 

calculated as the relative score to the maximum 

scorek among all synsets for word wj. It suggests 

how big of a difference in relatedness score of any 

given synset is to the highest score among all the 

possible synsets for the target word. 
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The weighted votes synset si,wj receives over all 

measures is the sum of its weight under individual 

measure. In voting scheme 2, the synset from the 

candidate list which gets the highest weighted 

votes becomes the winner. 
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3) Weighted Votes among All Synsets 

Voting scheme 3 differs from 2 in that the synset 

from all synsets for word wj which gets the highest 

weighted votes is the proposed synset for wj. 
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5 Evaluation 

The evaluation of WSD with evocation and the 

measure-combined voting algorithm was carried 

out primarily on the SoundNet label dataset be-

cause of the availability of ground truth data. 

SoundNet provides manual annotation for 1,553 

different words for 327 soundnails (e.g. the word 

“road” appears in 41 sounds). 

The accuracy rate (precision) was computed for 

each WSD method. The sound level accuracy of a 

WSDk is the average percentage of correct sense 

assignments over the 327 sounds. The word level 

accuracy is the mean over 1553 distinctive words. 

Accuracy rates of different measures at both level 

accepted the null hypothesis in homogeneity test. 
327
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Due to the lack of ground truth in the Peekaboom 

dataset, we only computed the overlap between the 

WSD result of 3,086 images from the voting algo-

rithm, evocation and each relatedness measures. 

5.1 Overall Comparison across WSD me-

thods with Various Relatedness Measures 

Figures 3 show the overall comparison among dif-

ferent methods at both sound level and word level. 

It suggests that the performance of the evocation 

measure in sense disambiguation is as good as the 

path-based and context-based measures. The defi-

nition-based measures (“lesk” and “vector”) are 

significantly better than other measures if used in-

dividually (similar to (Patwardhan et al.2003)). 

 
Figure 3. Accuracy rate at word and sound level in comparison among evocation, voting, and nine individual 

sense similarity measures. 
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However, the voting algorithms proposed in this 

work significantly outperformed each individual 

measure based on ANOVA results. At sound level, 

Context 1: (F(12, 20176) = 102.92, p < 0.001); 

Context 2: (F(12, 4238) = 89.42, p < 0.001). At 

word level, Context 1: (F(12, 20176) = 68.78, p < 

0.001); Context 2: (F(12, 4238) = 60.72, p < 0.001). 

The scheme of composing context (Section 2.1) 

has significant impact on the accuracy, with Con-

text 1 (taking all members in the related sense set 

and representatives from the others) outperforming 

Context 2 (taking all words in all sense sets) at the 

word level (F(1, 40352) = 20.19, p < 0.001). The 

influence of context scheme is not significant at the 

sound level (F(1, 8476) = 0.35, p = 0.5546). The 

interaction between measures and context schemes 

is not significant, indicating that accuracy differ-

ences are similar regardless of context construction. 

5.2 Performance of the Voting Algorithm  

Figure 4 shows the histogram (distribution) for the 

accuracy rate at sound and word levels. We see 

that for the voting algorithm, the accuracy rates are 

greater than 0.7 for most of the sounds, and greater 

than 0.9 for majority of the words to disambiguate. 

Figure 5 show the percentage of sense disam-

biguation results overlapping between voting algo-

rithm and individual relatedness measures. Note 

that any two methods may come up with different 

correct results (e.g. “lesk” assigned “chirp” as “a 

sharp sound” while the voting algorithm assigned 

“chirp” as “making a sharp sound”). This indicates 

the change of the contribution of each relatedness 

measures in different voting schemes. In the simple 

voting scheme, more disambiguation results came 

from the “path,” “wup,” and “lch” (the WordNet 

path based measures), while the weighted voting 

 
Figure 4. Histogram of accuracy rate at sound (327, left) and word level (1553, right) among different measures, 

contexts, and voting schemes. EVC1 = Evocation (Context 1); SR11 = Voting (Context 1, voting scheme 1). 

 
Figure 5. Percentage of sense disambiguation results overlap between voting algorithm, evocation, and individ-

ual sense relatedness measures at image (3,086 images) and sound (327 sounds) level. 
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scheme took more of the recommendations from 

“lesk,” “lin,” and “jcn” (context and definition 

based measures) into consideration. At the sound 

level, there is no significant accuracy difference 

among the three voting schemes, and the influence 

of the context composition is similar. However, at 

the word level (Figure 3), the weighted voting 

schemes significantly outperformed the simple vot-

ing scheme (F(2, 9312) = 5.20, p = 0.0055), and all 

of them have significantly better accuracy when 

the context contains mainly members from the 

same sense set (F(1, 9312) = 4.79, p = 0.0287). 

5.3 Performance of WSD with Evocation 

As shown in Figures 3, the performance of the 

evocation measure is not significantly different 

from path-based and some context-based measures 

at sound level, including “path,” “wup,” “lch,” 

“res,” “lin,” and “jcn” (for Context 1, F(6, 2282) = 

2.0582, p = 0.0551; for Context 2, F(6, 2282) = 

1.6679, p = 0.1249); and is significantly better than 

the vector_pairs measure (for Context 1, F(1, 652) 

= 61.37, p < 0.001; for Context 2, F(1, 652) = 

36.47, p < 0.001). At the word level, the perfor-

mance of the evocation measure is not significantly 

different from that of measures including “path,” 

“wup,” “lch,” “res” (F(4, 7760) = 0.39, p = 0.8135), 

and “lin,”  “jcn,” and “vector_pairs” (F(3, 6208) = 

1.52, p = 0.2077). Figure 8 (SoundNet) and Figure 

9 (Peekaboom) show the percentage of synset as-

signment overlap between evocation and the other 

nine relatedness measures. The overlap with “lesk” 

and “vector” are significantly higher than that with 

the other measures (F(8, 5877) = 34.67, p < 0.001). 

It suggests that evocation as a semantic relatedness 

measure may be closer to the definition-based 

measures than path and content based measures. 

For the SoundNet dataset, 34% to 44% of evoca-

tion WSD results overlap with that of other meas-

ures; for the Peekaboom dataset, the overlap is 

25% to 35% (Figure 6). Given that evocation per-

formed similarly in accuracy to most of other 

measures with relatively low overlap in WSD re-

sults, evocation may capture different aspects of 

semantic relatedness from existing measures. 

6 Conclusion and Future Work 

We explored the construction of a sense disambi-

guated semantic AAC multimodal vocabulary from 

sound/image label datasets. Two WSD approaches 

are introduced to assign specific meanings to envi-

ronmental sound and image labels, and further 

create concept-sound/image associations. The 

measure-combined voting algorithm targets the 

accuracy of WSD and achieves significantly better 

performance than each relatedness measure indivi-

dually. Our second approach applies a new rela-

tedness measure, evocation. Evocation achieves 

similar performance to most of the existing rela-

tedness measures with sound labels. Results sug-

gest that evocation provides different semantic 

information from current measures. 

Future work includes: 1) expanding the evoca-

tion dataset and investigating the potential im-

provement in its WSD accuracy; 2) incorporating 

the extended evocation dataset into the voting al-

gorithm; 3) exploring additional information such 

as image and sound similarity to help with WSD. 

Acknowledgments  

 
Figure 6. Percentage of WSD results overlap between evocation and various relatedness measures. 

69



We thank the Kimberley and Frank H. Moss ’71 

Princeton SEAS Research Fund for supporting our 

project. 

References  

Satanjeev Banerjee and Ted Pedersen. 2002. An 

Adapted Lesk Algorithm for Word Sense Disambig-

uation Using WordNet. Proceedings of the 3
rd
 Inter-

national Conference on Intelligent Text Processing 

and Computational Linguistics. 

Jordan Boyd-Graber, Christaine Fellbaum, Daniel 

Osherson, and Robert Schapire. 2006. Adding Dense, 

Weighted Connections to WordNet. Proceedings of 

the Thirds International WordNet Conference. 

Jia Deng, Wei Dong, Richard Socher, Li -J. Li, Kai Li 

and Li Fei-Fei. 2009. ImageNet: A Large-Scale Hie-

rarchical Image Database. Proceedings of the IEEE 

Computer Vision and Pattern Recognition (CVPR). 

Christiane Fellbaum, editor. 1998. WordNet: An Elec-

tronic Lexical Database. MIT Press. 

Marti Hearst. 1991. Noun Homograph Disambiguation 

Using Local Context in Large Text Corpora. Proc. of 

the 7
th
 Annual Conference of the University of Water-

loo Center for the New OED and Text Research. 

Graeme Hirst and David St. Onge. 1998. Lexical Chains 

as Representations of Context for the Detection and 

Correction of Malapropisms. In Christiane Fellbaum, 

editor, WordNet: An Electronic Lexical Database. 

Jay Jiang and David Conrath. 1997. Semantic Similarity 

Based on Corpus Statistics and Lexical Taxonomy. 

Proceedings on International Conference on Re-

search in Computational Linguistics.  

Claudia Leacock and Martin Chodorow. 1998. Combin-

ing Local Context and WordNet Similarity for Word 

Sense Identification. In Christiane Fellbaum, editor, 

WordNet: An Electronic Lexical Database. 

Michael Lesk. 1986. Automatic Sense Disambiguation 

Using Machine Readable Dictionaries: How to Tell a 

Pine Cone from an Ice Cream Cone. Proceedings of 

SIGDOC’86. 

Dekang Lin. 1997. Using Syntactic Dependency as a 

Local Context to Resolve Word Sense Ambiguity. 

Proceedings of the 35
th
 Annual Meeting of the Asso-

ciation for Computational Linguistics, pp. 64-71. 

Lingraphica. http://www.aphasia.com/. 2010. 

Xiaojuan Ma, Christiane Fellbaum. and Perry Cook. 

2010. SoundNet: Investigating a Language Com-

posed of Environmental Sounds. In Proc. CHI 2010. 

Xiaojuan Ma, Jordan Boy-Graber, Sonya Nikolova, and 

Perry Cook. 2009a. Speaking Through Pictures: Im-

ages vs. Icons. Proceedings of ASSETS09. 

Xiaojuan Ma, Sonya Nikolova and Perry Cook. 2009b. 

W2ANE: When Words Are Not Enough - Online 

Multimedia Language Assistant for People with 

Aphasia. Proceedings of ACM Multimedia 2009.  

Sonya Nikolova, Jordan Boyd-Graber, and Christiane 

Fellbaum. 2009. Collecting Semantic Similarity Rat-

ings to Connect Concepts in Assistive Communica-

tion Tools (in press). Modelling, Learning and 

Processing of Text-Technological Data Structures, 

Springer Studies in Computational Intelligence. 

Adrian Novischi, Muirathnam Srikanth, and Andrew 

Bennett. 2007. Lcc-wsd: System Description for 

English Coarse Grained All Words Task at SemEval 

2007. Proceedings of the 4
th
 International Workshop 

on Semantic Evaluations(SemEval-2007), pp 223-226. 

Siddharth Patwardhan, Satanjeev Benerjee and Ted Pe-

dersen. Using Measures of Semantic Relatedness for 

Word Sense Disambiguation. 2003. Proceeding of 

CICLing2003, pp. 241-257. 

Siddharth Patwardhan and Ted Pedersen Using Word-

Net Based Context Vectors to Estimate the Semantic 

Relatedness of Concepts. 2006. Proceedings of the 

EACL 2006 Workshop Making Sense of Sense - 

Bringing Computational Linguistics and Psycholin-

guistics Together, pp. 1-8 

Ted Pedersen, Siddharth Patwardhan, and Jason Miche-

lizzi. 2004. WorNet::Similarity – Measuring the Re-

latedness of Concepts.  Proceedings of Human 

Language Technology Conference of the North 

American Chapter of the Association for Computa-

tional Linguistics Demonstrations, pp. 38-41. 

Ted Pedersen and Varada Kolhatkar. 2009. Word-

Net::SenseRelate::AllWords - A Broad Coverage 

Word Sense Tagger that Maximimizes Semantic Re-

latedness. Proceedings of Human Language Tech-

nology Conference of the North American Chapter of 

the Association for Computational Linguistics Dem-

onstrations, pp. 17-20. 

Philip Resnik. 1995. Using Information Content to Eva-

luate Semantic Similarity in a Taxonomy. Proceed-

ings of the 14
th
 International Joint Conference on 

Artificial Intelligence. 

Richard Steele, Michael Weinrich, Robert Wertz, Gloria 

Carlson, and Maria Kleczewska. Computer-based 

visual communication in aphasia. Neuropsychologia. 

27(4): pp 409-26. 1989. 

Luis von Ahn, Laura Dabbish. 2004. Labeling images 

with a computer game. Proceedings of the SIGCHI 

conference on Human factors in computing systems, 

p.319-326. 

Luis von Ahn, Ruoran Liu, Manuel Blum. 2006 Peeka-

boom: a game for locating objects in images. Pro-

ceedings of the SIGCHI conference on Human 

Factors in computing systems. 

Zhibiao Wu and Martha Palmer. 1994. Verb Semantics 

and Lexical Selection. Proc. of ACL, pp 133-138. 

David Yarowsky. 1995. Unsupervised Word Sense Dis-

ambiguation Rivaling Supervised Methods. Proceed-

ings of the 33
rd
 Annual Meeting on Association For 

Computational Linguistics. 

70



Proceedings of the NAACL HLT 2010 Workshop on Speech and Language Processing for Assistive Technologies, page 71,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Workshop on Speech and Language Processing for Assistive Technologies
Demo Session

1 “How was School today...?” A Prototype
System that Uses Environmental Sensors
and NLG to Support Personal Narrative
for Children with Complex
Communication Needs

Rolf Black, Joseph Reddington, Ehud Reiter, Nava
Tintarev and Annalu Waller

We will show an in-situ sensor based proto-
type that supports personal narrative for children
with complex communication needs. We will
demonstrate the process from data collection, story
generation and editing, to the interactive narration
of stories about a child’s school day. The challeng-
ing environment of a special school for prototype
testing will be discussed and improvements of the
next generation prototype presented.

2 Interactive SIGHT Demo: Textual
Summaries of Simple Bar Charts

Seniz Demir, David Oliver, Edward Schwartz,
Stephanie Elzer, Sandra Carberry and Kathleen F.
McCoy

Interactive SIGHT is intended to provide peo-
ple with visual impairments access to the kind
of information graphics found in popular media.
It works as a browser extension, and is able to
generate a summary of a simple bar chart containing
its high-level intention as natural language text.
The user may request further information about the
graphic through a follow-up question facility.

3 Project Jumbo: Transcription as an
Assistive Technology for Instant
Messaging

Ira R. Forman and Allen K. Wilson

The integration of VoIP into Instant Messaging
may be a boon for most of us, but not for those
who are deaf and hard of hearing. The IBM Human
Ability & Accessibility Center initiated Project
Jumbo to address this problem. Our remedy is to
add a speech-to-text capability to augment voice
services with transcripts. In particular, Project
Jumbo augments IBM Lotus Sametime. Project
Jumbo, which is transitioning to product status
under name IBM AbilityLab Sametime Conference
Transcriber, will be demonstrated. The demo
consists of a chat between the demonstrator and a
remote colleague in which the demonstrator speaks
rather than types. A major point of the demo is
that interactive communication is a new domain
for ASR. This domain differs from dictation in a
number of ways; prominent among them is that
most speech recognition errors do not need to be
corrected.

4 COMUNICA - A Voice Question
Answering System for Portuguese

Rodrigo Wilkens, Aline Villavicencio, Leandro
Wives, Daniel Muller, Fabio da Silva and Stanley
Loh

This is a voice QA system for Brazilian Por-
tuguese that performs speech recognition, text
processing, database access and speech synthesis
for consulting both structured and unstructured
datasets. This system provides multi-modal com-
munication and has the potential to help users with
disabilities to access relevant information, and may
help to significantly increase digital inclusion.
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State-Transition Interpolation and MAP Adaptation for HMM-based
Dysarthric Speech Recognition
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Abstract

This paper describes the results of our experi-
ments in building speaker-adaptive recogniz-
ers for talkers with spastic dysarthria. We
study two modifications – (a) MAP adapta-
tion of speaker-independent systems trained
on normal speech and, (b) using a transition
probability matrix that is a linear interpolation
between fully ergodic and (exclusively) left-
to-right structures, for both speaker-dependent
and speaker-adapted systems. The experi-
ments indicate that (1) for speaker-dependent
systems, left-to-right HMMs have lower word
error rate than transition-interpolated HMMs,
(2) adapting all parameters other than transi-
tion probabilities results in the highest recog-
nition accuracy compared to adapting any
subset of these parameters or adapting all
parameters including transition probabilities,
(3) performing both transition-interpolation
and adaptation gives higher word error rate
than performing adaptation alone and, (4)
dysarthria severity is not a sufficient indica-
tor of the relative performance of speaker-
dependent and speaker-adapted systems.

1 Introduction

After more than two decades of research, speech
recognition is a well-established and reliable
human-computer interaction technology. The accu-
racy of the newest generation of large vocabulary
speech recognizers, after adaptation to a user with-
out speech pathology, is high enough to provide a
useful human-computer interface especially for peo-
ple who find it difficult to type with a keyboard.

Automatic speech recognition (ASR) systems
generally assume that the speech signal is a realisa-
tion of some message encoded as a sequence of one
or more symbols. To effect the reverse operation of
recognising the underlying symbol sequence given a
spoken utterance, the continuous speech waveform
is first converted to a sequence of equally spaced
discrete parameter vectors. The role of the recog-
niser is to effect a mapping between sequences of
speech vectors and the wanted underlying symbol
sequences. Most speech recognizers today are based
on the hidden Markov model (HMM) paradigm: it is
assumed that the sequence of observed speech vec-
tors is generated by a Markov model as shown in
Fig. 1. A Markov model is a finite state machine
which changes state once every time unit and each
time t that a state j is entered, a speech vector ot is
generated from the probability density bj(ot) which

a22 a33 a44

a23 a34 a45a12

a35
a24

a13

Hidden
Markov
Model

Observation
Sequence

1 2 3 4 5 6 7

b2( 1) b2( 2) b3( 3) b3( 4)
b4( 5) b4( 6) b4( 7)

Figure 1: The Markov generation model.

72



is a mixture-Gaussian density for most standard sys-
tems. The transition from state i to state j is also
probabilistic and is governed by the discrete prob-
ability aij . Fig. 1 shows an example of this pro-
cess where the five state model moves through the
state sequence X = 1, 2, 2, 3, 3, 4, 4, 4, 5 in order to
generate the sequence o1 to o7. The entry and exit
states (1, 5) are non-emitting. This is to facilitate
the construction of composite models: most systems
use HMMs to perform modeling at the phone-level
rather than word-level; as such, word-level mod-
els are constructed by stringing together phone-level
HMMs for the constituent phones.

Fig. 2 shows how HMMs can be used for isolated
word recognition. Firstly, an HMM is trained for
each vocabulary word using a number of examples
of that word – given a set of training examples cor-
responding to a particular model, the parameters of
that model ({aij} and {bj(ot)}) are determined by a
robust and efficient re-estimation procedure. In this
example, the vocabulary consists of just three words:
“one”, “two” and “three”. Secondly, to recognise
some unknown word, the likelihood (probability) of
each model generating that word is calculated and
the most likely model identifies the word.

Estimate
Models

P( | 2)

(a) TRAINING

Unknown = 

Training Examples

“one”

1

2

3

“two” “three”

1 2 3

(b) RECOGNITION

P( | 1) P( | 3)

Choose Max

Figure 2: Using HMMs for isolated word recognition.

For creating a speech recognizer for a particular
speaker, there are two approaches: one is to create

a speaker-dependent (SD) system by utlizing speech
of that speaker alone to train the HMMs; the other
is to create a speaker-adapted (SA) system by first
training the HMMs in a speaker-independent fashion
by utlizing speech of several speakers, and then cus-
tomising the HMMs to the characteristics of the par-
ticular speaker by using training examples of their
speech to modify the HMM parameters. The param-
eter values do not get overwritten; they are adjusted
using a regularized or constrained machine learning
algorithm. Regularization (e.g., using Maximum A
Posteriori learning) or constraints (e.g., using lin-
ear transformations) allow the SA model to use far
more trainable parameters per minute of training
data without over-training the system.

Despite the advances in speech technology, their
benefits have not been available to people with gross
motor impairments mainly because these impair-
ments include a component of dysarthria – a group
of motor speech disorders resulting from disturbed
muscular control of the speech mechanism due to
damage of the peripheral or central nervous system.
Dysarthria is often a symptom of a gross motor dis-
order, whose other symptoms usually make it hard
to use a keyboard and mouse. Published case stud-
ies have shown that some dysarthric users may find
it easier to use an ASR system instead of a key-
board (Carlson and Bernstein, 1987; Coleman and
Meyers, 1991; Deller et al., 1988; Deller et al.,
1991; Fried-Oken, 1985). Polur and Miller stud-
ied the development of HMM-based small vocabu-
lary (eight repetitions each of ten digits and fifteen
‘command’ words in English) SD systems for three
male subjects subjectively classified by a trained
clinician as moderately dysarthric (Polur and Miller,
2005a; Polur and Miller, 2005b). They found that
an ergodic HMM with a slight left-to-right character
(called a transition-interpolated HMM from hereon)
provides higher word recognition accuracy (WRA)
than a standard left-to-right HMM, apparently be-
cause the transition-interpolated HMM is able to
capture outlier events as a backward or nonlinear
progress through the intended word. The benefit
of using ergodic modeling over left-to-right mod-
eling in distorted speech applications with disrup-
tion events, pause events, and limited training data
has also been noted earlier by Deller, Hsu and Fer-
rier (Deller et al., 1991). Section 2.1.2 explains
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in more detail the difference between these HMM
topologies.

Speaking for long periods of time is tiring, espe-
cially for a person with dysarthria, therefore it is dif-
ficult for a person with dysarthria to train a speaker-
dependent ASR. Speaker adaptation then seems a
useful method to overcome this obstacle in devel-
oping dysarthric speech recognizers. Raghavendra
et al. (Raghavendra et al., 2001) have compared
recognition accuracies of an SA system and an SD
system. They found that the SA system adapted
well to the speech of talkers with mild or moder-
ate dysarthria, but the recognition scores were lower
than for an unimpaired speaker. The subject with
severe dysarthria was able to achieve better perfor-
mance with the SD system than with the SA sys-
tem. These findings were also supported by Rudz-
icz (Rudzicz, 2007) who compared the performance
of SD and “SA” systems on the Nemours database
(Menendez-Pidal et al., 1996) by varying indepen-
dently the amount of data for training and the num-
ber of Gaussian components used for modeling the
output probability distributions. The “SA” technique
implemented is not speaker-adaptation in the con-
ventional sense: it uses the parameter values for the
speaker-independent system as the starting point to
train HMMs for a particular dysarthric speaker. In
a training algorithm without regularization or con-
straint terms, it is possible for a system of this type
to over-train, resulting in loss of accuracy on test
data from the same speaker, and Rudzicz’s results
suggest that such over-training may have occurred
in some cases. He further concluded that there was
not enough data in the database to represent intra-
speaker variation.

The study described in this paper investigated the
development of medium vocabulary HMM recog-
nizers for dysarthric speech of various degrees of
severity with the following aims: (1) to test the per-
formance of SA systems relative to SD systems, for
various degrees of dysarthria severity, (2) to test the
performance of an SD system employing transition-
interpolated HMMs relative to an SD system using
strictly left-to-right HMMs, (3) to test the perfor-
mance of an SA system with transition-interpolated
HMMs relative to an SD system having strictly left-
to-right HMMs and, (4) to see if the results in the
above three cases are essentially a function of the

talker’s dysarthria severity.

2 Experimental Setup

2.1 Modifications investigated
The following modifications to the HMM structure
were studied in our experiments:

2.1.1 Adaptation
All SA systems were developed by adapting a

speaker-independent system in a Maximum A Pos-
teriori (MAP) manner, as outlined by Gauvain and
Lee (Gauvain and Lee, 1991; Gauvain and Lee,
1992). MAP adaptation involves the use of prior
knowledge about the model parameter distribution.
Hence, if we know what the parameters of the model
are likely to be (before observing any adaptation
data) using the prior knowledge, we might well be
able to make good use of the limited adaptation data,
to obtain a decent MAP estimate. For MAP adapta-
tion purposes, the informative priors that are gener-
ally used are the speaker independent model param-
eters (empirical Bayes approach). In (Gauvain and
Lee, 1991), they derive expressions of MAP esti-
mates for all HMM parameters except the transition
probabilities (Gaussian mixture-component means,
diagonal Gaussian mixture-component covariance
matrices and, mixture-component weights) and also
provide an initialization scheme for the prior den-
sity of these parameters. In (Gauvain and Lee,
1992), they derive expressions for MAP estimates of
transition probabilities in addition to those for full-
covariance Gaussian mixture-component parame-
ters, and provide a MAP variant of the Expectation-
Maximization (EM) re-estimation algorithm. All
systems developed in our study modeled the obser-
vations as mixture of Gaussians with diagonal co-
variance matrices.

2.1.2 Transition-Interpolation
Fig. 3 illustrates the topologies of strictly left-to-

right (LR) and transition-interpolated (TI) HMMs
with 3 emitting states. If A = {aij} be the N ×
N transition probability matrix for an N-state HMM,
then we have for an LR HMM: for each state i,
0 < aii , ai,i+1 < 1; aii + ai,i+1 = 1 and aij =
0 for j 6= i, i + 1. In other words, each emitting
state has only two possible state-transitions: given
the current state, the HMM either remains in the
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same state or moves into the succeeding state; it will
not jump over states or go to a preceding state.

Strictly
Left-to-Right

HMM

a22 a33 a44

a23 a34 a45a12

Transition-
Interpolated
HMM

a22 a33 a44

a23 a34 a45a12
ε32 ε43

ε24
ε42

Figure 3: Difference between strictly left-to-right and
transition-interpolated HMM topologies.

The TI model is an LR model which has non-zero
transition probabilties for jumps and transitions to
preceding states from a particular state (for emit-
ting states). These probabilties are however small
compared to self-transition and next-state–transition
probabilties. A TI HMM is initialized as follows: for
each emitting state i, aij = ε for j 6= i, i+1 where
0 < ε << 1; aii , ai,i+1 >> ε and

∑N
j=1 aij =

1. After this initialization, the transition probabil-
ity matrix is re-estimated for speaker-dependent sys-
tems using the standard Maximum Likelihood EM
algorithm, and for speaker-adapted systems using
the MAP variant of the EM algorithm.

2.2 Data used

The experiments described in this paper utilized
speech of 7 speakers from the UA-Speech database
(Kim et al., 2008). This corpus was constructed with
the aim of developing large-vocabulary dysarthric
ASR systems which would allow users to enter un-
limited text into a computer. All speakers exhib-
ited symptoms of spastic dysarthria, according to an
informal evaluation by a certified speech-language
pathologist. Each speaker recorded 765 isolated
words in 3 blocks of 255 words each; (a) common
to all blocks: 10 digits (D), 19 computer commands
(C), 26 radio alphabet letters (L), and 100 common
words (CW) selected from the Brown corpus of writ-
ten English; and (b) unique to each block: 100 un-

common words (UW) selected from children’s nov-
els digitized by Project Gutenberg. Vocabularies D
and CW were primarily composed of monosylla-
bles, C and L of bisyllables, and UW of polysyl-
labic words. The speakers’ speech was affected by
dysarthria associated with cerebral palsy. Data ac-
quisition and intelligibility assessment is described
in more detail in (Kim et al., 2008). Two hundred
distinct words were selected from the recording of
the second block: 10 digits, 25 radio alphabet letters,
19 computer commands and, 73 words randomly se-
lected from each of the CW and UW categories. Five
naive listeners were recruited for each speaker and
were instructed to provide orthographic transcrip-
tions of each word that they thought the speaker
said. The percentage of correct responses was then
averaged across five listeners to obtain each speak-
ers intelligibility. Table 1 lists the speakers whose
speech materials from the UA-Speech database were
used, along with their human listener intelligibility
ratings. The first letter of the speaker code (‘M’ or
‘F’) indicates their gender.

Speaker Age Speech Intelligbility (%)
M09 18 high (86%)
M05 21 mid (58%)
M06 18 low (39%)
F02 30 low (29%)
M07 58 low (28%)
F03 51 very low (6%)
M04 >18 very low (2%)

Table 1: Summary of Speaker Information (in decreasing
order of human listener intelligibility rating).

For building the “MAP prior” speaker-
independent system, the unadapted HMMs were
trained on speech from the TIMIT corpus (Garofolo
et al., 1993).

2.3 System Configurations

Table 2 lists the characteristics of the various sys-
tem configurations that were studied: SD stands
for speaker-dependent, SA for speaker-adapted;
LR implies use of strictly left-to-right HMMs, TI
for transition-interpolated HMMs; ‘m’,‘v’,‘w’,‘t’
respectively denote means, variances, mixture-
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component weights and transition probabilities.
These systems were developed for each of the seven

System (Type) HMM Parameters adapted
C00 (SD) LR —
C01 (SD) TI —
C11 (SA) LR m
C12 (SA) LR m,v
C13 (SA) LR m,v,w
C14 (SA) LR m,v,w,t
C15 (SA) TI m,v,w,t

Table 2: Summary of ASR System Configurations

speakers listed in Table 1, and employed word-
internal, context-dependent triphone HMMs, with
three hidden states and observations modeled as
mixture-of-Gaussians. Configuration C00 was de-
veloped by Sharma and Hasegawa-Johnson (2009)
and is the baseline configuration for the present ex-
periments. For configurations C11 through C15,
the speaker-independent systems trained on TIMIT
employed left-to-right HMMs. For systems C15,
the transition-interpolation was performed after ob-
taining the speaker-independent TIMIT-trained left-
to-right HMMs and before adaptation to the UA-
Speech speaker’s data: the original non-zero entries
in the transition probability matrices were scaled
down so that the sum of each row was unity after
changing the zero-entries to ε. For each speaker, all
of blocks 1 and 3 were used as training data (sys-
tems C00, C01) or adaptation data (systems C11-
C15) and all of block 2 was used for testing. The
speaker-independent system was trained on all of
TIMIT’s training data and was tested on speech of
32 randomly chosen speakers from its test data.

The features extracted from the speech waveform
comprised of 12 Perceptual Linear Prediction co-
efficients (Hermansky, 1990) for 25 ms Hamming-
windowed segments obtained every 10 ms, plus the
energy of the windowed segment. ‘Velocity’ and
‘Acceleration’ components were also calculated for
this 13-dimensional feature, which finally resulted
in a 39-dimensional acoustic feature vector.

The measure used for assessing the performance
of the developed recognizers is the fraction of task–
vocabulary words correctly recognized (in percent),

defined in Equation 1.

PWC =
# words correctly recognized

# words attempted
× 100

(1)
For each configuration, the number of Gaussian

components in the state-specific observation proba-
bility densities was increased (in an iterative man-
ner) in powers of 2, from 1 to 32 components (for
C00 and C01) or 64 components (for C11-C15):
standard methods for choosing this number (using
development test data) could not be employed on
account of insufficient data. The results reported
in the next section should therefore be interpreted
as development test results. In order to avoid over-
tuning, the number of Gaussian components was
constrained to be the same across all speakers. For
the speaker-dependent systems (C00 and C01), re-
sults are for HMMs with 2 Gaussian components per
probability density. For the speaker-adapted systems
(C11-C15), results are for HMMs with 32 Gaussian
components per probability density: while train-
ing the speaker-independent TIMIT system, it was
found that the phone recognition accuracy increased
monotonically when going from 1 to 32 Gaussian
components but decreased when going from 32 to
64 components.

3 Results

Tables 3, 4 list the PWC scores for the various sys-
tem configurations developed. The speakers are
listed in decreasing order of intelligibility rating.
The scores for systems C00 are restated here from
Sharma and Hasegawa-Johnson (2009) (Table 6, un-
der the column ‘T10’).

We see that speaker-dependent systems with left-
to-right HMMs (C00) have higher recognition ac-
curacy than the speaker-dependent systems with
transition-interpolated HMMs (C01), for all speak-
ers except M06. System C11 for a particular
speaker, with adaptation of Gaussian means alone
performs either better or worse than both sys-
tems C00 and C01 for that speaker. System C12
with adaptation of Gaussian means and variances,
has better recognition accuracy than both speaker-
dependent systems, for all speakers except F02 and
M07 (worse than both speaker-dependent systems).
System C13 with adaptation of all parameters ex-
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System Configuration
Speaker C00 C01 C11 C12

M09 52.04 47.3 57.1 62.1
M05 35.52 33.7 31 39.4
M06 34.01 36.1 38.6 38.5
F02 35.06 32.8 20.8 26.9
M07 43.87 40.7 32 35.9
F03 12.61 11.3 17.4 22.2
M04 2.82 1.7 3.7 4.2

Table 3: PWC scores for each speaker’s configurations
C00-C12.

System Configuration
Speaker C00 C13 C14 C15

M09 52.04 66.4 65.8 64.2
M05 35.52 45.2 44 38.1
M06 34.01 40.7 40.1 39.2
F02 35.06 30.4 29.7 26.6
M07 43.87 43 41.8 35.9
F03 12.61 27.7 26.2 25.7
M04 2.82 4.2 3.8 3.1

Table 4: PWC scores for each speaker’s configurations
C00,C13-C15.

cept transition-probabilities has the highest recogni-
tion accuracy for all subjects except F02 and M07
(highest among speaker-adapted systems only). Sys-
tem C14 which adapts all parameters including tran-
sition probabilities, always performs worse than the
corresponding system C13, for all speakers. How-
ever, like system C13, it has better recognition ac-
curacy than both speaker-dependent systems for all
speakers except F02 and M07. Finally, perform-
ing transition-interpolation and adaptation of all pa-
rameters (system C15) worsens the performance to
below that of the corresponding system C14; addi-
tionally, C15 has better recognition accuracy than
both speaker-dependent systems whenever the cor-
responding C13 (and C14) system also performs bet-
ter than them.

These results are plotted in Fig. 4 along with
the human listeners’ intelligibility ratings of these
speakers (the black circles). For speakers M09 and
M05, system C13 with the best overall PWC score
is still far from doing as well as human listeners. For
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Figure 4: PWC scores for various system configurations
(the black circles indicate speakers’ human listener intel-
ligibility ratings).

the remaining subjects, it has however been able to
do as well or better than human listeners even when
it performed worse than the corresponding speaker-
dependent systems (C00,C01): in fact, for speaker
M06, it does better than human listeners when the
speaker-dependent systems don’t.

Fig. 5 plots, for all speakers, the percentage dif-
ference PWC(x)/PWC(C00)-1 between the PWC of
system x (x ∈ {C01− C15}) and the PWC of sys-
tem C00.
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Figure 5: Percentage change in PWC scores for vari-
ous system configurations relative to configuration C00’s
PWC score.

For speakers who have an intelligibility rating
above 35% or below 25%, the speaker-adapted
systems generally do better than their speaker-
dependent counterparts. System C01, with tran-
sition interpolation, performs worse than system
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C00 for all speakers except M06. The surpris-
ing result though is that for speakers with highly
severe dysarthria (F03 and M04), speaker-adapted
systems have substantially better recognition ac-
curacies than their speaker-dependent counterparts,
when previous studies have indicated that for such
subjects, speaker-dependent systems perform better
than speaker-adapted systems.

4 Conclusions

This study investigated adaptation and state-
transition interpolation techniques for medium vo-
cabulary HMM-based speech recognition of talkers
with spastic dysarthria. It was found that performing
transition-interpolation generally worsens recogni-
tion performance when compared to left-to-right
HMMs. Performing both adaptation and transition-
interpolation results in higher recognition accuracy
compared to the speaker-dependent system with left-
to-right HMMs but adaptation-only systems have
still better performance. This implies that state-
transitions not accounted for in left-to-right HMMs
do not capture (or capture rather poorly) the out-
lier events that differentiate dysarthric speech from
unimpaired speech at the sub-phone level.

The most interesting outcome of our experiments
is that for subjects that have very severe dysarthria,
speaker-adaptation was able to achieve substantial
improvement in recognition accuracy, compared to
the speaker-dependent systems. This finding is sig-
nificant in that it is contrary to the conclusions of
previously published studies. The results reported
in this paper therefore suggest that the severity of
dysarthria as quantified by the subject’s intelligibil-
ity rating is not a sufficient indicator of the rela-
tive performance of speaker-dependent and speaker-
adapted systems.
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Abstract

Modern automatic speech recognition is inef-
fective at understanding relatively unintelligi-
ble speech caused by neuro-motor disabilities
collectively called dysarthria. Since dysarthria
is primarily an articulatory phenomenon, we
are collecting a database of vocal tract mea-
surements during speech of individuals with
cerebral palsy. In this paper, we demonstrate
that articulatory knowledge can remove am-
biguities in the acoustics of dysarthric speak-
ers by reducing entropy relatively by 18.3%,
on average. Furthermore, we demonstrate
that dysarthric speech is more precisely por-
trayed as a noisy-channel distortion of an
abstract representation of articulatory goals,
rather than as a distortion of non-dysarthric
speech. We discuss what implications these
results have for our ongoing development of
speech systems for dysarthric speakers.

1 Introduction

Dysarthria is a set of congenital and traumatic
neuro-motor disorders that impair the physical pro-
duction of speech and affects approximately 0.8% of
individuals in North America (Hosom et al., 2003).
Causes of dysarthria include cerebral palsy (CP),
multiple sclerosis, Parkinson’s disease, and amy-
otrophic lateral sclerosis (ALS). These impairments
reduce or remove normal control of the primary vo-
cal articulators but do not affect the abstract produc-
tion of meaningful, syntactically correct language.

The neurological origins of dysarthria involve
damage to the cranial nerves that control the speech
articulators (Moore and Dalley, 2005). Spastic

dysarthria, for instance, is partially caused by le-
sions in the facial and hypoglossal nerves, which
control the jaw and tongue respectively (Duffy,
2005), resulting in slurred speech and a less differ-
entiable vowel space (Kent and Rosen, 2004). Sim-
ilarly, damage to the glossopharyngeal nerve can re-
duce control over vocal fold vibration (i.e., phona-
tion), resulting in guttural or grating raspiness. In-
adequate control of the soft palate caused by disrup-
tion of the vagus nerve may lead to a disproportion-
ate amount of air released through the nose during
speech (i.e., hypernasality).

Unfortunately, traditional automatic speech
recognition (ASR) is incompatible with dysarthric
speech, often rendering such software inaccessible
to those whose neuro-motor disabilities might make
other forms of interaction (e.g., keyboards, touch
screens) laborious. Traditional representations in
ASR such as hidden Markov models (HMMs)
trained for speaker independence that achieve
84.8% word-level accuracy for non-dysarthric
speakers might achieve less than 4.5% accuracy
given severely dysarthric speech on short sentences
(Rudzicz, 2007). Our research group is currently
developing new ASR models that incorporate em-
pirical knowledge of dysarthric articulation for use
in assistive applications (Rudzicz, 2009). Although
these models have increased accuracy, the disparity
is still high. Our aim is to understand why ASR
fails for dysarthric speakers by understanding the
acoustic and articulatory nature of their speech.

In this paper, we cast the speech-motor interface
within the mathematical framework of the noisy-
channel model. This is motivated by the charac-
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terization of dysarthria as a distortion of parallel
biological pathways that corrupt motor signals be-
fore execution (Kent and Rosen, 2004; Freund et
al., 2005), as in the examples cited above. Within
this information-theoretic framework, we aim to in-
fer the nature of the motor signal distortions given
appropriate measurements of the vocal tract. That is,
we ask the following question: Is dysarthric speech
a distortion of typical speech, or are they both distor-
tions of some common underlying representation?

2 Dysarthric articulation data

Since the underlying articulatory dynamics of
dysarthric speech are intrinsically responsible for
complex acoustic irregularities, we are collecting
a database of dysarthric articulation. Time-aligned
movement and acoustic data are measured using
two systems. The first infers 3D positions of sur-
face facial markers given stereo video images. The
second uses electromagnetic articulography (EMA),
in which the speaker is placed within a cube that
produces a low-amplitude electromagnetic field, as
shown in figure 1. Tiny sensors within this field al-
low the inference of articulator positions and veloci-
ties to within 1 mm of error (Yunusova et al., 2009).

Figure 1: Electromagnetic articulograph system.

We have so far recorded one male speaker with
ALS, five male speakers with CP, four female
speakers with CP, and age- and gender-matched
controls. Measurement coils are placed as in
other studies (e.g., the University of Edinburgh’s
MOCHA database (Wrench, 1999) and the Uni-

versity of Wisconsin-Madison’s x-ray microbeam
database (Yunusova et al., 2008)). Specifically, we
are interested in the positions of the upper and lower
lip (UL and LL), left and right mouth corners (LM
and RM), lower incisor (LI), and tongue tip, blade,
and dorsum (TT, TB, and TD). Unfortunately, a few
of our male CP subjects had a severe gag reflex, and
we found it impossible to place more than one coil
on the tongue for these few individuals. Therefore,
of the tongue positions, only TT is used in this study.
All articulatory data are smoothed with third-order
median filtering in order to minimize measurement
‘jitter’. Figure 2 shows the degree of lip aperture
(i.e., the distance between UL and LL) over time for
a control and a dysarthric speaker repeating the se-
quence /ah p iy/. Here, the dysarthric speech is no-
tably slower and has more excessive movement.
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Figure 2: Lip aperture over time for four iterations of /ah
p iy/ given a dysarthric and control speaker.

Our dysarthric speech data include random repeti-
tions of phonetically balanced short sentences origi-
nally used in the TIMIT database (Zue et al., 1989),
as well as pairs of monosyllabic words identified
by Kent et al. (1989) as having relevant articula-
tory contrasts (e.g., beat versus meat as a stop-
nasal contrast). All articulatory data are aligned
with associated acoustic data, which are transformed
to Mel-frequency cepstral coefficients (MFCCs).
Phoneme boundaries and pronunciation errors are
being transcribed by a speech-language pathologist
to the TIMIT phoneset. Table 1 shows pronuncia-
tion errors according to manner of articulation for
dysarthric speech. Plosives are mispronounced most
often, with substitution errors exclusively caused by
errant voicing (e.g. /d/ for /t/). By comparison, only
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5% of corresponding plosives in total are mispro-
nounced in regular speech. Furthermore, the preva-
lence of deleted affricates in word-final positions, al-
most all of which are alveolar, does not occur in the
corresponding control data.

SUB (%) DEL (%)
i m f i m f

plosives 13.8 18.7 7.1 1.9 1.0 12.1
affricates 0.0 8.3 0.0 0.0 0.0 23.2
fricatives 8.5 3.1 5.3 22.0 5.5 13.2

nasals 0.0 0.0 1.5 0.0 0.0 1.5
glides 0.0 0.7 0.4 11.4 2.5 0.9

vowels 0.9 0.9 0.0 0.0 0.2 0.0

Table 1: Percentage of phoneme substitution (SUB) and
deletion (DEL) errors in word-initial (i), word-medial
(m), and word-final (f) positions across categories of
manner for dysarthric data.

Table 2 shows the relative durations of the five
most common vowels and sonorant consonants in
our database between dysarthric and control speech.
Here, dysarthric speakers are significantly slower
than their control counterparts at the 95% confidence
interval for /eh/ and at the 99.5% confidence interval
for all other phonemes.

Phoneme
duration (µ (σ2), in ms) Avg.

Dysarthric Control diff.
/ah/ 189.3 (19.2) 120.1 (4.0) 69.2
/ae/ 211.6 (16.4) 140.0 (4.4) 71.6
/eh/ 160.5 (7.4) 107.3 (2.6) 53.2
/iy/ 177.1 (86.7) 105.8 (93.1) 71.3
/er/ 220.5 (27.9) 148.6 (59.8) 71.9
/l/ 138.5 (8.0) 91.8 (2.4) 46.7
/m/ 173.5 (13.4) 94.7 (2.1) 78.8
/n/ 168.4 (14.4) 90.9 (2.3) 77.5
/r/ 138.8 (8.3) 95.3 (3.4) 43.5
/w/ 151.5 (12.0) 84.5 (1.3) 67.0

Table 2: Average lengths (and variances in parentheses)
in milliseconds for the five most common vowels and
sonorant consonants for dysarthric and control speakers.
The last column is the average difference in milliseconds
between dysarthric and control subjects.

Processing and annotation of further data from
additional dysarthric speakers is ongoing, including
measurements of all three tongue positions.

3 Entropy and the noisy-channel model

We wish to measure the degree of statistical disorder
in both acoustic and articulatory data for dysarthric
and non-dysarthric speakers, as well as the a posteri-
ori disorder of one type of data given the other. This
quantification will inform us as to the relative mer-
its of incorporating knowledge of articulatory be-
haviour into ASR systems for dysarthric speakers.
Entropy, H(X), is a measure of the degree of uncer-
tainty in a random variable X . When X is discrete,
this value is computed with the familiar

H(X) =−
n

∑
i=1

p(xi) logb p(xi),

where b is the logarithm base, xi is a value of X ,
of which there are n possible, and p(xi) is its prob-
ability. When our observations are continuous, as
they are in our acoustic and articulatory database,
we must use differential entropy defined by

H(X) =−
∫

X
f (X) log f (X)dX ,

where f (X) is the probability density function of X .
For a number of distributions f (X), the differential
entropy has known forms (Lazo and Rathie, 1978).
For example, if f (X) is a multivariate normal,

fX(x1, ...,xN) =
exp
(
−1

2(x−µ)T Σ−1(x−µ)
)

(2π)N/2 |Σ|1/2

H(X) = 1
2 ln
(
(2πe)N |Σ|

)
,

(1)

where µ and Σ are the mean and covariances of the
data. However, since we observe that both acous-
tic and articulatory data follow non-Gaussian dis-
tributions, we choose to represent these spaces by
mixtures of Gaussians. Huber et al. (2008) have de-
veloped an accurate algorithm for estimating differ-
ential entropy of Gaussian mixtures based on itera-
tively merging Gaussians and the approximation

H̃(X) =
L

∑
i=1

ωi
(
− logωi + 1

2 log((2πe)N |Σi|
)
,

where ωi is the weight of the ith(1≤ i≤ L) Gaussian
and Σi is that Gaussian’s covariance matrix. This
method is used to approximate entropies in the fol-
lowing study, with L = 32. Note that while differen-
tial entropies can be negative and not invariant under
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change of variables, other properties of entropy are
retained (Huber et al., 2008), such as the chain rule
for conditional entropy

H(Y |X) = H(Y,X)−H(X),

which describes the uncertainty in Y given knowl-
edge of X , and the chain rule for mutual information

I(Y ;X) = H(X)+H(Y )−H(X ,Y ),

which describes the mutual dependence between X
and Y . Here, we quantize entropy with the nat,
which is the natural logarithmic unit, e (≈ 1.44 bits).

3.1 The noisy channel
The noisy-channel theorem states that information
passed through a channel with capacity C at a rate
R ≤ C can be reliably recovered with an arbitrarily
low probability of error given an appropriate coding.
Here, a message from a finite alphabet is encoded,
producing signal x ∈ X . That signal is then distorted
by a medium which transmits signal y ∈ Y accord-
ing to some distribution P(Y |X). Given that there is
some probability that the received signal, y, is cor-
rupted, the message produced by the decoder may
differ from the original (Shannon, 1949).

To what extent can we describe the effects of
dysarthria within an information-theoretic noisy
channel model? We pursue two competing hypothe-
ses within this general framework. The first hypoth-
esis models the assumption that dysarthric speech is
a distorted version of typical speech. Here, signal
X and Y represent the vocal characteristics of the
general and dysarthric populations, respectively, and
P(Y |X) models the distortion between them. The
second hypothesis models the assumption that both
dysarthric and typical speech are distorted versions
of some common abstraction. Here, Yd and Yc repre-
sent the vocal characteristics of dysarthric and con-
trol speakers, respectively, and X represents a com-
mon, underlying mechanism and that P(Yd |X) and
P(Yc |X) model distortions from that mechanism.
These two hypotheses are visualized in figure 3. In
each of these cases, signals can be acoustic, articu-
latory, or some combination thereof.

3.2 Common underlying abstractions
In order to test our hypothesis that both dysarthric
and control speakers share a common high-level ab-

P(Y | X)
Dysarthric speech

signal, Y
Typical speech

signal, X

(a) Dysarthric speech as a distortion of control speech

P(Yd 
| X)

Dysarthric speech
signal, Y

dAbstract speech
signal, X

P(Yc 
| X)

Control speech
signal, Y

c

(b) Dysarthric and control speech as distortions of a common
abstraction

Figure 3: Sections of noisy channel models that mimic
the neuro-motor interface.

straction of the vocal tract that is in both cases dis-
torted during articulation, we incorporate the the-
ory of task dynamics (Saltzman and Munhall, 1989).
This theory represents the interface between the lex-
ical intentions and vocal tract realizations of speech
as a sequence of overlapping gestures, which are
continuous dynamical systems that describe goal-
oriented reconfigurations of the vocal tract, such as
bilabial closure during /m/. Figure 4 shows an ex-
ample of overlapping gestures for the word pub.

TBCD

closed

open

GLO

open

closed

LA

open

closed

100 200 300 400
Time (ms)

Figure 4: Canonical example pub from Saltzman
and Munhall (1989) representing overlapping goals for
tongue blade constriction degree (TBCD), lip aperture
(LA), and glottis (GLO). Boxes represent the present of
discretized goals, such as lip closure. Black curves repre-
sent the output of the TADA system.

The open-source TADA system (Nam and Gold-
stein, 2006) estimates the positions of various artic-
ulators during speech according to parameters that
have been carefully tuned by the authors of TADA
according to a generic, speaker-independent repre-
sentation of the vocal tract (Saltzman and Munhall,
1989). Given a word sequence and a syllable-to-
gesture dictionary, TADA produces the continuous
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tract variable paths that are necessary to produce that
sequence. This takes into account various physio-
logical aspects of human speech production, such as
interarticulator co-ordination and timing (Nam and
Saltzman, 2003).

In this study, we use TADA to produce estimates
of a global, high-level representation of speech com-
mon to both dysarthric and non-dysarthric speakers
alike. Given a word sequence uttered by both types
of speaker, we produce five continuous curves pre-
scribed by that word sequence in order to match our
available EMA data. Those curves are lip aperture
and protrusion (LA and LP), tongue tip constriction
location and degree (TTCL and TTCD, representing
front-back and top-down positions of the tongue tip,
respectively), and lower incisor height (LIH). These
curves are then compared against actually observed
EMA data, as described below.

4 Experiments

First, in section 4.1, we ask whether the incorpo-
ration of articulatory data is theoretically useful in
reducing uncertainty in dysarthric speech. Second,
in section 4.2, we ask which of the two noisy chan-
nel models in figure 3 best describe the observed be-
haviour of dysarthric speech.

Data for this study are collected as described as in
section 2. Here, we use data from three dysarthric
speakers with cerebral palsy (males M01 and M04,
and female F03), as well as their age- and gender-
matched counterparts from the general population
(males MC01 and MC03, and female FC02). For
this study we restrict our analysis to 100 phrases ut-
tered in common by all six speakers.

4.1 Entropy

We measure the differential entropy of acoustics
(H(Ac)), of articulation (H(Ar)), and of acoustics
given knowledge of the vocal tract (H(Ac |Ar)) in
order to obtain theoretical estimates as to the utility
of articulatory data. Table 3 shows these quantities
across the six speakers in this study. As expected,
the acoustics of dysarthric speakers are much more
disordered than for non-dysarthric speakers. One
unexpected finding is that there is very little differ-
ence between speakers in terms of their entropy of
articulation. Although dysarthric speakers clearly

lack articulatory dexterity, this implies that they
nonetheless articulate with a level of consistency
similar to their non-dysarthric counterparts1. How-
ever, the equivocation H(Ac |Ar) is an order of mag-
nitude lower for non-dysarthric speakers. This im-
plies that there is very little ambiguity left in the
acoustics of non-dysarthric speakers if we have si-
multaneous knowledge of the vocal tract, but that
quite a bit of ambiguity remains for our dysarthric
speakers, despite significant reductions.

Speaker H(Ac) H(Ar) H(Ac |Ar)

Dys.

M01 66.37 17.16 50.30
M04 33.36 11.31 26.25
F03 42.28 19.33 39.47

Average 47.34 15.93 38.68

Ctrl.

MC01 24.40 21.49 1.14
MC03 18.63 18.34 3.93
FC02 16.12 15.97 3.11

Average 19.72 18.60 2.73

Table 3: Differential entropy, in nats, across dysarthric
and control speakers for acoustic ac and articulatory ar
data.

Table 4 shows the average mutual information be-
tween acoustics and articulation for each type of
speaker, given knowledge of the phonological man-
ner of articulation. In table 1 we noted a prevalence
of pronunciation errors among dysarthric speakers
for plosives, but table 4 shows no particularly low
congruity between acoustics and articulation for this
manner of phoneme. Those pronunciation errors
tended to be voicing errors, which would involve the
glottis, which is not measured in this study.

Table 4 appears to imply that there is little mu-
tual information between acoustics and articulation
in vowels across all speakers. However, this is al-
most certainly the result of our exclusion of tongue
blade and tongue dorsum measurements in order to
standardize across speakers who could not manage
these sensors. Indeed, the configuration of the en-
tire tongue is known to be useful in discriminat-
ing among the vowels (O’Shaughnessy, 2000). An
ad hoc analysis including all three tongue sensors
for speakers F03, MC01, MC03, and FC02 revealed
mutual information between acoustics and articula-

1This is borne out in the literature (Kent and Rosen, 2004).
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Manner
I(Ac;Ar)

Dys. Ctrl.
plosives 10.92 16.47
affricates 8.71 9.23
fricatives 9.30 10.94
nasals 13.29 15.10
glides 11.92 12.68
vowels 6.76 7.15

Table 4: Mutual information I(Ac;Ar) of acoustics and
articulation for dysarthric and control subjects, across
phonological manners of articulation.

tion of 16.81 nats for F03 and 18.73 nats for the
control speakers, for vowels. This is compared with
mutual information of 11.82 nats for F03 and 13.88
nats for the control speakers across all other man-
ners. The trend seems to be that acoustics are better
predicted given more tongue measurements.

In order to better understand these results, we
compare the distributions of the vowels in acoustic
space across dysarthric and non-dysarthric speech.
Vowels in acoustic space are characterized by the
steady-state positions of the first two formants (F1
and F2) as determined automatically by applying the
pre-emphasized Burg algorithm (Press et al., 1992).
We fit Gaussians to the first two formants for each
of the vowels in our data, as exemplified in fig-
ure 5 and compute the entropy within these distri-
butions. Surprisingly, the entropies of these distri-
butions were relatively consistent across dysarthric
(34.6 nats) and non-dysarthric (33.3 nats) speech,
with some exceptions (e.g., iy). However, vowel
spaces overlap considerably more in the dysarthric
case signifying that, while speakers with CP can be
nearly as acoustically consistent as non-dysarthric
speakers, their targets in that space are not as dis-
cernible. Some research has shown larger variance
among dysarthric vowels relative to our findings
(Kain et al., 2007). This may partially be due to our
use of natural connected speech as data, rather than
restrictive consonant-vowel-consonant non-words.

4.2 Noisy channel

Our task is to determine whether dysarthric speech
is best represented as a distorted version of typi-
cal speech, or if both dysarthric and typical speech
ought to be viewed as distortions of a common ab-
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Figure 5: Contours showing first standard deviation in
F1 versus F2 space for distributions of six representative
vowels in continuous speech for the dysarthric and non-
dysarthric male speakers.

stract representation. To explore this question, we
design a transformation system that produces the
most likely observation in one data space given its
counterpart in another and the statistical relationship
between the two spaces. This transformation in ef-
fect implements the noisy channel itself.

To accomplish this, we learn probability distri-
butions over our EMA data. First, we collect all
dysarthric data together and all non-dysarthric data
together. We then consider the acoustic (Ac) and
articulatory (Ar) subsets of these data. In each
case, we train Gaussian mixtures, each with 60 com-
ponents, over 90% of the data in both dysarthric
and non-dysarthric speech. Here, each of the 60
phonemes in the data is represented by one Gaussian
component, with the weight of that component de-
termined by the relative proportion of 10 ms frames
for that phoneme. Similarly, all training word se-
quences are passed to TADA, and we train a mixture
of Gaussians on its articulatory output.

Across all Gaussian mixtures, we end up with 5
Gaussians tuned to various aspects of each phoneme
p: its dysarthric acoustics and articulation (NAc

p (Yd)
and NAr

p (Yd)), its control acoustics and articula-
tion (NAc

p (Yd) and NAr
p (Yd)), and its prescribed ar-

ticulation from TADA (NAr
p (X)). Each Gaussian

NA
p(B) is represented by its mean µ

(A,B)
p and its
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covariance, Σ
(A,B)
p . Furthermore, we compute the

cross-covariance matrix between Gaussians for a
given phoneme (e.g., Σ

(Ac,Yc)→(Ac,Yd)
p is the cross-

covariance matrix of the acoustics of the control (Yc)
and dysarthric (Yd) speech for phoneme p). Given
these parameters, we estimate the most likely frame
in one domain given its counterpart in another. For
example, if we are given a frame of acoustics from
a control speaker, we can synthesize the most likely
frame of acoustics for a dysarthric speaker, given an
application of the noisy channel proposed by Hosom
et al. (2003) used to transform dysarthric speech to
make it more intelligible. Namely, given a frame of
acoustics yc from a control speaker, we can estimate
the acoustics of a dysarthric speaker yd with:

fAc(yc) =E(yd |yc)

=
P

∑
i=1

hi(yc)
[
µ

(Ac,Yd)
i +

Σ
(Ac,Yc)→(Ac,Yd)
i ·

(
Σ

(Ac,Yc)
i

)−1
·(

yc−µ
(Ac,Yc)
i

)]
,

(2)

where

hi(yc) =
αiN

(
yc; µ

(Ac,Yc)
i ,Σ

(Ac,Yc)
i

)
∑

P
j=1 α jN

(
yc; µ

(Ac,Yc)
j ,Σ

(Ac,Yc)
j

) ,

where αp is the proportion of the frames of phoneme
p in the data. Transforming between different types
and sources of data is accomplished merely by sub-
stituting in the appropriate Gaussians above.

We now measure how closely the transformed
data spaces match their true target spaces. In each
case, we transform test utterances (recorded, or syn-
thesized with TADA) according to functions learned
in training (i.e., we use the remaining 10% of the
data for each speaker type). These transformed
spaces are then compared against their target space
in our data. Table 5 shows the Gaussian mixture
phoneme-level Kullback-Leibler divergences given
various types of source and target data, weighted by
the relative proportions of the phonemes. Each pair
of N-dimensional Gaussians (Ni with mean µi and
covariance Σi) for a given phone and data type is

KL divergence
(10−2 nats)

Type 1 Type 2 Acous. Artic.
Ctrl. Dys. 25.36 3.23

Ctrl. → Dys. Dys. 17.78 2.11
TADA→ Ctrl. Ctrl. N/A 1.69
TADA→ Dys. Dys. N/A 1.84

Table 5: Average weighted phoneme-level Kullback-
Leibler divergences.

compared with

DKL(N0 ||N1) =
1
2

(
ln
(
|Σ1|
|Σ0|

)
+ trace(Σ−1

1 Σ0)

+(µ1−µ0)T
Σ
−1
1 (µ1−µ0)−N

)
.

Our baseline shows that control and dysarthric
speakers differ far more in their acoustics than in
their articulation. When our control data (both
acoustic and articulatory) are transformed to match
the dysarthric data, the result is predictably more
similar to the latter than if the conversion had not
taken place. This corresponds to the noisy channel
model of figure 3(a), whereby dysarthric speech is
modelled as a distortion of non-dysarthric speech.
However, when we model dysarthric and control
speech as distortions of a common, abstract repre-
sentation (i.e., task dynamics) as in figure 3(b), the
resulting synthesized articulatory spaces are more
similar to their respective observed data than the
articulation predicted by the first noisy channel
model. Dysarthric articulation predicted by trans-
formations from task-dynamics space differ signifi-
cantly from those predicted by transformations from
control EMA data at the 95% confidence interval.

5 Discussion

This paper demonstrates a few acoustic and articu-
latory features in speakers with cerebral palsy. First,
these speakers are likely to mistakenly voice un-
voiced plosives, and to delete fricatives regardless of
their word position. We suggest that it might be pru-
dent to modify the vocabularies of ASR systems to
account for these expected mispronunciations. Sec-
ond, dysarthric speakers produce sonorants signifi-
cantly slower than their non-dysarthric counterparts.
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This may present an increase in insertion errors in
ASR systems (Rosen and Yampolsky, 2000).

Although not quantified in this paper, we detect
that a lack of articulatory control can often lead
to observable acoustic consequences. For example,
our dysarthric data contain considerable involuntary
types of velopharyngeal or glottal noise (often as-
sociated with respiration), audible swallowing, and
stuttering. We intend to work towards methods of
explicitly identifying regions of non-speech noise in
our ASR systems for dysarthric speakers.

We have considered the amount of statistical dis-
order (i.e., entropy) in both acoustic and articula-
tory data in dysarthric and non-dysarthric speak-
ers. The use of articulatory knowledge reduces the
degree of this disorder significantly for dysarthric
speakers (18.3%, relatively), though far less than for
non-dysarthric speakers (86.2%, relatively). In real-
world applications we are not likely to have access to
measurements of the vocal tract; however, many ap-
proaches exist that estimate the configuration of the
vocal tract given only acoustic data (Richmond et al.,
2003; Toda et al., 2008), often to an average error of
less than 1 mm. The generalizability of such work
to new speakers (particularly those with dysarthria)
without training is an open research question.

We have argued for noisy channel models of
the neuro-motor interface assuming that the path-
way of motor command to motor activity is a lin-
ear sequence of dynamics. The biological reality
is much more complicated. In particular, the path-
way of verbal motor commands includes several
sources of sensory feedback (Seikel et al., 2005) that
modulate control parameters during speech (Gracco,
1995). These senses include exteroceptive stimuli
(auditory and tactile), and interoceptive stimuli (par-
ticularly proprioception and its kinesthetic sense)
(Seikel et al., 2005), the disruption of which can lead
to a number of production changes. For instance,
Abbs et al. (1976) showed that when conduction in
the mandibular branches of the trigeminal nerve is
blocked, the resulting speech has considerably more
pronunciation errors, although is generally intelligi-
ble. Barlow (1989) argues that the redundancy of
sensory messages provides the necessary input to the
motor planning stage, which relates abstract goals to
motor activity in the cerebellum. As we continue to
develop our articulatory ASR models for dysarthric

speakers, one potential avenue for future research in-
volves the incorporation of feedback from the cur-
rent state of the vocal tract to the motor planning
phase. This would be similar, in premise, to the
DIVA model (Guenther and Perkell, 2004).

In the past, we have shown that ASR systems that
adapt non-dysarthric acoustic models to dysarthric
data offer improved word-accuracy rates, but with
a clear upper bound approximately 75% below the
general population (Rudzicz, 2007). Incorporat-
ing articulatory knowledge into such adaptation im-
proved accuracy further, but with accuracy still
approximately 60% below the general population
(Rudzicz, 2009). In this paper, we have demon-
strated that dysarthric articulation can be more ac-
curately represented as a distortion of an underlying
model of abstract speech goals than as a distortion of
non-dysarthric articulation. These results will guide
our continued development of speech systems aug-
mented with articulatory knowledge, particularly the
incorporation of task dynamics.
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Abstract 

American Sign Language (ASL) generation 
software can improve the accessibility of in-
formation and services for deaf individuals 
with low English literacy.  The understand-
ability of current ASL systems is limited; they 
have been constructed without the benefit of 
annotated ASL corpora that encode detailed 
human movement.  We discuss how linguistic 
challenges in ASL generation can be ad-
dressed in a data-driven manner, and we de-
scribe our current work on collecting a 
motion-capture corpus. To evaluate the qual-
ity of our motion-capture configuration, cali-
bration, and recording protocol, we conducted 
an evaluation study with native ASL signers. 

1 Introduction 

American Sign Language (ASL) is the primary 
means of communication for about one-half mil-
lion deaf people in the U.S. (Mitchell et al., 2006).  
ASL has a distinct word-order, syntax, and lexicon 
from English; it is not a representation of English 
using the hands.  Although reading is part of the 
curriculum for deaf students, lack of auditory ex-
posure to English during the language-acquisition 
years of childhood leads to lower literacy for many 
adults.  In fact, the majority of deaf high school 
graduates in the U.S. have only a fourth-grade (age 
10) English reading level (Traxler, 2000).   

1.1 Applications of ASL Generation Research 

Most technology used by the deaf does not address 
this literacy issue; many deaf people find it diffi-

cult to read the English text on a computer screen 
or on a television with closed-captioning. Software 
to present information in the form of animations of 
ASL could make information and services more 
accessible to deaf users, by displaying an animated 
character performing ASL, rather than English 
text.  While writing systems for ASL have been 
proposed (Newkirk, 1987; Sutton, 1998), none is 
widely used in the Deaf community.  Thus, an 
ASL generation system cannot produce text output; 
the system must produce an animation of a human 
character performing sign language.  Coordinating 
the simultaneous 3D movements of parts of an 
animated character’s body is challenging, and few 
researchers have attempted to build such systems.   

Prior work can be divided into two areas: 
scripting and generation/translation. Scripting sys-
tems allow someone who knows sign language to 
“word process” an animation by assembling a se-
quence of signs from a lexicon and adding facial 
expressions.  The eSIGN project created tools for 
content developers to build sign databases and as-
semble scripts of signing for web pages (Ken-
naway et al., 2007).  Sign Smith Studio (Vcom3D, 
2010) is a commercial tool for scripting ASL (dis-
cussed in section 4).  Others study generation or 
machine translation (MT) of sign language (Chiu 
et al., 2007; Elliot & Glauert, 2008; Fotinea et al., 
2008; Huenerfauth, 2006; Karpouzis et al., 2007; 
Marshall & Safar, 2005; Shionome et al., 2005; 
Sumihiro et al., 2000; van Zijl & Barker, 2003). 

Experimental evaluations of the understandabil-
ity of state-of-the-art ASL animation systems have 
shown that native signers often find animations 
difficult to understand (as measured by compre-
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hension questions) or unnatural (as measured by 
subjective evaluation questions) (Huenerfauth et 
al., 2008).  Errors include a lack of smooth inter-
sign transitions, lack of grammatically-required 
facial expressions, and inaccurate sign perform-
ances related to morphological inflection of signs. 

While current ASL animation systems have 
limitations, there are several advantages in present-
ing sign language content in the form of animated 
virtual human characters, rather than videos: 
• Generation or MT software planning ASL sen-

tences cannot just concatenate videos of ASL.  
Using video clips, it is difficult to produce 
smooth transitions between signs, subtle mo-
tion variations in sign performances, or proper 
combinations of facial expressions with signs. 

• If content must be frequently modified or up-
dated, then a video performance would need to 
be largely re-recorded for each modification.  
Whereas, an animation (scripted by a human 
author) could be further edited or modified. 

• Because the face is used to indicate important 
information in ASL, a human must reveal his 
or her identity when producing an ASL video. 
Instead, a virtual human character could per-
form sentences scripted by a human author. 

• For wiki-style applications in which multiple 
authors are collaborating on information con-
tent, ASL videos would be distracting: the per-
son performing each sentence may differ.  A 
virtual human would be more uniform. 

• Animations can be appealing to children for 
use in educational applications.  

• Animations allow ASL to be viewed at differ-
ent angles, at different speeds, or by different 
virtual humans – depending on the preferences 
of the user.  This can enable education applica-
tions in which students learning ASL can prac-
tice their ASL comprehension skills. 

1.2 ASL is Challenging for NLP Research 

Natural Language Processing (NLP) researchers 
often apply techniques originally designed for one 
language to another, but research is not commonly 
ported to sign languages. One reason is that with-
out a written form for ASL, NLP researchers must 
produce animation and thus address several issues: 
• Timing: An ASL performance’s speed consists 

of: the speed of individual sign performances, 

the transitional time between signs, and the in-
sertion of pauses during signing – all of which 
are based on linguistic factors such as syntactic 
boundaries, repetition of signs in a discourse, 
and the part-of-speech of signs (Grosjean et al., 
1979). ASL animations whose speed and paus-
ing are incorrect are significantly less under-
standable to ASL signers (Huenerfauth, 2009). 

• Spatial Reference: Signers arrange invisible 
placeholders in the space around their body to 
represent objects or persons under discussion 
(Meier, 1990). To perform personal, posses-
sive, or reflexive pronouns that refer to these 
entities, signers later point to these locations. 
Signers may not repeat the identity of these en-
tities again; so, their conversational partner 
must remember where they have been placed.  
An ASL generator must select which entities 
should be assigned 3D locations (and where). 

• Inflection: Many verbs change their motion 
paths to indicate the 3D location where a spa-
tial reference point has been established for 
their subject, object, or both (Padden, 1988). 
Generally, the motion paths of these inflecting 
verbs change so that their direction goes from 
the subject to the object (Figure 1); however, 
their paths are more complex than this.  Each 
verb has a standard motion path that is affected 
by the subject’s and the object’s 3D locations.  
When a verb is inflected in this way, the signer 
does not need to overtly state the subject/object 
of a sentence. An ASL generator must produce 
appropriately inflected verb paths based on the 
layout of the spatial reference points. 

(a.)  

(b.)  

Figure 1: An ASL inflecting verb “BLAME”:  
(a.) (person on left) blames (person on right),  
(b.) (person on right) blames (person on left). 
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• Coarticulation: As in speech production, the 
surrounding signs in a sentence affect finger, 
hand, and body movements.  ASL generators 
that use overly simple interpolation rules to 
produce these coarticulation effects yield un-
natural and non-fluent ASL animation output. 

• Non-Manuals: Head-tilt and eye-gaze indicate 
the 3D location of a verb’s subject and object 
(or other information); facial expressions also 
indicate negation, questions, topicalization, 
and other essential syntactic phenomena not 
conveyed by the hands (Neidle et al., 2000). 
Animations without proper facial expressions 
(and proper timing relative to manual signs) 
cannot convey the proper meaning of ASL sen-
tences in a fluent and understandable manner. 

• Evaluation: With no standard written form for 
ASL, string-based metrics cannot be used to 
evaluate ASL generation output automatically. 
User-based experiments are necessary, but it is 
difficult to accurately: screen for native sign-
ers, prevent English environmental influences 
(that affect signer’s linguistic judgments), and 
design questions that measure comprehension 
of ASL animations (Huenerfauth et al., 2008). 

1.3 Need for Data-Driven ASL Generation 

Due to these challenges, most prior sign language 
generation or MT projects have been short-lived, 
producing few example outputs (Zhao et al., 2000; 
Veale et al., 1998). Further developed systems also 
have limited coverage; e.g., Marshall and Safar 
(2005) hand-built translation transfer rules from 
English to British Sign Language. Huenerfauth 
(2006) surveys several rule-based systems and dis-
cusses how they generally: have limited coverage; 
often merely concatenate signs; and do not address 
the Coarticulation, Spatial Reference, Timing, 
Non-Manuals, or Inflection issues (section 1.2).  

Unfortunately, most prior work is not “data-
driven,” i.e. not based on statistical modeling of 
corpora, the dominant successful modern NLP ap-
proach. The sign language generation research that 
has thus far been the most data-driven includes: 
• Some researchers have used motion-capture 

(see section 3) to build lexicons of animations 
of individual signs, e.g. (Cox et al., 2002). 
However, their focus is recording a single cita-
tion form of each sign, not creating annotated 
corpora of full sentences or discourse. Single-

sign recordings do not enable researchers to 
examine the Timing, Coarticulation, Spatial 
Reference, Non-Manuals, or Inflection phe-
nomena (section 1.2), which operate over mul-
tiple signs or sentences in an ASL discourse. 

• Other researchers have examined how statisti-
cal MT techniques could be used to translate 
from a written language to a sign language. 
Morrissey and Way (2005) discuss an exam-
ple-based MT architecture for Irish Sign Lan-
guage, and Stein et al. (2006) apply simple 
statistical MT approaches to German Sign 
Language. Unfortunately, the sign language 
“corpora” used in these studies consist of tran-
scriptions of the sequence of signs performed, 
not recordings of actual human performances.  
A transcription does not capture subtleties in 
the 3D movements of the hands, facial move-
ments, or speed of an ASL performance.  Such 
information is needed in order to address the 
Spatial Reference, Inflection, Coarticulation, 
Timing, or Non-Manuals issues (section 1.2). 

• Seguoat and Braffort (2009) derive models of 
coarticulation for French Sign Language based 
on a semi-automated “rotoscoping” annotation 
of hand location from videos of signing. 

1.4 Prior Sign Language Corpora Resources 

The reason why most prior ASL generation re-
search has not been data-driven is that sufficiently 
detailed and annotated sign language corpora are in 
short supply and are time-consuming to construct. 
Without a writing system in common use, it is not 
possible to harvest some naturally arising source of 
ASL “text”; instead, it is necessary to record the 
performance of a signer (through video or a mo-
tion-capture suit).  Human signers must then tran-
scribe and annotate this data by adding time-
stamped linguistic details. For ASL (Neidle et al., 
2000) and European sign languages (Bungeroth et 
al., 2006; Crasborn et al., 2004, 2006; Efthimiou & 
Fotinea, 2007), signers have been videotaped and 
experts marked time spans when events occur – 
e.g. the right hand is performing the sign “CAT” 
during time index 250-300 milliseconds, and the 
eyebrows are raised during time index 270-300. 
Such annotation is time-consuming to add; the 
largest ASL corpus has a few thousand sentences.   

In order to learn how to control the movements 
of an animated virtual human based on a corpus, 
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we need precise hand locations and joint angles of 
the human signer’s body throughout the perform-
ance.  Asking humans to write down 3D angles and 
coordinates is time-consuming and inexact; some 
researchers have used computer vision techniques 
to model the signers’ movements (see survey in 
(Loeding et al., 2004)).  Unfortunately, the com-
plex shape of hands/face, rapid speed, and frequent 
occlusion of parts of the body during ASL limit the 
accuracy of vision-based recognition; it is not yet a 
reliable way to build a 3D model of a signer for a 
corpus.  Motion-capture technology (discussed in 
section 3) is required for this level of detail.   

2 Research Goals & Focus of This Paper 

To address the lack of sufficiently detailed and 
linguistically annotated ASL corpora, we have be-
gun a multi-year project to collect and annotate a 
motion-capture corpus of ASL (section 3). Digital 
3D body movement and handshape data collected 
from native signers will become a permanent re-
search resource for study by NLP researchers and 
ASL linguists. This corpus will allow us to create 
new ASL generation technologies in a data-driven 
manner by analyzing the subtleties in the motion 
data and its relationship to the linguistic structure. 
Specifically, we plan to model where signers tend 
to place spatial reference points around them in 
space. We also plan to uncover patterns in the mo-
tion paths of inflecting verbs and model how they 
relate to layout of spatial references points. These 
models could be used in ASL generation software 
or could be used to partially automate with work of 
humans using ASL-scripting systems. To evaluate 
our ASL models, native signers will be asked to 
judge ASL animations produced using them. There 
are several unique aspects of our research: 
• We use a novel combination of hand, body, 

head, and eye motion-tracking technologies 
and simultaneous video recordings (section 3). 

• We collect multi-sentence single-signer ASL 
discourse, and we annotate novel linguistic in-
formation (relevant to spatial reference points). 

• We involve ASL signers in the research in 
several ways: as evaluators of our generation 
software, as research assistants conducting 
evaluation studies, and as corpus annotators. 

This paper will focus on the first of these as-
pects of our project. Specifically, section 4 will 

examine the following research question: Have we 
successfully configured and calibrated our motion-
capture equipment so that we are recording good-
quality data that will be useful for NLP research?   

Since the particular combination of motion-
capture equipment we are using is novel and be-
cause there have not been prior motion-capture-
based ASL corpora projects, section 4 will evaluate 
whether the data we are collecting is of sufficient 
quality to drive ASL animations of a virtual human 
character.  In corpus-creation projects for tradi-
tional written/spoken languages, researchers typi-
cally gather text, audio, or (sometimes) video of 
human performances.  The quality of the gathered 
recordings is typically easier to verify and evalu-
ate; for motion-capture data collected with a com-
plex configuration of equipment, a more complex 
experimental design is necessary (section 4). 

3 Our Motion-Capture Configuration 

The first stage of our research is to accurately and 
efficiently record 3D motion-capture data from 
ASL signers.  Assuming an ASL signer’s pelvis 
bone is stationary in 3D space, we want to record 
movement data for the upper body.  We are inter-
ested in the shapes of each hand; the 3D location of 
the hands; the 3D orientation of the palms; joint 
angles for the wrists, elbows, shoulders, clavicle, 
neck, and waist; and a vector representing the eye-
gaze aim.  We are using a customized configura-
tion of several commercial motion-capture devices 
(as shown in Figure 2, worn by a human signer): 
• Two Immersion CyberGloves®: The 22 flexi-

ble sensor strips sewn into each of these 
spandex gloves record finger joint angles so 
that we can record the signer’s handshapes.  
These gloves are ideal for recording ASL be-
cause they are flexible and lightweight.  Hu-
mans viewing a subject wearing the gloves are 
able to discern ASL fingerspelling and signing. 

• Applied Science Labs H6 eye-tracker: This 
lightweight head-mounted eye-tracker with a 
near-eye camera records a signer’s eye gaze di-
rection. A camera on the headband aims down, 
and a small clear plastic panel in front of the 
cheek reflects the image of the subject’s eye. 
When combined with the head tracking infor-
mation from the IS-900 system below, the H6 
identifies a 3D vector of eye-gaze in a room. 
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• Intersense IS-900: This acoustical/intertial mo-
tion-capture system uses a ceiling-mounted ul-
trasonic speaker array and a set of directional 
microphones on a small sensor to record the 
location and orientation of the signer’s head.  
A sensor sits atop the helmet shown in Figure 
2a. IS-900 data is used to compensate for head 
movement when calculating eye-gaze direction 
with the Applied Science Labs H6 eye-tracker.  

• Animazoo IGS-190: This spandex bodysuit is 
covered with soft Velcro to which small sen-
sors attach.  A sensor placed on each segment 
of the human’s body records inertial and mag-
netic information.  Subjects wearing the suit 
stand facing north with their arms down at 
their sides at the beginning of the recording 
session; given this known starting pose and di-
rection, the system calculates joint angles for 
the wrists, elbows, shoulders, clavicle, neck, 
and waist. We do not record leg/foot informa-
tion in our corpus. Prior to recording data, we 
photograph subjects standing in a cube-shaped 
rig of known size; this allows us to identify 
bone lengths of the human subject, which are 
needed for the IGS-190 system to accurately 
calculate joint angles from the sensor data. 

Motion-capture recording sessions are video-
taped to facilitate later linguistic analysis and an-
notation. Videotaping the session also facilitates 
the “clean up” of the motion-capture data in post-
processing, during which algorithms are applied to 
adjust synchronization of different sensors or re-
move “jitter” or other noise artifacts from the re-
cording.  Three digital high-speed video cameras 

film front view, facial close-up, and side views of 
the signer – a setup that has been used in video-
based ASL-corpora-building projects (Neidle et al., 
2000). The front view is similar to Figure 2a (but 
wider). The facial close-up view is useful when 
later identifying specific non-manual facial expres-
sions during ASL performances, which are essen-
tial to correctly understanding and annotating the 
collected data. To facilitate synchronizing the three 
video files during post-processing, a strobe is 
flashed once at the start of the recording session. 

A “blue screen” curtain hangs on the back and 
side walls of the motion-capture studio.  If future 
computer vision researchers wish to use this corpus 
to study ASL recognition from video, it is useful to 
have solid color walls for “chroma key” back-
ground removal.  Photographic studio lighting with 
spectra compatible with the eye-tracking system is 
used to support high-quality video recording.   

During data collection, a native ASL signer 
(called the “prompter”) sits directly behind the 
front-view camera to engage the participant wear-
ing the suit (the “performer”) in natural conversa-
tion. While the corpus we are collecting consists of 
unscripted single-signer discourse, prior ASL cor-
pora projects have identified the importance of sur-
rounding signers with an ASL-centric environment 
during data collection (Neidle et al., 2000). English 
influence in the studio must be minimized to pre-
vent signers from inadvertently code-switching to 
an English-like form of signing.  Thus, it is impor-
tant that a native signer acts as the prompter, who 
conversationally suggests topics for the performer 
to discuss (to be recorded as part of the corpus).   

a.  b.  c.  
Figure 2: (a) Motion-capture equipment configuration, (b) animation produced from motion-capture data 
(shown in evaluation study), and (c) animation produced using Sign Smith (shown in evaluation study). 
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In our first year, we have collected and anno-
tated 58 passages from 6 signers (40 minutes). We 
prefer to collect multi-sentence passages discuss-
ing varied numbers of topics and with few “classi-
fier predicates,” phenomena that aren’t our current 
research focus.  In (Huenerfauth & Lu, 2010), we 
discuss details of: the genre of discourse we re-
cord, our target linguistic phenomena to capture 
(spatial reference points and inflected verbs), the 
types of linguistic annotation added to the corpus, 
and the effectiveness of different “prompts” used 
to elicit the desired type of spontaneous discourse.  

This paper focuses on verifying the quality of 
the motion-capture data we can record using our 
current equipment configuration and protocols. We 
want to measure how well we have compensated 
for several possible sources of error in recordings: 
• If a sensor connection is temporarily lost, then 

data gaps occur. We have selected equipment 
that does not require line-of-sight connections 
and tried to arrange the studio to avoid fre-
quent dropping of any wireless connections. 

• We ask subjects to perform a quick head 
movement and distinctive eye blink pattern at 
the beginning of the recording session to facili-
tate “synchronization” of the various motion-
capture data streams during post-processing. 

• Electronic and physical properties of sensors 
can lead to “noise” in the data, which we at-
tempt to remove with smoothing algorithms. 

• Differences between the bone lengths of the 
human and the “virtual skeleton” of the ani-
mated character being recorded could lead to 
“retargeting” errors, in which the body poses 
of the human do not match the recording.  We 
must be careful in the measurement of the 
bone lengths of the human participant and in 
the design of the virtual animation skeleton. 

• To compensate for differences in how equip-
ment sits on the body on different occasions or 
on different humans, we must set “calibration” 
values; e.g., we designed a novel protocol for 
efficiently and accurately calibrating gloves for 
ASL signers (Lu & Huenerfauth, 2009).   

4 Evaluating Our Collected Motion Data 

If a speech synthesis researcher were using a novel 
microphone technology to record audio perform-
ances from human speakers to build a corpus, that 

researcher would want to experimentally confirm 
that the audio recordings were of high enough 
quality for research.  Even when perfectly clear 
audio recordings of human speech are recorded in 
a corpus, the automatic speech synthesis models 
trained on this data are not perfect.  Degradations 
in the quality of the corpus would yield even lower 
quality speech synthesis systems.  In the same way, 
it is essential that we evaluate the quality of the 
ASL motion-capture data we are collecting. 

In an earlier study, we sought to collect motion-
data from humans and directly produce animations 
from them as an “upper baseline” for an experi-
mental study (Huenerfauth, 2006). We were not 
analyzing the collected data or using it for data-
driven generation, we merely wanted the data to 
directly drive an animation of a virtual human 
character as a “virtual puppet.” This earlier project 
used a different configuration of motion-capture 
equipment, including an earlier version of Cyber-
Gloves® and an optical motion-capture system that 
required line-of-sight connections between infrared 
emitters on the signer’s body and cameras around 
the room.  Unfortunately, the data collected was so 
poor that the animations produced from the mo-
tion-capture were not an “upper” baseline – in fact, 
they were barely understandable to native signers.  
Errors arose from dropped connections, poor cali-
bration, and insufficient removal of data noise. 

We have selected different equipment and have 
designed better protocols for recording high quality 
ASL data since that earlier study – to compensate 
for the “noise,” “retargeting,” “synchronization,” 
and “calibration” issues mentioned in section 3.  
However, we know that under some recording 
conditions, the quality of collected motion-capture 
data is so poor that “virtual puppet” animations 
synthesized from it are not understandable. We 
expect that an even higher level of data quality is 
needed for a motion-capture corpus, which will be 
analyzed and manipulated in order to synthesize 
novel ASL animations from it.  Therefore, we con-
ducted a study (discussed below) to evaluate the 
quality of our current motion-capture configura-
tion.  As in our past study, we use the motion-
capture data to directly control the body move-
ments of a virtual human “puppet.”  We then ask 
native ASL signers to evaluate the understandabil-
ity and naturalness of the resulting animations (and 
compare them to some baseline animations pro-
duced using ASL-animation scripting software).   
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In our prior work, a native ASL signer designed 
a set of ASL stories and corresponding compre-
hension questions for use in evaluation studies 
(Huenerfauth, 2009). The stories’ average length is 
approximately 70 signs, and they consist of news 
stories, encyclopedia articles, and short narratives. 
We produced animations of each using Sign Smith 
Studio (SSS), commercial ASL-animation script-
ing software (Vcom3D, 2010). Signs from SSS’s 
lexicon are placed on a timeline, and linguistically 
appropriate facial expressions are added. The soft-
ware synthesizes an animation of a virtual human 
performing the story (Figure 2c). In earlier work, 
we designed algorithms for determining sign-speed 
and pause-insertion in ASL animations based on 
linguistic features of the sentence. We conducted a 
study to compare animations with default timing 
settings (uniform pauses and speed) and anima-
tions governed by our timing algorithm – at vari-
ous speeds. The use of our timing algorithm 
yielded ASL animations that native signers found 
more understandable (Huenerfauth, 2009). We are 
reusing these stories and animations as baselines 
for comparison in a new evaluation study (below).   

While we are collecting unscripted passages in 
our corpus, it is easier to compare the quality of 
different versions of animations when using a 
common set of scripted stories. Thus, we used the 
script from 10 of the stories above, and each was 
performed by a native signer, a 22-year-old male 
who learned ASL prior to age 2. He wore the full 
set of motion-capture equipment, and we followed 
the same calibration process and protocols as we 
do when recording ASL passages for our corpus. 
The signer rehearsed and memorized each story; 
“cue cards” were also available when recording. 

Autodesk MotionBuilder software was used to 
produce a virtual human whose movements were 
driven by the motion-capture data (see Figure 2b). 
While our corpus contains video of facial expres-
sion, our motion-capture equipment does not digit-
ize it; so, the virtual human character has no facial 
movements. The recorded signer moved at an av-
erage speed of 1.12 signs/second, and so for com-
parison, we selected the version of the scripted 
ASL animations with the closest speed from our 
earlier study: 1.2 signs/second. (Since the scripted 
animations are slightly slower and include linguis-
tic facial expressions, we expected them to receive 
higher understandability scores than our motion-
capture animations.)  In our earlier work, we pro-
duced two versions of each scripted story: one with 
default timing and one with our novel timing algo-
rithm. Both versions are used as baselines for 
comparison in this new study; thus, we compare 
three versions of the same set of 10 ASL stories. 

Using questions designed to screen for native 
ASL signers developed in prior work (Huenerfauth 
et al., 2008), we recruited 12 participants to evalu-
ate the ASL animations. A native ASL signer con-
ducted the studies, in which participants viewed an 
animation and were then asked two types of ques-
tions after each: (1) ten-point Likert-scale ques-
tions about the ASL animation’s grammatical 
correctness, understandability, and naturalness of 
movement and (2) multiple-choice comprehension 
questions about basic facts from the story. The 
comprehension questions were presented in the 
form of scripted ASL animations (produced in 
SSS), and answer choices were presented in the 
form of clip-art images (so that strong English lit-
eracy was not necessary). Identical questions were 

 
Figure 3: Evaluation and comprehension scores (asterisks mark significant pairwise differences). 
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used to evaluate the motion-capture animations and 
the scripted animations.  Examples of the questions 
are included in (Huenerfauth, 2009). 

Figure 3 displays results of the Likert-scale sub-
jective questions and comprehension-question suc-
cess scores for the three types of animations 
evaluated in this study. The scripted animations 
using our timing algorithm have higher compre-
hension scores, but the motion-capture animations 
have higher naturalness scores.  All of the other 
scores for the animations are quite similar. Statisti-
cally significant differences are marked with an 
asterisk (p<0.05, Mann-Whitney pairwise compari-
sons with Bonferroni-corrected p-values). Non-
parameteric tests were selected because the Likert-
scale responses were not normally distributed. 

5 Conclusion and Future Research Goals 

The research question addressed by this paper was 
whether our motion-capture configuration and re-
cording protocols enabled us to collect motion-data 
of sufficient quality for data-driven ASL genera-
tion research. In our study, the evaluation scores of 
the animations driven by the motion-capture data 
were similar to those of animations produced using 
state-of-the-art ASL animation scripting software.  
This is a promising result, especially considering 
the slightly faster speed and lack of facial expres-
sion information in the motion-capture animations.  
While this suggests that the data we are collecting 
is of good quality, the real test will be when this 
corpus is used in future research.  If we can build 
useful ASL-animation generation software based 
on analysis of this corpus, then we will know that 
we have sufficient quality of motion-capture data. 

5.1 Our Long-Term Research Goal: Making 
ASL Accessible to More NLP Researchers 

It is our goal to produce high-quality broad-
coverage ASL generation software, which would 
benefit many deaf individuals with low English 
literacy.  However, this ambition is too large for 
any one team; for this technology to become real-
ity, ASL must become a language commonly stud-
ied by NLP researchers.  For this reason, we seek 
to build ASL software, models, and experimental 
techniques to serve as a resource for other NLP 
researchers.  Our goal is to make ASL “accessible” 
to the NLP community.  By developing tools to 
address some of the modality-specific and spatial 

aspects of ASL, we can make it easier for other 
researchers to transfer their new NLP techniques to 
ASL. The goal is to “normalize” ASL in the eyes 
of the NLP community.  Bridging NLP and ASL 
research will not only benefit deaf users: ASL will 
push the limits of current NLP techniques and will 
thus benefit other work in the field of NLP.  Sec-
tion 1.2 listed six challenges for ASL NLP re-
search; we address several of these in our research: 

We have conducted many experimental studies 
in which signers evaluate the understandability and 
naturalness of ASL animations (Huenerfauth et al., 
2008; Huenerfauth, 2009).  To begin to address the 
Evaluation issue (section 1.2), we have published 
best-practices, survey materials, and experimental 
protocols for effectively evaluating ASL animation 
systems through the participation of native signers. 
We have also published baseline comprehension 
scores for ASL animations.  We will continue to 
produce such resources in future work. 

Our earlier work on timing algorithms for ASL 
animations (mentioned in section 4) was based on 
data reported in the linguistics literature (Grosjean 
et al., 1979).  In future work, we want to learn tim-
ing models directly from our collected corpus – to 
further address the Timing issue (section 1.2). 

To address the issues of Spatial Reference and 
Inflection (section 1.2), we plan on analyzing our 
ASL corpus to build models that can predict where 
in 3D space signers establish spatial reference 
points.  Further, we will analyze our corpus to ana-
lyze how certain ASL verbs are inflected based on 
the 3D location of their subject and object. We 
want to build a parameterized lexicon of ASL 
verbs: given a 3D location for subject and object, 
we want to predict a 3D motion-path for the char-
acter’s hands for a specific performance of a verb. 

While addressing the issues of Coarticulation 
and Non-Manuals (section 1.2) are not immediate 
research priorities, we believe our ASL corpus may 
also be useful in building computational models of 
these phenomena for data-driven ASL generation. 
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Abstract 

This paper presents factors in designing a sys-
tem for automatically skimming text docu-
ments in response to a question. The system 
will take a potentially complex question and a 
single document and return a Web page con-
taining links to text related to the question. 
The goal is that these text areas be those that 
visual readers would spend the most time on 
when skimming for the answer to a question. 
To identify these areas, we had visual readers 
skim for an answer to a complex question 
while being tracked by an eye-tracking sys-
tem. Analysis of these results indicates that 
text with semantic connections to the question 
are of interest, but these connections are much 
looser than can be identified with traditional 
Question-Answering or Information Retrieval 
techniques. Instead, we are expanding tradi-
tional semantic treatments by using a Web 
search. The goal of this system is to give non-
visual readers information similar to what vis-
ual readers get when skimming through a 
document in response to a question. 

1 Introduction 

This paper describes semantic considerations in 
developing a system for giving nonvisual readers 
information similar to what visual readers glean 
when skimming through a document in response to 
a question. Our eventual system will be unique in 
that it takes both simple and complex questions, 
will work in an unrestricted domain, will locate 
answers within a single document, and will return 
not just an answer to a question, but the informa-
tion visual skimmers acquire when skimming 
through a document.  

1.1 Goals 

Production of our skimming system will require 
the attainment of three major goals: 
1. Achieving an understanding of what information 

in the document visual skimmers pay attention 
to when skimming in response to a question 

2. Developing Natural Language Processing (NLP) 
techniques to automatically identify areas of text 
visual readers focus on as determined in 1. 

3. Developing a user interface to be used in con-
junction with screen reading software to deliver 
the visual skimming experience. 

In this paper we focus on the first two of these 
goals. Section 2 will discuss experiments analyzing 
visual skimmers skimming for answers to ques-
tions. Section 3 will discuss developing NLP tech-
niques to replicate the results of Section 2. Section 
4 will discuss future work. 

1.2 Impetus 

The impetus for this system was work done by the 
author with college students with visual impair-
ments who took significantly longer to complete 
homework problems than their visually reading 
counterparts. Students used both ScreenReaders, 
which read electronic text aloud, and screen mag-
nifiers, which increase the size of text on a screen. 
While these students were comfortable listening to 
the screenreader reading at rates of up to 500 
words per minute, their experience was quite dif-
ferent from their visual-reading peers. Even after 
listening to an entire chapter, when they wanted to 
return to areas of text that contained text relevant 
to the answer, they had to start listening from the 
beginning and traverse the document again. Doing 
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homework was a tedious, time-consuming task 
which placed these students at a serious disadvan-
tage. It is clear that individuals with visual im-
pairments struggle in terms of education. By 
developing a system that levels the playing field in 
at least one area, we may make it easier for at least 
some individuals to succeed. 

2 Visual Skimming  

If our intention is to convey to nonvisual readers 
information similar to what visual readers acquire 
when skimming for answers to questions, we first 
must determine what information visual readers get 
when skimming. For our purposes, we were inter-
ested in what text readers focused on in connection 
to a question. While many systems exist that focus 
on answering simple, fact-based questions, we 
were more interested in more complex questions in 
which the answer could not be found using pattern 
matching and in which the answer would require at 
least a few sentences, not necessarily contiguous 
within a document. From an NLP standpoint, lo-
cating longer answers with relevant information 
occuring in more than one place that may or may 
not have words or word sequences in common with 
the question poses an interesting and difficult prob-
lem. The problem becomes making semantic con-
nections within any domain that are more loosely 
associated than the synonyms, hypernyms, hypo-
nyms, etc. provided by WordNet (Felbaum, 1998). 
Indeed, the questions that students had the most 
difficulty with were more complex in nature. Thus 
we needed to find out whether visual skimmers 
were able to locate text in documents relevant to 
complex questions and, if so, what connections 
visual skimmers are making in terms of the text 
they choose to focus on.  

2.1 Task Description 

To identify how visual readers skim documents to 
answer questions, we collected 14 questions ob-
tained from students’ homework assignments, 
along with an accompanying document per ques-
tion from which the answer could be obtained. The 
questions chosen were on a wide variety of topics 
and were complex in nature. An example of a typi-
cal question is, “According to Piaget, what tech-
niques do children use to adjust to their 
environment as they grow?” Documents largely 

consisted of plain text, although each had a title on 
the first page. They held no images and few sub-
titles or other areas users might find visually inter-
esting. Twelve of the documents were two pages in 
length, one was eight pages in length, and one was 
nine pages long. In each case, the answer to the 
question was judged by the researchers to be found 
within a single paragraph in the document.  

Forty-three visual reading subjects skimmed for 
the answer to between 6 – 13 questions. The sub-
jects sat in front of a computer screen to which the 
Eye Tracker 1750 by Tobii Technologies was in-
stalled. The questions and accompanying docu-
ments were displayed on the computer screen and, 
after being calibrated, subjects were tracked as 
they skimmed for the answer. For the two-page 
documents, the question appeared at the top of the 
first page. For the longer documents, the question 
appeared at the top of each page. Subjects had no 
time limit for skimming and switched pages by 
pressing the space bar. When done skimming each 
document, subjects were asked to select a best an-
swer in multiple choice form (to give them a rea-
son to take the skimming task seriously).  

2.2 Results 

Results showed that subjects were reliably able to 
correctly answer the multiple choice question after 
skimming the document. Of the 510 questions, 423 
(about 86%) were answered correctly. The two 
questions from longer documents were the least 
likely to be answered correctly (one had 10 correct 
answers of 21 total answers, and the other had 10 
incorrect answers and only one correct answer).  

Clearly for the shorter documents, subjects were 
able to get appropriate information out of the doc-
ument to successfully answer the question. With 
that established, we were interested in analyzing 
the eye tracking data to see if there was a connec-
tion between where subjects spent the most time in 
the document and the question. If there was an un-
derstandable connection, the goal then became to 
automatically replicate those connections and thus 
automatically locate places in the text where sub-
jects were most likely to spend the most time. 

The Tobii Eye Tracking System tracks the path 
and length of time a subject gazes at a particular 
point as a subject skims through a document. The 
system allows us to define Areas of Interest (AOIs) 
and then track the number of prolonged gaze points 
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within those areas of interest. For our analysis, we 
defined areas of interest as being individual para-
graphs. While we purposely chose documents that 
were predominantly text, each had a title as well. 
Titles and the few subtitles and lists that occurred 
in the documents were also defined as separate 
AOIs. For each skimming activity, the eye tracking 
system gave us a gaze plot showing the order in 
which individuals focused on particular areas, and 
a hot spot image showing the gaze points, with 
duration indicated with color intensity, that oc-
curred in each AOI (see Figure 1).  

In looking at the hot spot images, we found that 
subjects used three techniques to peruse a docu-
ment. One technique subjects used was to move 
their gaze slowly throughout the entire document, 
indicating that they were most likely reading the 
document. A second technique used was to move 
randomly and quickly from top to bottom of the 
document (described as “fixations distributed in a 
rough zig-zag down the page” by McLaughlin in 
reference to speed reading (1969)), without ever 
focusing on one particular area for a longer period 
of time. This technique was the least useful to us 
because it gave very little information A third 
technique was a combination of the first two, in 
which the subject’s gaze darted quickly and ran-
domly around the page, and then appeared to focus 
on a particular area for an extended period of time. 

Figure 1 is a good example of this technique. The 
data from this group was clearly relevant to our 
task since their fixation points clearly showed what 
areas subjects found most interesting while skim-
ming for an answer to a question.  

2.3 Analysis of Skimming Data 

To determine exactly which AOIs subjects focused 
on most frequently, we counted the number of gaze 
points (or focus points) in each AOI (defined as 
paragraphs, titles, subtitles) across all subjects. In 
looking at what information individuals focused on 
while skimming, we found that individuals did fo-
cus on the title and subtitles that occurred in the 
documents. Subjects frequently focused on the first 
paragraph or paragraphs of a document. There was 
less of a tendency, but still a trend for focusing on 
the first paragraph on each page. Interestingly, al-
though a few subjects focused on the first line of 
each paragraph, this was not a common practice. 
This is significant because it is a technique availa-
ble to users of screenreaders, yet it clearly does not 
give these users the same information that visual 
skimmers get when skimming through a document.  

We also wanted to look at AOIs that did not 
have physical features that may have attracted at-
tention. Our conjecture was that these AOIs were 
focused on by subjects because of their semantic 

!
Figure 1. Hot spot image results of skimming for the answer to the question, “What are two dietary factors 
thought to raise and lower cholesterol?” using the Tobii Eye Tracking System 
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relationship to the question. Indeed, we did find 
evidence of this. Results indicated that subjects did 
focus on the areas of text containing the answer to 
the question. As an example, one of the questions 
used in the study was, 

“How do people catch the West Nile Vi-
rus?” 

The paragraph with the most gaze points for the 
most subjects was: 

“In the United States, wild birds, especial-
ly crows and jays, are the main reservoir 
of West Nile virus, but the virus is actually 
spread by certain species of mosquitoes. 
Transmission happens when a mosquito 
bites a bird infected with the West Nile vi-
rus and the virus enters the mosquito's 
bloodstream. It circulates for a few days 
before settling in the salivary glands. Then 
the infected mosquito bites an animal or a 
human and the virus enters the host's 
bloodstream, where it may cause serious 
illness. The virus then probably multiplies 
and moves on to the brain, crossing the 
blood-brain barrier. Once the virus 
crosses that barrier and infects the brain 
or its linings, the brain tissue becomes in-
flamed and symptoms arise.” 

This paragraph contains the answer to the ques-
tion, yet it has very few words in common with the 
question. The word it does have in common with 
the question, ‘West Nile Virus’, is the topic of the 
document and occurs fairly frequently throughout 
the document, and thus cannot account for sub-
jects' focusing on this particular paragraph. 

 The subjects must have made semantic connec-
tions between the question and the answer that 
cannot be explained by simple word matching or 
even synonyms, hypernyms and hyponyms. In the 
above example, the ability of the user to locate the 
answer hinged on their ability to make a connec-
tion between the word ‘catch’ in the question and 
its meaning ‘to be infected by’. Clearly simple 
keyword matching won’t suffice in this case, yet 
equally clearly subjects successfully identified this 
paragraph as being relevant to the question. This 
suggests that when skimming subjects were able to 
make the semantic connections necessary to locate 
question answers, even when the answer was of a 
very different lexical form than the question. 

Other areas of text focused on also appear to 
have a semantic relationship with the question. For 
example, with the question, 

“Why was Monet’s work criticized by the 
public?” 

the second most frequently focused on paragraph 
was: 

“In 1874, Manet, Degas, Cezanne, Renoir, 
Pissarro, Sisley and Monet put together an 
exhibition, which resulted in a large finan-
cial loss for Monet and his friends and 
marked a return to financial insecurity for 
Monet. It was only through the help of 
Manet that Monet was able to remain in 
Argenteuil. In an attempt to recoup some 
of his losses, Monet tried to sell some of 
his paintings at the Hotel Drouot. This, 
too, was a failure. Despite the financial 
uncertainty, Monet’s paintings never be-
came morose or even all that sombre. In-
stead, Monet immersed himself in the task 
of perfecting a style which still had not 
been accepted by the world at large. Mo-
net’s compositions from this time were ex-
tremely loosely structured, with color 
applied in strong, distinct strokes as if no 
reworking of the pigment had been at-
tempted. This technique was calculated to 
suggest that the artist had indeed captured 
a spontaneous impression of nature.” 

Of the 30 subjects who skimmed this document, 
15 focused on this paragraph, making it the second 
most focused on AOI in the document, second only 
to the paragraph that contained the answer (fo-
cused on by 21 of the subjects). The above para-
graph occurred within the middle of the second 
page of the document, with no notable physical 
attributes that would have attracted attention. Upon 
closer inspection of the paragraph, there are refer-
ences to “financial loss,” “financial insecurity,” 
“losses,” “failure,” and “financial uncertainty.” 
The paragraph also includes “morose” and “somb-
er” and even “had not been accepted by the world 
at large.” Subjects appeared to be making a con-
nection between the question topic, Monet’s work 
being criticized by the public, and the above terms. 
Intuitively, we do seem to make this connection. 
Yet the connection being made is not straightfor-
ward and cannot be replicated using the direct se-
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mantic connections that are available via WordNet. 
Indeed, the relationships made are more similar to 
Hovy and Lin’s (1997) Concept Signatures created 
by clustering words in articles with the same edi-
tor-defined classification from the Wall Street 
Journal. Our system must be able to replicate these 
connections automatically. 

 Upon further examination, we found other pa-
ragraphs that were focused on by subjects for rea-
sons other than their physical appearance or 
location, yet their semantic connection to the ques-
tion was even more tenuous. For instance, when 
skimming for the answer to the question, 

“How does marijuana affect the brain?” 
the second most frequently focused on paragraph 
(second to the paragraph with the answer) was,  

“The main active chemical in marijuana is 
THC (delta-9-tetrahydrocannabinol). The 
protein receptors in the membranes of cer-
tain cells bind to THC. Once securely in 
place, THC kicks off a series of cellular 
reactions that ultimately lead to the high 
that users experience when they smoke 
marijuana.” 

While this paragraph does appear to have loose 
semantic connections with the question, the con-
nections are less obvious than paragraphs that fol-
low it, yet it was this paragraph that subjects chose 
to focus on. The paragraph is the third to last para-
graph on the first page, so its physical location 
could not explain its attraction to subjects. Howev-
er, when we looked more closely at the previous 
paragraphs, we saw that the first paragraph deals 
with definitions and alternate names for marijuana 
(with no semantic links to the question), and the 
second and third paragraph deal with statistics on 
people who use marijuana (again, with no semantic 
connection to the question). The fourth paragraph, 
the one focused on, represents a dramatic semantic 
shift towards the topic of the question. Intuitively it 
makes sense that individuals skimming through the 
document would pay more attention to this para-
graph because it seems to represent the start of the 
area that may contain the answer, not to mention 
conveying topological information about the layout 
of the document and general content information 
as well.  

Data collected from these experiments suggest 
that subjects do make and skim for semantic con-

nections. Subjects not only glean information that 
directly answers the question, but also on content 
within the document that is semantically related to 
the question. While physical attributes of text do 
attract the attention of skimmers, and thus we must 
include methods for accessing this data as well, it 
is clear that in order to create a successful skim-
ming device that conveys information similar to 
what visual skimmers get when skimming for the 
answer to a question, we must come up with a me-
thod for automatically generating loose semantic 
connections and then using those semantic connec-
tions to locate text skimmers considered relevant 
within the document. 

3 NLP Techniques  

In order to automatically generate the semantic 
connections identified above as being those visual 
skimmers make, we want to explore Natural Lan-
guage Processing (NLP) techniques. 

3.1 Related Research 

Potentially relevant methodologies may be found 
in Open Domain Question Answering Systems. 
Open Domain Question Answering Systems in-
volve connecting questions within any domain and 
potential answers. These systems usually do not 
rely on external knowledge sources and are limited 
in the amount of ontological information that can 
be included in the system. The questions are usual-
ly fact-based in form (e.g., “How tall is Mt. Ever-
est?”). These systems take a question and query a 
potentially large set of documents (e.g., the World 
Wide Web) to find the answer. A common tech-
nique is to determine a question type (e.g., “How 
many …?” would be classified as ‘numerical’, 
whereas “Who was …?” would be classified as 
‘person’, etc.) and then locate answers of the cor-
rect type (Abney et al., 2000; Kwok et al., 2001; 
Srihari and Li, 2000; Galea, 2003). Questions are 
also frequently reformulated for pattern matching 
(e.g., “Who was the first American Astronaut in 
space?” becomes, “The first American Astronaut 
in space was” (Kwok et al., 2001; Brill et al., 
2002)). Many systems submit multiple queries to a 
document corpus, relying on redundancy of the 
answer to handle incorrect answers, poorly con-
structed answers or documents that don’t contain 
the answer (e.g., Brill et al., 2002; Kwok et al., 
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2001). For these queries, systems often include 
synonyms, hypernyms, hyponyms, etc. in the query 
terms used for document and text retrieval (Hovy 
et al.,2000; Katz et al., 2005). In an attempt to an-
swer more complex relational queries, Banko et al. 
(2007) parsed training data into relational tuples 
for use in classifying text tagged for part of speech, 
chunked into noun phrases, and then tagged the 
relations for probability. Soricut and Brill (2006) 
trained data on FAQ knowledge bases from the 
World Wide Web, resulting in approximately 1 
million question-answer pairs. This system related 
potential answers to questions using probability 
models computed using the FAQ knowledge base. 

Another area of research that may lend useful 
techniques for connecting and retrieving relevant 
text to a question is query-biased text summariza-
tion. With many summarization schemes, a good 
deal of effort has been placed on identifying the 
main topic or topics of the document. In query bi-
ased text summarization, however, the topic is 
identified a priori, and the task is to locate relevant 
text within a document or set of documents. In 
multidocument summarization systems, redundan-
cy may be indicative of relevance, but should be 
eliminated from the resulting summary. Thus a 
concern is measuring relevance versus redundancy 
(Carbonell and Goldstein, 1998; Hovy et al., 2005; 
Otterbacher et al., 2006). Like Question Answering 
systems, many summarization systems simply 
match the query terms, expanded to include syn-
onyms, hypernyms, hyponyms, etc., to text in the 
document or documents (Varadarajan and Hristi-
dis, 2006; Chali, 2002)  

Our system is unique in that it has as its goal not 
just to answer a question or create a summary, but 
to return information visual skimmers glean while 
skimming through a document. Questions posed to 
the system will range from simple to complex in 
nature, and the answer must be found within a sin-
gle document, regardless of the form the answer 
takes. Questions can be on any topic. With com-
plex questions, it is rarely possible to categorize 
the type of question (and thus the expected answer 
type). Intuitively, it appears equally useless to at-
tempt reformulation of the query for pattern match-
ing. This intuition is born out by Soricut and Brill 
(2006) who stated that in their study reformulating 
complex questions more often hurt performance 
than improved it. Answering complex questions 
within a single document when the answer may not 

be straightforward in nature poses a challenging 
problem. 

3.2 Baseline Processing 

Our baseline system attempted to identify areas of 
interest by matching against the query in the tradi-
tion of Open Domain Question Answering. For our 
baseline, we used the nonfunction words in each 
question as our query terms. The terms were 
weighted with a variant of TF/IDF (Salton and 
Buckley, 1988) in which terms were weighted by 
the inverse of the number of paragraphs they oc-
curred in within the document. This weighting 
scheme was designed to give lower weight to 
words associated with the document topic and thus 
conveying less information about relevance to the 
question. Each query term was matched to text in 
each paragraph, and paragraphs were ranked for 
matching using the summation of, for each query 
term, the number of times it occurred in the para-
graph multiplied by its weight.  

Results of this baseline ranking were poor. In 
none of the 14 documents did this method connect 
the question to the text relevant to the answer. This 
was expected. This original set of questions was 
purposely chosen because of the complex relation-
ship between the question and answer text. 

Next we expanded the set of query terms to in-
clude synonyms, hypernyms, and hyponyms as 
defined in WordNet (Felbaum, 1998). We included 
all senses of each word (query term). Irrelevant 
senses resulted in the inclusion of terms that were 
no more likely to occur frequently than any other 
random word, and thus had no effect on the result-
ing ranking of paragraphs. Again, each of the 
words in the expanded set of query terms was 
weighted as described above, and paragraphs were 
ranked accordingly. 

Again, results were poor. Paragraphs ranked 
highly were no more likely to contain the answer, 
nor were they likely to be areas focused on by the 
visual skimmers in our collected skimming data.  

Clearly, for complex questions, we need to ex-
pand on these basic techniques to replicate the se-
mantic connections individuals make when 
skimming. As our system must work across a vast 
array of domains, our system must make these 
connections “on the fly” without relying on pre-
viously defined ontological or other general know-
ledge. And our system must work quickly: asking 
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individuals to wait long periods of time while the 
system creates semantic connections and locates 
appropriate areas of text would defeat the purpose 
of a system designed to save its users time. 

3.3 Semantically-Related Word Clusters 

Our solution is to use the World Wide Web to form 
clusters of topically-related words, with the topic 
being the question. The cluster of words will be 
used as query terms and matched to paragraphs as 
described above for ranking relevant text.  

Using the World Wide Web as our corpus has a 
number of advantages. Because of the vast number 
of documents that make up the World Wide Web, 
we can rely on the redundancy that has proved so 
useful for Question Answering and Text Summari-
zation systems. By creating the word clusters from 
documents returned from a search using question 
words, the words that occur most frequently in the 
related document text will most likely be related in 
some way to the question words. Even relatively 
infrequently occurring word correlations can most 
likely be found in some document existing on the 
Web, and thus strangely-phrased questions or 
questions with odd terms will still most likely 
bring up some documents that can be used to form 
a cluster. The Web covers virtually all domains. 
Somewhere on the Web there is almost certainly an 
answer to questions on even the most obscure top-
ics. Thus questions containing words unique to 
uncommon domains or questions containing un-
usual word senses will return documents with ap-
propriate cluster words. Finally, the Web is 
constantly being updated. Terms that might not 
have existed even a year ago will now be found on 
the Web. 

Our approach is to use the nonstop words in a 
question as query terms for a Web search. The 
search engine we are using is Google 
(www.google.com). For each search engine query, 
Google returns an ranked list of URLs it considers 
relevant, along with a snippet of text it considers 
most relevant to the query (usually because of 
words in the snippet that exactly match the query 
terms). To create the cluster of words related se-
mantically to the question, we are taking the top 50 
URLs, going to their correlating Web page, locat-
ing the snippet of text within the page, and creating 
a cluster of words using a 100-word window sur-
rounding the snippet. We are using only nonstop 

words in the cluster, and weighting the words 
based on their total number of occurrences in the 
windows. These word clusters, along with the ex-
panded baseline words, are used to locate and rank 
paragraphs in our question document. 

Our approach is similar in spirit to other re-
searchers using the Web to identify semantic rela-
tions. Matsuo et al. (2006) looked at the number of 
hits of each of two words as a single keyword ver-
sus the number of hits using both words as key-
words to rate the semantic similarity of two words. 
Chen et al. (2006) used a similar approach to de-
termine the semantic similarity between two 
words: with a Web search using word P as the 
query term, they counted the number of times word 
Q occurred in the snippet of text returned, and vice 
versa. Bollegala et al. (2007) determined semantic 
relationships by extracting lexico-syntactic patterns 
from the snippets returned from a search on two 
keywords (e.g.,“’x’ is a ‘y’”) and extracting the 
relationship of the two words based on the pattern. 
Sahami and Heilman (2006) used the snippets from 
a word search to form a set of words weighted us-
ing TF/IDF, and then determined the semantic si-
milarity of two keywords by the similarity of two 
word sets returned in those snippets.  

Preliminary results from our approach have been 
encouraging. For example, with the question, 
“How does Marijuana affect the brain?”, the ex-
panded set of keywords included, “hippocampus, 
receptors, THC, memory, neuron”. These words 
were present in both the paragraph containing the 
answer and the second-most commonly focused on 
paragraph in our study. While neither our baseline 
nor our expanded baseline identified either para-
graph as an area of interest, the semantically-
related word clusters did. 

4 Future Work 

This system is a work in progress. There are many 
facets still under development, including a finer 
analysis of visual skimming data, a refinement of 
the ranking system for locating areas of interest 
within a document, and the development of the 
system’s user interface. 

4.1 Skimming Data Analysis 

For our initial analysis, we focused on the length of 
time users spent gazing at text areas. In future 
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analysis, we will look at the order of the gaze 
points to determine exactly where the subjects first 
gazed before choosing to focus on a particular 
area. This may give us even more information 
about the type of semantic connection subjects 
made before choosing to focus on a particular area. 
In addition, in our initial analysis, we defined AOIs 
to be paragraphs. We may want to look at smaller 
AOIs. For example, with longer paragraphs, the 
text that actually caught the subject’s eye may have 
occurred only in one portion of the paragraph, yet 
as the analysis stands now the entire content of the 
paragraph is considered relevant and thus we are 
trying to generate semantic relationships between 
the question and potentially unrelated text. While 
the system only allows us to define AOIs as rec-
tangular areas (and thus we can’t do a sentence-by-
sentence analysis), we may wish to define AOIs as 
small as 2 lines of text to narrow in on exactly 
where subjects chose to focus.  

4.2 Ranking System Refinement 

It is worth mentioning that, while a good deal of 
research has been done on evaluating the goodness 
of automatically generated text summaries (Mani 
et al.,2002; Lin and Hovy, 2003; Santos et al., 
2004) our system is intended to mimic the actions 
of skimmers when answering questions, and thus 
our measure of goodness will be our system’s 
ability to recreate the retrieval of text focused on 
by our visual skimmers. This gives us a distinct 
advantage over other systems in measuring good-
ness, as defining a measure of goodness can prove 
difficult. In future work, we will be exploring dif-
ferent methods of ranking text such that the system 
returns results most similar to the results obtained 
from the visual skimming studies. The system will 
then be used on other questions and documents and 
compared to data to be collected of visual skim-
mers skimming for answers to those questions. 

Many variations on the ranking system are poss-
ible. These will be explored to find the best 
matches with our collected visual skimming data. 
Possibilities include weighting keywords different-
ly according to where they came from (e.g., direct-
ly from the question, from the text in retrieved 
Web pages, from text from a Web page ranked 
high on the returned URL list or lower, etc.), or 
considering how a diversity of documents might 
affect results. For instance, if keywords include 

‘falcon’ and ‘hawk’ the highest ranking URLs will 
most likely be related to birds. However, in G.I. 
Joe, there are two characters, Lieutenant Falcon 
and General Hawk. To get the less common con-
nection between falcon and hawk and G.I. Joe, one 
may have to look for diversity in the topics of the 
returned URLs. Another area to be explored will 
be the effect of varying the window size surround-
ing the snippet of text to form the bag of words.  

4.3 User Interface 

The user interface for our system poses some inter-
esting questions. It is important that the output of 
the system provide the user with information about 
(1) document topology, (2) document semantics, 
and (3) information most relevant to answering the 
question. At the same time, it is important that us-
ing the output be relatively fast. The output of the 
system is envisioned as a Web page with ranked 
links at the top pointing to sections of the text like-
ly to be relevant to answering the question.  

An important issue that must be explored in 
depth with potential users of the system is the ex-
act form of the output web page. We need to ex-
plore the best method for indicating text areas of 
interest and the overall topology. The goal is that 
reading the links simulate what a visual skimmer 
gets from lightly skimming. The user would actual-
ly follow the links that appeared to be “worth read-
ing” in more detail in the same way that skimmers 
focus in on particular text segments that appear 
worth reading.  

5 Conclusion 

This system attempts to correlate NLP techniques 
for creating semantic connections with the seman-
tic connections individuals make. Using the World 
Wide Web, we may be able to make those seman-
tic connections across any topic in a reasonable 
amount of time without any previously defined 
knowledge. We have ascertained that people can 
and do make semantic links when skimming for 
answers to questions, and we are currently explor-
ing the best use of the World Wide Web in repli-
cating those connections. In the long run, we 
envision a system that is user-friendly to nonvisual 
and low vision readers that will give them an intel-
ligent way to skim through documents for answers 
to questions.  
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