
NAACL HLT 2010

Workshop on
Semantic Search

Proceedings of the Workshop

June 5, 2010
Los Angeles, California

USB memory sticks produced by
Omnipress Inc.
2600 Anderson Street
Madison, WI 53707
USA

c©2010 The Association for Computational Linguistics

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii

Introduction

Welcome to the NAACL HLT Workshop on Semantic Search!

Information retrieval (IR) research has been actively driven by the challenging information overload
problem and many successful general-purpose commercial search engines. While the popularity of the
largest search engines is a confirmation of the success and utility of IR, the identification, representation,
and use of the often-complex semantics behind user queries has not yet been fully explored.

In this workshop we target methods that exploit semantics in search-related tasks. One of the major
obstacles in bridging the gap between IR and Natural Language Processing (NLP) is how to retain the
flexibility and precision of working with text at the lexical level while gaining the greater descriptive
precision that NLP provides. We have solicited contributions on automatic analysis of queries and
documents in order to encode and exploit information beyond surface-level keywords: named entities,
relations, semantic roles, etc.

This workshop is meant to accelerate the pace of progress in semantic search techniques by connecting
IR and NLP, bridging semantic analysis and search methodologies, and exploring the potentials of
search utilizing semantics. We also focus on forming an interest group from different areas of research,
exploring collaboration opportunities, providing deeper insight into bringing semantics into search, and
provoking or encouraging discussions on all of its potential.

We are interested in semantic search technologies including the following topics:
- Query Parsing and Semantic Tagging
- Query Suggestion and Recommendation
- Query Expansion and Intention Detection
- Web Query Analysis and Mining
- Semantic Annotation and Indexing
- Language Modeling for Information Retrieval
- Information Extraction and Summarization for Indexing and Search
- Question Answering
- Search Reranking Integrating Semantic Features
- Search Relevance Evaluation using Semantic Technology
- Topic Modeling and Semantic Tagging

We received 11 submissions and selected 6 papers after a rigorous review process. Each paper has been
reviewed by at least three reviewers. We are pleased to present these papers in this volume.

Our workshop will start with a keynote speech by Ronald Kaplan (Powerset Division of Microsoft
Bing). We will also hold a panel discussion on the potential to explore semantic search technologies.

We are very grateful to the Program Committee for their hard work, and the presenters for their excellent
papers.

Best regards,
Donghui Feng, Jamie Callan, Eduard Hovy, and Marius Paşca
Workshop Organizers

iii

iv

Organizers:

Donghui Feng, AT&T Interactive
Jamie Callan, Carnegie Mellon University
Eduard Hovy, USC/Information Sciences Institute
Marius Paşca, Google Inc.

Program Committee:

Srinivas Bangalore, AT&T Labs-Research
Raman Chandrasekar, Microsoft Research
Jennifer Chu-Carroll, IBM Research
Nikesh Garera, Kosmix
Ralph Grishman, New York University
Patrick Haffner, AT&T Labs-Research
Liang Huang, USC/Information Sciences Institute
Heng Ji, City University of New York
Zornitsa Kozareva, USC/Information Sciences Institute
Hang Li, Microsoft Research Asia
Dekang Lin, Google Inc.
Yumao Lu, Yahoo! Labs
Hwee Tou Ng, National University of Singapore
Fuchun Peng, Yahoo! Labs
Ellen Riloff, University of Utah
Dan Roth, University of Illinois at Urbana-Champaign
James Shanahan, AT&T Interactive
Young-In Song, Microsoft Research Asia
Qin Wang, AT&T Interactive
Kenji Yamada, AT&T Interactive
Remi Zajac, AT&T Interactive

Invited Speaker:

Ronald Kaplan, Powerset Division of Microsoft Bing

v

Table of Contents

LDA Based Similarity Modeling for Question Answering
Asli Celikyilmaz, Dilek Hakkani-Tur and Gokhan Tur . 1

Experts’ Retrieval with Multiword-Enhanced Author Topic Model
Nikhil Johri, Dan Roth and Yuancheng Tu . 10

Query-based Text Normalization Selection Models for Enhanced Retrieval Accuracy
Si-Chi Chin, Rhonda DeCook, W. Nick Street and David Eichmann . 19

A Graph-Based Semi-Supervised Learning for Question Semantic Labeling
Asli Celikyilmaz and Dilek Hakkani-Tur . 27

Capturing the Stars: Predicting Ratings for Service and Product Reviews
Narendra Gupta, Giuseppe Di Fabbrizio and Patrick Haffner . 36

Object Search: Supporting Structured Queries in Web Search Engines
Kim Pham, Nicholas Rizzolo, Kevin Small, Kevin Chen-Chuan Chang and Dan Roth 44

vii

Workshop Program

Saturday, June 5, 2010

9:20-9:30 Opening Remarks

9:30-10:30 Invited Talk by Ronald Kaplan

10:30-11:00 Morning Break

11:00–11:30 LDA Based Similarity Modeling for Question Answering
Asli Celikyilmaz, Dilek Hakkani-Tur and Gokhan Tur

11:30–12:00 Experts’ Retrieval with Multiword-Enhanced Author Topic Model
Nikhil Johri, Dan Roth and Yuancheng Tu

12:00–12:30 Query-based Text Normalization Selection Models for Enhanced Retrieval Accu-
racy
Si-Chi Chin, Rhonda DeCook, W. Nick Street and David Eichmann

12:30-1:45 Lunch Break

1:45–2:15 A Graph-Based Semi-Supervised Learning for Question Semantic Labeling
Asli Celikyilmaz and Dilek Hakkani-Tur

2:15-3:00 Panel Discussion

3:00-3:30 Afternoon Break

3:30–3:45 Capturing the Stars: Predicting Ratings for Service and Product Reviews
Narendra Gupta, Giuseppe Di Fabbrizio and Patrick Haffner

3:45–4:00 Object Search: Supporting Structured Queries in Web Search Engines
Kim Pham, Nicholas Rizzolo, Kevin Small, Kevin Chen-Chuan Chang and Dan
Roth

4:00-4:45 Workshop Wrap-up Discussion

ix

Proceedings of the NAACL HLT 2010 Workshop on Semantic Search, pages 1–9,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

LDA Based Similarity Modeling for Question Answering

Asli Celikyilmaz
Computer Science Department

University of California, Berkeley
asli@eecs.berkeley.edu

Dilek Hakkani-Tur
International Computer

Science Institute
Berkeley, CA

dilek@icsi.berkeley.edu

Gokhan Tur
Speech Technology and

Research Laboratory
SRI International

Menlo Park, CA, USA
gokhan@speech.sri.com

Abstract

We present an exploration of generative mod-
eling for the question answering (QA) task to
rank candidate passages. We investigate La-
tent Dirichlet Allocation (LDA) models to ob-
tain ranking scores based on a novel similar-
ity measure between a natural language ques-
tion posed by the user and a candidate passage.
We construct two models each one introducing
deeper evaluations on latent characteristics of
passages together with given question. With
the new representation of topical structures on
QA datasets, using a limited amount of world
knowledge, we show improvements on perfor-
mance of a QA ranking system.

1 Introduction

Question Answering (QA) is a task of automatic
retrieval of an answer given a question. Typically
the question is linguistically processed and search
phrases are extracted, which are then used to retrieve
the candidate documents, passages or sentences.

A typical QA system has a pipeline structure start-
ing from extraction of candidate sentences to rank-
ing true answers. Some approaches to QA use
keyword-based techniques to locate candidate pas-
sages/sentences in the retrieved documents and then
filter based on the presence of the desired answer
type in candidate text. Ranking is then done using
syntactic features to characterize similarity to query.
In cases where simple question formulation is not
satisfactory, many advanced QA systems implement
more sophisticated syntactic, semantic and contex-
tual processing such as named-entity recognition
(Molla et al., 2006), coreference resolution (Vicedo
and Ferrandez, 2000), logical inferences (abduction

or entailment) (Harabagiu and Hickl, 2006) trans-
lation (Ma and McKeowon, 2009), etc., to improve
answer ranking. For instance, how questions, or spa-
tially constrained questions, etc., require such types
of deeper understanding of the question and the re-
trieved documents/passages.

Many studies on QA have focused on discrimina-
tive models to predict a function of matching fea-
tures between each question and candidate passage
(set of sentences), namely q/a pairs, e.g., (Ng et al.,
2001; Echihabi and Marcu, 2003; Harabagiu and
Hickl, 2006; Shen and Klakow, 2006; Celikyilmaz
et al., 2009). Despite their success, they have some
room for improvement which are not usually raised,
e.g., they require hand engineered features; or cas-
cade features learnt separately from other modules
in a QA pipeline, thus propagating errors. The struc-
tures to be learned can become more complex than
the amount of training data, e.g., alignment, entail-
ment, translation, etc. In such cases, other source
of information, e.g., unlabeled examples, or human
prior knowledge, should be used to improve perfor-
mance. Generative modeling is a way of encoding
this additional information, providing a natural way
to use unlabeled data.

In this work, we present new similarity measures
to discover deeper relationship between q/a pairs
based on a probabilistic model. We investigate two
methods using Latent Dirichlet Allocation (LDA)
(Blei, 2003) in § 3, and hierarchical LDA (hLDA)
(Blei, 2009) in § 4 to discover hidden concepts. We
present ways of utilizing this information within a
discriminative classifier in § 5. With empirical ex-
periments in § 6, we analyze the effects of gener-
ative model outcome on a QA system. With the
new representation of conceptual structures on QA

1

datasets, using a limited amount of world knowl-
edge, we show performance improvements.

2 Background and Motivation

Previous research have focused on improving mod-
ules of the QA pipeline such as question processing
(Huang et al., 2009), information retrieval (Clarke
et al., 2006), information extraction (Saggion and
Gaizauskas, 2006). Recent work on textual en-
tailment has shown improvements on QA results
(Harabagiu and Hickl, 2006), (Celikyilmaz et al.,
2009), when used for filtering and ranking answers.
They discover similarities between q/a pairs, where
the answer to a question should be entailed by the
text that supports the correctness of its answer.

In this paper, we present a ranking schema fo-
cusing on a new similarity modeling approach via
generative and discriminative methods to utilize best
features of both approaches. Combinations of dis-
criminative and generative methodologies have been
explored by several authors, e.g. (Bouchard and
Triggs, 2004; McCallum et al., 2006; Bishop and
Lasserre, 2007; Schmah et al., 2009), in many fields
such as natural language processing, speech recog-
nition, etc. In particular, the recent ”deep learning”
approaches (Weston et al., 2008) rely heavily on a
hybrid generative-discriminative approach: an un-
supervised generative learning phase followed by a
discriminative fine-tuning.

In an analogical way to the deep learning meth-
ods, we discover relations between the q/a pairs
based on the similarities on their latent topics dis-
covered via Bayesian probabilistic approach. We in-
vestigate different ways of discovering topic based
similarities following the fact that it is more likely
that the candidate passage entails given question and
contains true answer if they share similar topics.
Later we combine this information in different ways
into a discriminative classifier-based QA model.

The underlying mechanism of our similarity mod-
eling approach is Latent Dirichlet Allocation (LDA)
(Blei et al., 2003b). We argue that similarities can
be characterized better if we define a semantic simi-
larity measure based on hidden concepts (topics) on
top of lexico-syntactic features. We later extend our
similarity model using a hierarchical LDA (hLDA)
(Blei et al., 2003a) to discover latent topics that are

organized into hierarchies. A hierarchical structure
is particularly appealing to QA task than a flat LDA,
in that one can discover abstract and specific topics.
For example, discovering that baseball and football
are both contained in a more abstract class sports
can help to relate to a general topic of a question.

3 Similarity Modeling with LDA

We assume that for a question posed by a user, the
document sets D are retrieved by a search engine
based on the query expanded from the question. Our
aim is to build a measure to characterize similar-
ities between a given question and each candidate
passage/sentence s ∈ D in the retrieved documents
based on similarities of their hidden topics. Thus,
we built bayesian probabilistic models on passage
level rather than document level to explicitly extract
their hidden topics. Moreover, the fact that there is
limited amount of retrieved documents D per ques-
tion (∼100 documents) makes it appealing to build
probabilistic models on passages in place of docu-
ments and define semantically coherent groups in
passages as latent concepts. Given window size n
sentences, we define a passage as s = (|D| −n) + 1
based on a n-sliding-window, where |D| is the to-
tal number of sentences in retrieved documents D.
There are 25+ sentences in documents, hence we ex-
tracted around 2500 passages for each question.

3.1 LDA Model for Q/A System

We briefly describe LDA (Blei et al., 2003b) model
as used in our QA system. A passage in retrieved
documents (document collection) is represented as a
mixture of fixed topics, with topic z getting weight
θ
(s)
z in passage s and each topic is a distribution

over a finite vocabulary of words, with word w hav-
ing a probability φ(z)

w in topic z. Placing symmet-
ric Dirichlet priors on θ(s) and φ(z), with θ(s) ∼
Dirichlet(α) and φ(z) ∼ Dirichlet(β), where α
and β are hyper-parameters to control the sparsity
of distributions, the generative model is given by:

wi|zi, φ(zi)
wi ∼ Discrete(φ(zi)), i = 1, ...,W

φ(z) ∼ Dirichlet(β), z = 1, ...,K
zi|θ(si) ∼ Discrete(θ(si)), i = 1, ...,W
θ(s) ∼ Dirichlet(α), s = 1, ..., S

(1)
2

where S is the number of passages discovered from
the document collection, K is the total number of
topics, W is the total number of words in the docu-
ment collection, and si and zi are the passage and the
topic of the ith word wi, respectively. Each word in
the vocabulary wi ∈ V = {w1, ...wW } is assigned
to each latent topic variable zi=1,...,W of words.

After seeing the data, our goal is to calculate the
expected posterior probabilities φ̂(zi)

wi of a word wi
in a candidate passage given a topic zi = k and ex-
pected posterior probability θ̂(s) of topic mixings of
a given passage s, using the count matrices:

φ̂
(zi)
wi =

nWK
wik +βPW

j=1 n
WK
wjk +Wβ

θ̂(s) = nSK
sk +αPK

j=1 n
SK
sj +Kα

(2)
where nWK

wik
is the count of wi in topic k, and nSKsk

is the count of topic k in passage s. The LDA model
makes no attempt to account for the relation of topic
mixtures, i.e., topics are distributed flat, and each
passage is a distribution over all topics.

3.2 Degree of Similarity Between Q/A via
Topics from LDA:

We build a LDA model on the set of retrieved pas-
sages s along with a given question q and calculate
the degree of similarity DESLDA(q,s) between each
q/a pair based on two measures (Algorithm 1):
(1) simLDA

1 : To capture the lexical similarities
on hidden topics, we represent each s and q as
two probability distributions at each topic z =
k. Thus, we sample sparse unigram distributions
from each φ̂(z) using the words in q and s. Each
sparse word given topic distribution is denoted as
p
(z)
q = p(wq|z, φ̂(z)) with the set of words wq =

(w1, ..., w|q|) in q and ps = p(ws|z, φ̂(z)) with the
set of words ws = (w1, ..., w|s|) in s, and z = 1...K
represent each topic.

The sparse probability distributions per topic are
represented with only the words in q and s, and the
probabilities of the rest of the words in V are set
to zero. The W dimensional word probabilities is
the expected posteriors obtained from LDA model
(Eq.(2)), p(z)

s = (φ̂(z)
w1 , ..., φ̂

(z)
w|s| , 0, 0, ..) ∈ (0, 1)W ,

p
(z)
q = (φ̂(z)

w1 , ..., φ̂
(z)
w|q| , 0, 0, ..) ∈ (0, 1)W . Given a

topic z, the similarity between p(z)
q and p(z)

s is mea-
sured via transformed information radius (IR). We

Posterior Topic-Word Distributions

q :

 s :

z1
.
.

.

.

.

w5

. w4

w1

w6

w2

w7

w3
z2
.
.

.

.

.

w5

. w4

w1

w6

w2

w7

w3 zK
.
.

.

.

.

w5

. w4

w1

w6

w2

w7

w3...

(b) Magnified view of word given topic and topic given passage

distributions showing s={w1,w2,w3,w4,w5} and q={w1,w2,w6,w7}

(a) Snapshot of Flat Topic Structure of passages s

for a question q on “global warming”.

s: “Global1 warming2 may rise3 incidence4 of malaria5.”

q: “How does global1 warming2 effect6 humans7?”

!

Posterior Passage- Topic Distributions

z1z2zK

z

!(q)

z1z2zK

z

!(s)

V
w1w2w3..w5w6w7....

p
q
(z1)

V

p
s
(z1)

w1w2w3w4w5w6w7....

V
w1w2w3w4w5w6w7....

p
q
(z2)

V
w1w2w3w4w5w6w7....

p
q
(zK)

...

...
V

p
s
(zK)

w1w2w3w4w5w6w7....

...z1warming predict
healthdisease

forecast
temperature

malaria
sneeze

zK
z2

!

cooling

Topic Proportions

Topic-Word Distributions

V
w1w2w3w4w5w6w7....

p(z2)
s

Figure 1: (a) The topic distributions of a passage s and a
question q obtained from LDA. Each topic zk is a distri-
bution over words (Most probable terms are illustrated).
(b) magnified view of (a) demonstrating sparse distribu-
tions over the vocabulary V, where only words in passage
s and question q get values. The passage-topic distribu-
tions are topic mixtures, θ(s) and θ(q), for s and q.

first measure the divergence at each topic using IR
based on Kullback-Liebler (KL) divergence:

IR(p
(z)
q ,p

(z)
s)=KL(p

(z)
q ||

p
(z)
q +p

(z)
s

2
)+KL(p

(z)
s ||

p
(z)
q +p

(z)
s

2
)

(3)
where, KL(p||q) =

∑
i pi log pi

qi
. The divergence is

transformed into similarity measure (Manning and
Schutze, 1999):

W (p(z)
q , p

(z)
s) = 10−δIR(p

(z)
q ,p

(z)
s)1 (4)

To measure the similarity between probability distri-
butions we opted for IR instead of commonly used
KL because with IR there is no problem with infinite
values since pq+ps

2 6= 0 if either pq 6= 0 or ps 6= 0,
and it is also symmetric, IR(p,q)=IR(q,p). The simi-
larity of q/a pairs on topic-word basis is the average

1In experiments δ = 1 is used.

3

of transformed divergence over the entire K topics:

simLDA
1 (q, s) = 1

K

∑K
k=1W (p(z=k)

q , p
(z=k)
s) (5)

(2) simLDA
2 : We introduce another measure based on

passage-topic mixing proportions in q and s to cap-
ture similarities between their topics using the trans-
formed IR in Eq.(4) as follows:

simLDA
2 (q, s) = 10−IR(θ̂(q), θ̂(s)) (6)

The θ̂(q) and θ̂(s) are K-dimensional discrete topic
weights in question q and a passage s from Eq.(2).
In summary, simLDA

1 is a measure of lexical simi-
larity on topic-word level and simLDA

2 is a measure
of topical similarity on passage level. Together they
form the degree of similarity DESLDA(s, q) and are
combined as follows:

DESLDA(s,q)=simLDA
1 (q,s)*simLDA

2 (q, s) (7)

Fig.1 shows sparse distributions obtained for sam-
ple q and s. Since the topics are not distributed hi-
erarchially, each topic distribution is over the entire
vocabulary of words in retrieved collection D. Fig.1
only shows the most probable words in a given topic.
Moreover, each s and q are represented as a discrete
probability distribution over all K topics.

Algorithm 1 Flat Topic-Based Similarity Model
1: Given a query q and candidate passages s ∈ D
2: Build an LDA model for the retrieved passages.
3: for each passages s ∈ D do
4: - Calculate sim1(q, s) using Eq.(5)
5: - Calculate sim2(q, s) using Eq.(6)
6: - Calculate degree of similarity between q and s:
7: DESLDA(q,s)=sim1(q, s) ∗ sim2(q, s)
8: end for

4 Similarity Modeling with hLDA

Given a question, we discover hidden topic distribu-
tions using hLDA (Blei et al., 2003a). hLDA orga-
nizes topics into a tree of a fixed depth L (Fig.2.(a)),
as opposed to flat LDA. Each candidate passage s is
assigned to a path cs in the topic tree and each word
wi in s is assigned to a hidden topic zs at a level
l of cs. Each node is associated with a topic dis-
tribution over words. The Gibbs sampler (Griffiths
and Steyvers, 2004) alternates between choosing a

new path for each passage through the tree and as-
signing each word in each passage to a topic along
that path. The structure of tree is learnt along with
the topics using a nested Chinese restaurant process
(nCRP) (Blei et al., 2003a), which is used as a prior.

The nCRP is a stochastic process, which assigns
probability distributions to infinitely branching and
deep trees. nCRP specifies a distribution of words in
passages into paths in an L-level tree. Assignments
of passages to paths are sampled sequentially: The
first passage takes the initial L-level path, starting
with a single branch tree. Next,mth subsequent pas-
sage is assigned to a path drawn from distribution:

p(pathold, c|m,mc) = mc
γ+m−1

p(pathnew, c|m,mc) = γ
γ+m−1

(8)

pathold and pathnew represent an existing and novel
(branch) path consecutively, mc is the number of
previous passages assigned to path c, m is the to-
tal number of passages seen so far, and γ is a hyper-
parameter, which controls the probability of creating
new paths. Based on this probability each node can
branch out a different number of child nodes propor-
tional to γ. The generative process for hLDA is:
(1) For each topic k ∈ T , sample a distribution βk v
Dirichlet(η).
(2) For each passage s in retrieved documents,

(a) Draw a path cs v nCRP(γ),
(b) Sample L-vector θs mixing weights from

Dirichlet distribution θs ∼ Dir(α).
(c) For each word n, choose :

(i) a level zs,n|θs, (ii) a word ws,n| {zs,n, cs, β}
Given passage s, θs is a vector of topic propor-

tions from L dimensional Dirichlet parameterized
by α (distribution over levels in the tree.) The
nth word of s is sampled by first choosing a level
zs,n = l from the discrete distribution θs with prob-
ability θs,l. Dirichlet parameter η and γ control the
size of tree effecting the number of topics. Large
values of η favor more topics (Blei et al., 2003a).

Model Learning: Gibbs sampling is a common
method to fit the hLDA models. The aim is to ob-
tain the following samples from the posterior of: (i)
the latent tree T , (ii) the level assignment z for all
words, (iii) the path assignments c for all passages
conditioned on the observed words w.

Given the assignment of words w to levels z and
assignments of passages to paths c, the expected

4

(a) Snapshot of Hierarchical Topic Structure of

passages s for a question q on “global warming”.

z1 z2 z3

z

z1 z2 z3

z

Posterior Topic

Distributions

vz1

z3

..
.

.

.

.

.

.

.

. w5

z2

.
.
..

..

..
w2

.

z1 w5

...
.
.

.

.

w7

w1

Posterior Topic-Word Distributions
candidate s question q

(b) Magnified view of sample path c [z1,z2,z3] showing

s={w1,w2,w3,w4,w5} and q={w1,w2,w6,w7}

...

z1

zK-1

zKz4

z2

z3

human

warming

incidenceresearch
global

predict
health

change

disease

forecasttemperature

slow
malaria

sneeze

starving

middle-east
siberia

s: “Global1 warming2 may rise3 incidence4 of malaria5.”

q: “How does global1 warming2 effect6 humans7?”

vz1

vz2vz2

vz3vz3

w1w5w6

 w2 w7

w5 w5

w6 w1w5w6

.
 w2 w7

.

p
sz

p(w |z1, c)s,1 s

p(w |z2, c)q,2 q

p(w |z3, c)q,3 q

.p
 qz

p(w |z2, c)s,2 s

p(w |z3, c)s,3 s

p(w |z1, c)q,1 q

level:3

level:1

level:2

Figure 2: (a) A sample 3-level tree using hLDA. Each passage is associated with a path c through the hierarchy, where
each node zs = l is associated with a distribution over terms (Most probable terms are illustrated). (b) magnified view
of a path (darker nodes) in (a). Distribution of words in given passage s and a question (q) using sub-vocabulary of
words at each level topic vl. Discrete distributions on the left are topic mixtures for each passage, pzq and pzs .

posterior probability of a particular word w at a
given topic z=l of a path c=c is proportional to the
number of times w was generated by that topic:

p(w|z, c,w, η) ∝ n(z=l,c=c,w=w) + η (9)

Similarly, posterior probability of a particular topic
z in a given passage s is proportional to number of
times z was generated by that passage:

p(z|s, z, c, α) ∝ n(c=cc,z=l) + α (10)

n(.) is the count of elements of an array satisfying
the condition. Posterior probabilities are normalized
with total counts and their hyperparameters.

4.1 Tree-Based Similarity Model
The hLDA constructs a hierarchical tree structure
of candidate passages and given question, each of
which are represented by a path in the tree, and each
path can be shared by many passages/question. The
assumption is that passages sharing the same path
should be more similar to each other because they
share the same topics (Fig.2). Moreover, if a path
includes a question, then other passages on that path
are more likely to entail the question than passages
on the other paths. Thus, the similarity of a can-
didate passage s to a question q sharing the same
path is a measure of semantic similarity (Algorithm
2). Given a question, we build an hLDA model on
retrieved passages. Let cq be the path for a given

q. We identify the candidate passages that share the
same path with q, M = {s ∈ D|cs = cq}. Given
path cq and M , we calculate the degree of similarity
DEShLDA(s, q) between q and s by calculating two
similarity measures:
(1) simhLDA

1 : We define two sparse (discrete) uni-
gram distributions for candidate s and question q at
each node l to define lexical similarities on topic
level. The distributions are over a vocabulary of
words generated by the topic at that node, vl ⊂
V . Note that, in hLDA the topic distributions at
each level of a path is sampled from the vocabu-
lary of passages sharing that path, contrary to LDA,
in which the topics are over entire vocabulary of
words. This enables defining a similarity measure
on specific topics. Given wq =

{
w1, ..., w|q|

}
, let

wq,l ⊂ wq be the set of words in q that are gener-
ated from topic zq at level l on path cq. The discrete
unigram distribution pql = p(wq,l|zq = l, cq, vl) rep-
resents the probability over all words vl assigned to
topic zq at level l, by sampling only for words in
wq,l. The probability of the rest of the words in vl are
set 0. Similarly, ps,l = p(ws,l|zs, cq, vl) is the proba-
bility of words ws in s extracted from the same topic
(see Fig.2.b). The word probabilities in pq,l and ps,l
are obtained using Eq. (9) and then normalized.

The similarity between pq,l and ps,l at each level
is obtained by transformed information radius:

Wcq,l
(pq,l, ps,l) = 10δ-IRcq,l(pq,l,ps,l) (11)

5

where the IRcq,l
(pq,l, ps,l) is calculated as in Eq.(3)

this time for pq,l and ps,l (δ = 1). Finally simhLDA
1 is

obtained by averaging Eq.(11) over different levels:

simhLDA
1 (q, s) = 1

L

∑L
l=1 Wcq ,l(pq,l, ps,l) ∗ l (12)

The similarity between pq,l and ps,l is weighted by
the level l because the similarity should be rewarded
if there is a specific word overlap at child nodes.

Algorithm 2 Tree-Based Similarity Model
1: Given candidate passages s and question q.
2: Build hLDA on set of s and q to obtain tree T .
3: Find path cq on tree T and candidate passages
4: on path cq , i.e., M = {s ∈ D|cs = cq}.
5: for candidate passage s ∈M do
6: Find DEShDLA(q, s) = simhLDA

1 ∗ simhLDA
2

7: using Eq.(12) and Eq.(13)
8: end for
9: if s /∈M , then DEShDLA(q, s)=0.

(2) simhLDA
2 : We introduce a concept-base mea-

sure based on passage-topic mixing proportions to
calculate the topical similarities between q and s.
We calculate the topic proportions of q and s, rep-
resented by pzq = p(zq|cq) and pzs = p(zs|cq) via
Eq.(10). The similarity between the distributions is
then measured with transformed IR as in Eq.(11) by:

simhLDA
2 (q, s) = 10−IRcq(pzq ,pzs) (13)

In summary, simhLDA
1 provides information about

the similarity between q and s based on topic-word
distributions, and simhLDA

2 is the similarity between
the weights of their topics. The two measures are
combined to calculate the degree of similarity:

DEShLDA(q,s)=simhLDA
1 (q,s)*simhLDA

2 (q, s) (14)

Fig.2.b depicts a sample path illustrating sparse uni-
gram distributions of a q and s at each level and their
topic proportions, pzq , and pzs . The candidate pas-
sages that are not on the same path as the question
are assigned DEShLDA(s, q) = 0.

5 Discriminitive Model for QA

In (Celikyilmaz et al., 2009), the QA task is posed
as a textual entailment problem using lexical and se-
mantic features to characterize similarities between

q/a pairs. A discriminative classifier is built to pre-
dict the existence of an answer in candidate sen-
tences. Although they show that semi-supervised
methods improve accuracy of their QA model un-
der limited amount of labeled data, they suggest that
with sufficient number of labeled data, supervised
methods outperform semi-supervised methods. We
argue that there is a lot to discover from unlabeled
text to help improve QA accuracy. Thus, we pro-
pose using Bayesian probabilistic models. First we
briefly present the baseline method:
Baseline: We use the supervised classifier

model presented in (Celikyilmaz et al., 2009) as
our baseline QA model. Their datasets, provided in
http://www.eecs.berkeley.edu/∼asli/asliPublish.html,
are q/a pairs from TREC task. They define each
q/a pair as a d dimensional feature vector xi ∈ <d
characterizing entailment information between
them. They build a support vector machine (SVM)
(Drucker et al., 1997) classifier model to predict the
entailment scores for q/a pairs.

To characterize the similarity between q/a pairs
they use: (i) features represented by similarities
between semantic components, e.g., subject, ob-
ject, verb, or named-entity types discovered in q/a
pairs, and (ii) lexical features represented by lexico-
syntactic alignments such as n-gram word overlaps
or cause and entailment relations discovered from
WordNet (Miller, 1995). For a given question q, they
rank the candidate sentences s based on predicted
entailment scores from the classifier, TE(q, s).

We extend the baseline by using the degree of
similarity between question and candidate passage
obtained from LDA, DESLDA(q, s), as well as hLDA
DEShLDA(q, s), and evaluate different models:
Model M-1: Degree of Similarity as Rank

Scores: In this model, the QA is based on a fully
generative approach in which the similarity mea-
sures of Eq.(7) in §3 and Eq.(14) in §4 are used to
obtain ranking scores. We build two separate mod-
els, M-1.1 using DESLDA(q, s), and M-1.2 using
DEShLDA(q, s) as rank scores and measure accu-
racy by re-ranking candidate passages accordingly.
Given a question, this model requires training indi-
vidual LDA and hLDA models.
Model M-2: Interpolation Between

Classifier-Based Entailment Scores and Genera-
tive Model Scores: In this model, the underlying

6

mechanism of QA is the discriminative method
presented in baseline. We linearly combine the
probabilistic similarity scores from generative
models, DES scores in M-1, with the baseline
scores. We build two additional models to calculate
the final rank scores; M-2.1 using:

score(s|q) = a∗TE(q, s)+b∗DESLDA(q, s) (15)

and M-2.2 using:

score(s|q) = a∗TE(q, s)+b∗DEShLDA(q, s) (16)

where 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1 and a + b = 1.
We find the optimum a∗ and b∗ based on the valida-
tion experiments on training dataset. The candidate
sentences are re-ranked based on these scores.
Model M-3: Degree of Similarity as Entail-

ment Features: Another way to incorporate the la-
tent information into the discriminitive QA model
is to utilize the latent similarities as explanatory
variables in the classifier model. Particularly we
build M-3.1 by using simLDA

1 , simLDA
2 as well as

DESLDA(q, s) as additional features for the SVM, on
top of the the existing features used in (Celikyilmaz
et al., 2009). Similarly, we build M-3.2 by using
simhLDA

1 , simhLDA
2 as well as DEShLDA(q, s) as addi-

tional features to the SVM classifier model to predict
entailment scores. This model requires building two
new SVM classifier models with the new features.

6 Experiments and Discussions

We demonstrate the results of our experiments on
exploration of the effect of different generative mod-
els presented in §5 on TREC QA datasets.

We performed experiments on the datasets used in
(Celikyilmaz et al., 2009). Their train dataset com-
poses of a set of 1449 questions from TREC-99-
03. For each question, the 5 top-ranked candidate
sentences are extracted from a large newswire cor-
pora (Acquaint corpus) through a search engine, i.e.,
Lucene 2. The q/a pairs are labeled as true/false de-
pending on the containment of the true answer string
in retrieved passages. Additionally, to calculate the
LDA and hLDA similarity measures for each candi-
date passage, we also extract around 100 documents
in the same fashion using Lucene and identify pas-
sages to build the probabilistic models. We calculate

2http://lucene.apache.org/java/

the probabilistic similarities, i.e., simLDA
1 , simLDA

2 ,
simhLDA

1 , simhLDA
2 , and the degree of similarity val-

ues, i.e., DESLDA(q, s) and DEShLDA(q, s) for
each of the 5 top-ranked candidate sentences in
training dataset at inference time. Around 7200 q/a
pairs are compiled accordingly.

The provided testing data contains a set of 202
questions from TREC2004 along with 20 candidate
sentences for each question, which are labeled as
true/false. To calculate the similarities for the 20
candidate sentences, we extract around 100 docu-
ments for each question and build LDA and hLDA
models. 4037 testing q/a pairs are compiled.

We report the retrieval performance of our mod-
els in terms of Mean Reciprocal Rank (MRR), top
1 (Top1) and top 5 prediction accuracies (Top5)
(Voorhees, 2004). We performed parameter opti-
mization during training based on prediction ac-
curacy to find the best C =

{
10−2, .., 102

}
and

Γ =
{

2−2, .., 23
}

for RBF kernel SVM. For the
LDA models we present the results with 10 top-
ics. In hLDA models, we use four levels for the
tree construction and set the topic Dirichlet hyper-
parameters in decreasing order of levels at η =
{1.0, 0.75, 0.5, 0.25} to encourage as many terms in
the mid to low levels as the higher levels in the hi-
erarchy, for a better comparison between q/a pairs.
The nested CRP parameter γ is fixed at 1.0. We
evaluated n-sliding-window size of sentences in se-
quence, n = {1, 3, 5}, to compile candidate pas-
sages for probabilistic models (Table 1). The output
scores for SVM models are normalized to [0,1].
? As our baseline (in §5), we consider supervised

classifier based QA presented in (Celikyilmaz et al.,
2009). The baseline MRR on TREC-2004 dataset is
MRR=%67.6, Top1=%58, Top5=%82.2.
? The results of the new models on testing dataset

are reported in Table 1. Incorporating the genera-
tive model output to the classifier model as input
features, i.e., M-3.1 and M-3-2, performs con-
sistently better than the rest of the models and the
baseline, where MRR result is statistically signifi-
cant based on t-test statistics (at p = 0.95 confi-
dence level). When combined with the textual en-
tailment scores, i.e., M-2.1 and M-2.2, they pro-
vide a slightly better ranking, a minor improvement
compared to the baseline. However, using the gen-
erative model outcome as sole ranking scores in

7

Window-size 1-window 3-window 5-window
MRR categories MRR Top1 Top5 MRR Top1 Top5 MRR Top1 Top5

M
od

el
s

M-1.1 (with LDA) 42.7 30.2 64.4 42.1 30.2 64.4 42.1 30.2 64.4
M-1.1 (with hLDA) 55.8 45.5 71.0 55.8 45.5 71.0 54.9 45.5 71.0
M-2.1 (with LDA) 66.2 55.1 82.2 65.2 54.5 80.7 65.2 54.5 80.7
M-2.2 (with hLDA) 68.2 58.4 82.2 67.6 58.0 82.2 67.4 58.0 81.6
M-3.1 (with LDA) 68.0 61.0 82.2 68.0 58.1 82.2 68.2 58.1 82.2
M-3.2 (with hLDA) 68.4 63.4 82.2 68.3 61.0 82.2 68.3 61.0 82.2

Table 1: The MRR results of the models presented in §5 on testing dataset (TREC 2004) using different window sizes
of candidate passages. The statistically significant model results in each corresponding MRR category are bolded.
Baseline MRR=%67.6, Top1=%58, Top5=%82.2.

M-1.1 and M-1.2 do not reveal as good results as
the other models, suggesting room for improvement.
? In Table 1, Top1 MRR yields better improve-

ment compared to the other two MRRs, especially
for models M-3.1 and M-3.2. This suggests that
the probabilistic model outcome rewards the can-
didate sentences containing the true answer by es-
timating higher scores and moves them up to the
higher levels of the rank.
? The analysis of different passage sizes suggest

that the 1-window size yields best results and no sig-
nificant performance improvement is observed when
window size is increased. Thus, the similarity be-
tween q/a pairs can be better explained if the candi-
date passage contains less redundant sentences.
? The fact that the similarity scores obtained from

the hLDA models are significantly better than LDA
models in Table 1 indicates an important property
of hierarchal topic models. With the hLDA specific
and generic topics can be identified on different lev-
els of the hierarchy. Two candidate passages can
be characterized with different abstract and specific
topics (Fig. 2) enabling representation of better fea-
tures to identify similarity measures between them.
Whereas in LDA, each candidate passage has a pro-
portion in each topic. Rewarding the similarities on
specific topics with the hLDA models help improve
the QA rank performance.
? In M-3.1 and M-3.2 we use probabilistic sim-

ilarities and DES as inputs to the classifier. In Table
2 we show the individual effects of these features on
the MRR testing performance along with other lexi-
cal and semantic features of the baseline. Although
the effect of each feature is comparable, the DESLDA

Features M-3.1 Features M-3.1

sim1LDA 67.7 sim1hLDA 67.8
sim2LDA 67.5 sim2hLDA 68.0
DESLDA 67.9 DEShLDA 68.1

Table 2: The MRR results of the similarity measures on
testing dataset (TREC 2004) when used as input features.

and DEShLDA features reveal slightly better results.

7 Conclusion and Future Work

In this paper we introduced a set of methods based
on Latent Dirichlet Allocation (LDA) to character-
ize the similarity between the question and the can-
didate passages, which are used as ranking scores.
The results of our experiments suggest that extract-
ing information from hidden concepts improves the
results of a classifier-based QA model.

Although unlabeled data exploration through
probabilistic graphical models can help to improve
information extraction, devising a machinery with
suitable generative models for the given natural lan-
guage task is a challenge. This work helps with
such understanding via extensive simulations and
puts forward and confirms a hypothesis explaining
the mechanisms behind the effect of unsupervised
pre-training for the final discriminant learning task.

In the future, we would like to further evaluate
the models presented in this paper for larger datasets
and for different tasks such as question paraphrase
retrieval or query expansion. Moreover, we would
like to enhance the similarities with other semantic
components extracted from questions such as ques-
tion topic and question focus.

8

References

C. M. Bishop and J. Lasserre. Generative or dis-
criminative? getting the best of both worlds. In In
Bayesian Statistics 8, Bernardo, J. M. et al. (Eds),
Oxford University Press, 2007.

D. Blei, T. Griffiths, M. Jordan, and J. Tenenbaum.
Hierarchical topic models and the nested chinese
restaurant process. In In Neural Information Pro-
cessing Systems [NIPS], 2003a.

D. M. Blei, A. Ng, and M. Jordan. Latent dirichlet
allocation. In Jrnl. Machine Learning Research,
3:993-1022, 2003b.

G. Bouchard and B. Triggs. The tradeoff between
generative and discriminative classifiers. In Proc.
of COMPSTAT’04, 2004.

A. Celikyilmaz, M. Thint, and Z. Huang. Graph-
based semi-supervised learning for question an-
swering. In Proc. of the ACL-2009, 2009.

C.L.A. Clarke, G. V. Cormack, R. T. Lynam, and
E. L. Terra. Question answering by passage se-
lection. In In: Advances in open domain question
answering, Strzalkowski, and Harabagiu (Eds.),
pages 259–283. Springer, 2006.

H. Drucker, C.J.C. Burger, L. Kaufman, A. Smola,
and V. Vapnik. Support vector regression ma-
chines. In NIPS 9, 1997.

A. Echihabi and D. Marcu. A noisy-channel ap-
proach to question answering. In ACL-2003,
2003.

T. Griffiths and M. Steyvers. Finding scientific top-
ics. In PNAS, 101(Supp. 1): 5228-5235, 2004.

S. Harabagiu and A. Hickl. Methods for using tex-
tual entailment in open-domain question answer-
ing. In In Proc. of ACL-2006, pages 905–912,
2006.

Z. Huang, M. Thint, and A. Celikyilmaz. Investiga-
tion of question classifier in question answering.
In In EMNLP’09, 2009.

W.-Y. Ma and K. McKeowon. Where’s the verb?
correcting machine translation during question
answering. In In ACL-IJCNLP’09, 2009.

C. Manning and H. Schutze. Foundations of statis-
tical natural language processing. In MIT Press.
Cambridge, MA, 1999.

A. McCallum, C. Pal, G. Druck, and
X. Wang. Multi-conditional learning: Gen-
erative/discriminative training for clustering and
classification. In AAAI 2006, 2006.

G.A. Miller. Wordnet: A lexical database for en-
glish. In ACM, 1995.

D. Molla, M.V. Zaanen, and D. Smith. Named en-
tity recognition for question answering. In In
ALTW2006, 2006.

H.T. Ng, J.L.P. Kwan, and Y. Xia. Question answer-
ing using a large text database: A machine learn-
ing approach. In EMNLP-2001, 2001.

H. Saggion and R. Gaizauskas. Experiments in pas-
sage selection and answer extraction for ques-
tion answering. In In: Advances in open domain
question answering, Strzalkowski, and Harabagiu
(Eds.), pages 291–302. Springer, 2006.

T. Schmah, G. E Hinton, R. Zemel, S. L. Small,
and S. Strother. Generative versus discriminative
training of rbms for classification of fmri images.
In Proc. NIPS 2009, 2009.

Dan Shen and Dietrich Klakow. Exploring correla-
tion of dependency relation paths for answer ex-
traction. In Proc. of ACL-2006, 2006.

J.L. Vicedo and A. Ferrandez. Applying anaphora
resolution to question answering and information
retrieval systems. In In LNCS, volume 1846,
pages 344–355, 2000.

Ellen M. Voorhees. Overview of trec2004 question
answering track. 2004.

J. Weston, F. Rattle, and R. Collobert. Deep learning
via semi-supervised embedding. In ICML, 2008.

9

Proceedings of the NAACL HLT 2010 Workshop on Semantic Search, pages 10–18,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Experts’ Retrieval with Multiword-Enhanced Author Topic Model

Nikhil Johri Dan Roth Yuancheng Tu
Dept. of Computer Science Dept. of Linguistics

University of Illinois at Urbana-Champaign
{njohri2,danr,ytu}@illinois.edu

Abstract

In this paper, we propose a multiword-
enhanced author topic model that clusters au-
thors with similar interests and expertise, and
apply it to an information retrieval system that
returns a ranked list of authors related to a key-
word. For example, we can retrieveEugene
Charniak via search forstatistical parsing.

The existing works on author topic model-
ing assume a “bag-of-words” representation.
However, many semantic atomic concepts are
represented by multiwords in text documents.
This paper presents a pre-computation step as
a way to discover these multiwords in the cor-
pus automatically and tags them in the term-
document matrix. The key advantage of this
method is that it retains the simplicity and
the computational efficiency of the unigram
model. In addition to a qualitative evaluation,
we evaluate the results by using the topic mod-
els as a component in a search engine. We ex-
hibit improved retrieval scores when the docu-
ments are represented via sets of latent topics
and authors.

1 Introduction

This paper addresses the problem of searching peo-
ple with similar interests and expertise without in-
putting personal names as queries. Many existing
people search engines need people’s names to do a
“keyword” style search, using a person’s name as a
query. However, in many situations, such informa-
tion is impossible to know beforehand. Imagine a
scenario where the statistics department of a univer-
sity invited a world-wide known expert in Bayesian

statistics and machine learning to give a keynote
speech; how can the department head notify all the
people on campus who are interested without spam-
ming those who are not? Our paper proposes a solu-
tion to the aforementioned scenario by providing a
search engine which goes beyond “keyword” search
and can retrieve such information semantically. The
department head would only need to input the do-
main keyword of the keynote speaker, i.e.Bayesian
statistics, machine learning, and all professors and
students who are interested in this topic will be
retrieved. Specifically, we propose aMultiword-
enhancedAuthor-Topic Model (MATM), a proba-
bilistic generative model which assumes two steps
of generation process when producing a document.

Statistical topical modeling (Blei and Lafferty,
2009a) has attracted much attention recently due to
its broad applications in machine learning, text min-
ing and information retrieval. In these models, se-
mantic topics are represented by multinomial distri-
bution over words. Typically, the content of each
topic is visualized by simply listing the words in or-
der of decreasing probability and the “meaning” of
each topic is reflected by the top10 to 20 words in
that list. The Author-Topic Model (ATM) (Steyvers
et al., 2004; Rosen-Zvi et al., 2004) extends the ba-
sic topical models to include author information in
which topics and authors are modeled jointly. Each
author is a multinomial distribution over topics and
each topic is a multinomial distribution over words.

Our contribution to this paper is two-fold. First
of all, our model, MATM, extends the original ATM
by adding semantically coherent multiwords into the
term-document matrix to relax the model’s “bag-of-

10

words” assumption. Each multiword is discovered
via statistical measurement and filtered by its part of
speech pattern via an off-line way. One key advan-
tage of tagging these semantic atomic units off-line,
is the retention of the flexibility and computational
efficiency in using the simpler word exchangeable
model, while providing better interpretation of the
topics author distribution.

Secondly, to the best of our knowledge, this is
the first proposal to apply the enhanced author topic
modeling in a semantic retrieval scenario, where
searching people is associated with a set of hid-
den semantically meaningful topics instead of their
names. While current search engines cannot sup-
port interactive and exploratory search effectively,
search based on our model serves very well to an-
swer a range of exploratory queries about the doc-
ument collections by semantically linking the inter-
ests of the authors to the topics of the collection, and
ultimately to the distribution of the words in the doc-
uments.

The rest of the paper is organized as follows. We
present some related work on topic modeling, the
original author-topic model and automatic phrase
discovery methods in Sec. 2. Then our model is de-
scribed in Sec. 3. Sec. 4 presents our experiments
and the evaluation of our method on expert search.
We conclude this paper in Sec. 5 with some discus-
sion and several further developments.

2 Related Work

Author topic modeling, originally proposed
in (Steyvers et al., 2004; Rosen-Zvi et al., 2004), is
an extension of another popular topic model, Latent
Dirichlet Allocation (LDA) (Blei et al., 2003), a
probabilistic generative model that can be used to
estimate the properties of multinomial observations
via unsupervised learning. LDA represents each
document as a mixture of probabilistic topics and
each topic as a multinomial distribution over words.
The Author topic model adds an author layer over
LDA and assumes that the topic proportion of a
given document is generated by the chosen author.

Both LDA and the author topic model assume
bag-of-words representation. As shown by many
previous works (Blei et al., 2003; Steyvers et al.,
2004), even such unrealistic assumption can actu-

ally lead to a reasonable topic distribution with rel-
atively simple and computationally efficient infer-
ence algorithm. However, this unigram represen-
tation also poses major handicap when interpreting
and applying the hidden topic distributions. The
proposed MATM is an effort to try to leverage this
problem in author topic modeling. There have been
some works on Ngram topic modeling over the orig-
inal LDA model (Wallach, 2006; Wang and McCal-
lum, 2005; Wang et al., 2007; Griffiths et al., 2007).
However, to the best of our knowledge, this paper
is the first to embed multiword expressions into the
author topic model.

Many of these Ngram topic models (Wang and
McCallum, 2005; Wang et al., 2007; Griffiths et
al., 2007) improves the base model by adding a new
indicator variablexi to signify if a bigram should
be generated. Ifxi = 1, the wordwi is gener-
ated from a distribution that depends only on the
previous word to form an Ngram. Otherwise, it is
generated from a distribution only on the topic pro-
portion (Griffiths et al., 2007) or both the previous
words and the latent topic (Wang and McCallum,
2005; Wang et al., 2007). However, these complex
models not only increase the parameter size toV
times larger than the size of the original LDA model
parameters (V is the size of the vocabulary of the
document collection)1, it also faces the problem of
choosing which word to be the topic of the potential
Ngram. In many text retrieval tasks, the humongous
size of data may prevent us using such complicated
computation on-line. However, our model retains
the computational efficiency by adding a simple tag-
ging process via pre-computation.

Another effort in the current literature to interpret
the meaning of the topics is to label the topics via
a post-processing way (Mei et al., 2007; Blei and
Lafferty, 2009b; Magatti et al., 2009). For example,
Probabilistic topic labeling (Mei et al., 2007) first
extracts a set of candidate label phrases from a refer-
ence collection and represents each candidate label-
ing phrase with a multinomial distribution of words.
Then KL divergence is used to rank the most prob-
able labels for a given topic. This method needs not
only extra reference text collection, but also facing

1LDA collocation models and topic Ngram models also have
parameters for the binomial distribution of the indicator variable
xi for each word in the vocabulary.

11

the problem of finding discriminative and high cov-
erage candidate labels. Blei and Lafferty (Blei and
Lafferty, 2009b) proposed a method to annotate each
word of the corpus by its posterior word topic distri-
bution and then cast a statistical co-occurrence anal-
ysis to extract the most significant Ngrams for each
topic and visualize the topic with these Ngrams.
However, they only applied their method to basic
LDA model.

In this paper, we applied our multiword extension
to the author topic modeling and no extra reference
corpora are needed. The MATM, with an extra pre-
computing step to add meaningful multiwords into
the term-document matrix, enables us to retain the
flexibility and computational efficiency to use the
simpler word exchangeable model, while providing
better interpretation of the topics and author distri-
bution.

3 Multiword-enhanced Author-Topic
Model

The MATM is an extension of the original ATM
(Rosen-Zvi et al., 2004; Steyvers et al., 2004) by
semantically tagging collocations or multiword ex-
pressions, which represent atomic concepts in doc-
uments in the term-document matrix of the model.
Such tagging procedure enables us to retain compu-
tational efficiency of the word-level exchangeabil-
ity of the orginal ATM while provides more sensi-
ble topic distributions and better author topic coher-
ence. The details of our model are presented in Al-
gorithm 1.

3.1 Beyond Bag-of-Words Tagging

The first for loop in Algorithm 1 is the procedure
of our multiword tagging. Commonly used ngrams,
or statistically short phrases in text retrieval, or
so-called collocations in natural language process-
ing have long been studied by linguistics in vari-
ous ways. Traditional collocation discovery meth-
ods range from frequency to mean and variance,
from statistical hypothesis testing, to mutual infor-
mation (Manning and Schtze, 1999). In this pa-
per, we use a simple statistical hypothesis testing
method, namely Pearson’s chi-square test imple-
mented in Ngram Statistic Package (Banerjee and
Pedersen, 2003), enhanced by passing the candidate

phrases through some pre-defined part of speech
patterns that are likely to be true phrases. This
very simple heuristic has been shown to improve the
counting based methods significantly (Justenson and
Katz, 1995).

Theχ2 test is chosen since it does not assume any
normally distributed probabilities and the essence
of this test is to compare the observed frequencies
with the frequencies expected for independence. We
choose this simple statistic method since in many
text retrieval tasks the volume of data we see al-
ways makes it impractical to use very sophisticated
statistical computations. We also focus on nominal
phrases, such as bigram and trigram noun phrases
since they are most likely to function as semantic
atomic unit to directly represent the concepts in text
documents.

3.2 Author Topic Modeling

The last three generative procedures described in Al-
gorithm 1 jointly model the author and topic infor-
mation. This generative model is adapted directly
from (Steyvers et al., 2004). Graphically, it can be
visualized as shown in Figure 1.

Figure 1: Plate notation of our model: MATM

The four plates in Fiture 1 represent topic (T), au-
thor (A), document (D) and Words in each document
(Nd) respectively. Each author is associated with a
multinomial distribution over all topics,~θa and each
topic is a multinomial distribution over all words,~φt.
Each of these distribution has a symmetric Dirichlet
prior over it, ~η and ~β respectively. When generat-
ing a document, an authork is first chosen according
to a uniform distribution. Then this author chooses
the topic from his/her associated multinomial distri-
bution over topics and then generates a word from
the multinomial distribution of that topic over the

12

words.

Algorithm 1: MATM: A,T ,D,N are four
plates as shown in Fig. 1. The firstfor loop is the
off-line process of multiword expressions. The
rest of the algorithm is the generative process of
the author topic modeling.

Data: A,T ,D,N
for all documents d ∈ D do

Part-of-Speech tagging ;
Bigram extraction ;
Part-of Speech Pattern Filtering ;
Add discovered bigrams intoN ;

for each author a ∈ A do
draw a distribution over topics:
~θa ∼ DirT (~η) ;

for each topic t ∈ T do
draw a distribution over words:
~φt ∼ DirN (~β) ;

for each document d ∈ D and k authors ∈ d do
for each word w ∈ d do

choose an authork ∼ uniformly;
draw a topic assignmenti given the
author:zk,i|k ∼ Multinomial(θa) ;
draw a word from the chosen topic:
wd,k,i|zk,i ∼ Multinomial(φzk,i) ;

MATM includes two sets of parameters. TheT
topic distribution over words,φt which is similar to
that in LDA. However, instead of a document-topic
distribution, author topic modeling has the author-
topic distribution,θa. Using a matrix factorization
interpretation, similar to what Steyvers, Griffiths and
Hofmann have pointed out for LDA (Steyvers and
Griffiths, 2007) and PLSI (Hofmann, 1999), a word-
author co-occurrence matrix in author topic model
can be split into two parts: a word-topic matrixφ
and a topic-author matrixθ. And the hidden topic
serves as the low dimensional representation for the
content of the document.

Although the MATM is a relatively simple model,
finding its posterior distribution over these hidden
variables is still intractable. Many efficient ap-
proximate inference algorithms have been used to
solve this problem including Gibbs sampling (Grif-
fiths and Steyvers, 2004; Steyvers and Griffiths,

2007; Griffiths et al., 2007) and mean-field vari-
ational methods (Blei et al., 2003). Gibbs sam-
pling is a special case of Markov-Chain Monte Carlo
(MCMC) sampling and often yields relatively sim-
ple algorithms for approximate inference in high di-
mensional models.

In our MATM, we use a collapsed Gibbs sam-
pler for our parameter estimation. In this Gibbs
sampler, we integrated out the hidden variablesθ

andφ as shown by the delta function in equation 2.
This Dirichlet delta function with aM dimentional
symmetric Dirichlet prior is defined in Equation 1.
For the current statej, the conditional probability
of drawing thekth authorKk

j and theith topic Zi
j

pair, given all the hyperparameters and all the obe-
served documents and authors except the current as-
signment (the exception is denoted by the symbol
¬j), is defined in Equation 2.

∆M (λ) =
Γ

(

λM
)

Γ (Mλ)
(1)

P (Zi
j ,K

k
j |Wj = w,Z¬j ,K¬j ,W¬j , Ad, ~β, ~η)

∝

∆(nZ+~β)
∆(nZ,¬j+~β)

∆(nK+~η)

∆(nK,¬j+~η)

=
nw
i,¬j+

~βw
∑V

w=1
nw
i,¬j+V ~βw

ni
k,¬j

+~ηi
∑T

i=1
ni
k,¬j

+T ~ηi
(2)

And the parameter setsφ andθ can be interpreted
as sufficient statistics on the state variables of the
Markov Chain due to the Dirichlet conjugate priors
we used for the multinomial distributions. The two
formulars are shown in Equation 3 and Equation 4 in
which nw

i is defined as the number of times that the
word w is generated by topici andni

k is defined as
the number of times that topici is generated by au-
thor k. The Gibbs sampler used in our experiments
is from the Matlab Topic Modeling Toolbox2.

φw,i =
nw

i + ~βw
∑V

w=1 nw
i + V ~βw

(3)

θk,i =
ni

k + ~ηi
∑T

i=1 ni
k + T ~ηi

(4)

2http://psiexp.ss.uci.edu/research/programsdata/toolbox.htm

13

4 Experiments and Analysis

In this section, we describe the empirical evaluation
of our model qualitatively and quantitatively by ap-
plying our model to a text retrieval system we call
Expert Search. This search engine is intended to re-
trieve groups of experts with similar interests and ex-
pertise by inputting only general domain key words,
such assyntactic parsing, information retrieval.

We first describe the data set, the retrieval system
and the evaluation metrics. Then we present the em-
pirical results both qualitatively and quantitatively.

4.1 Data

We crawled from ACL anthology website and col-
lected seven years of annual ACL conference papers
as our corpus. The reference section is deleted from
each paper to reduce some noisy vocabulary, such
as idiosyncratic proper names, and some coding er-
rors caused during the file format conversion pro-
cess. We applied a part of speech tagger3 to tag
the files and retain in our vocabulary only content
words, i.e., nouns, verbs, adjectives and adverbs.

The ACL anthology website explicitly lists each
paper together with its title and author information.
Therefore, the author information of each paper can
be obtained accurately without extracting from the
original paper. We transformed all pdf files to text
files and normalized all author names by eliminating
their middle name initials if they are present in the
listed names. There is a total of 1,326 papers in the
collected corpus with2, 084 authors. Then multi-
words (in our current experiments, the bigram collo-
cations) are discovered via theχ2 statistics and part
of speech pattern filtering. These multiwords are
then added into the vocabulary to build our model.
Some basic statistics about this corpus is summa-
rized in Table 1.

Two sets of results are evaluated use the retrieval
system in our experiments: one set is based on un-
igram vocabulary and the other with the vocabulary
expanded by the multiwords.

4.2 Evaluation on Expert Search

We designed a preliminary retrieval system to eval-
uate our model. The functionality of this search is

3The tagger is from:
http://l2r.cs.uiuc.edu/∼cogcomp/software.php

ACL Corpus Statistics
Year range 2003-2009
Total number of papers 1,326
Total number of authors 2,084
Total unigrams 34,012
Total unigram and multiwords 205,260

Table 1: Description of the ACL seven-year collection in
our experiments

to associate words with individual authors, i.e., we
rank the joint probability of the query words and the
target authorP (W,a). This probability is marginal-
ized over all topics in the model to rank all authors
in our corpus. In addition, the model assumes that
the word and the author is conditionally indepen-
dent given the topic. Formally, we define the ranking
function of our retrieval system in Equation 5:

P (W,a) =
∑

wi

αi

∑

t

P (wi, a|t)P (t)

=
∑

wi

αi

∑

t

P (wi|t)P (a|t)P (t) (5)

W is the input query, which may contain one or
more words. If a multiword is detected within the
query, it is added into the query. The final score is
the sum of all words in this query weighted by their
inverse document frequencyαi The inverse docu-
ment frequency is defined as Equation 6.

αi =
1

DF (wi)
(6)

In our experiments, we chose ten queries which
covers several most popular research areas in com-
putational linguistics and natural language process-
ing. In our unigram model, query words are treated
token by token. However, in our multiword model,
if the query contains a multiword inside our vocabu-
lary, it is treated as an additional token to expand the
query. For each query, top10 authors are returned
from the system. We manually label the relevance
of these10 authors based on the papers they submit-
ted to these seven-year ACL conferences collected
in our corpus. Two evaluation metrics are used to
measure the precision of the retrieving results. First
we evaluate the precision at a given cut-off rank,
namely precision at K with K ranging from 1 to 10.

14

We also calculate the average precision (AP) for
each query and the mean average precision (MAP)
for all the 10 queries. Average precision not only
takes ranking as consideration but also emphasizes
ranking relevant documents higher. Different from
precision at K, it is sensitive to the ranking and cap-
tures some recall information since it assumes the
precision of the non-retrieved documents to be zero.
It is defined as the average of precisions computed
at the point of each of the relevant documents in the
ranked list as shown in equation 7.

AP =

∑n
r=1(Precision(r)× rel(r))

∑

relevant documents

(7)

Currently in our experiments, we do not have a
pool of labeled authors to do a good evaluation of
recall of our system. However, as in the web brows-
ing activity, many users only care about the first sev-
eral hits of the retrieving results and precision at K
and MAP measurements are robust measurements
for this purpose.

4.3 Results and Analysis

In this section, we first examine the qualitative re-
sults from our model and then report the evaluation
on the external expert search.

4.3.1 Qualitative Coherence Analysis

As have shown by other works on Ngram topic
modeling (Wallach, 2006; Wang et al., 2007; Grif-
fiths et al., 2007), our model also demonstrated that
embedding multiword tokens into the simple author
topic model can always achieve more coherent and
better interpretable topics. We list top 15 words
from two topics of the multiword model and uni-
gram model respectively in Table 2. Unigram topics
contain more general words which can occur in ev-
ery topic and are usually less discriminative among
topics.

Our experiments also show that embedding the
multiword tokens into the model achieves better
clustering of the authors and the coherence between
authors and topics. We demonstrate this qualita-
tively by listing two examples respectively from the
multiword models and the unigram model in Table 3.
For example, for the topic on dependency pars-
ing, unigram model missedRyan-McDonald and the
ranking of the authors are also questionable. Further

MultiWord Model Unigram Model
TOPIC 4 Topic 51

coreference-resolution resolution
antecedent antecedent
treesubstitution-grammars pronoun
completely pronouns
pronoun is
resolution information
angry antecedents
candidate anaphor
extracted syntactic
feature semantic
pronouns coreference
model anaphora
perceptual-cooccurrence definite
certain-time model
anaphora-resolution only
TOPIC 49 Topic 95

sense sense
senses senses
word-sense disambiguation
target-word word
word-senses context
sense-disambiguation ontext
nouns ambiguous
automatically accuracy
semantic-relatedness nouns
disambiguation unsupervised
provided target
ambiguous-word predominant
concepts sample
lexical-sample automatically
nouns-verbs meaning

Table 2: Comparison of the topic interpretation from the
multiword-enhanced and the unigram models. Qualita-
tively, topics with multiwords are more interpretable.

quantitative measurement is listed in our quantita-
tive evaluation section. However, qualitatively, mul-
tiword model seems less problematic.

Some of the unfamiliar author may not be easy to
make a relevance judgment. However, if we trace
all the papers the author wrote in our collected cor-
pus, many of the authors are coherently related to the
topic. We list all the papers in our corpus for three
authors from the machine translation topic derived
from the multiword model in Table 4 to demonstrate
the coherence between the author and the related
topic. However, it is also obvious that our model
missed somereal experts in the corresponding field.

15

MultiWord Model Unigram Model
Topic 63 Topic 145 Topic 23 Topic 78
Word Word Word Word
translation dependency-parsing translation dependency
machine-translation dependency-tree translations head
language-model dependency-trees bilingual dependencies
statistical-machine dependency pairs structure
translations dependency-structures language structures
phrases dependency-graph machine dependent
translation-model dependency-relation parallel order
decoding dependency-relations translated word
score order monolingual left
decoder does quality does
Author Author Author Author
Shouxun-Lin Joakim-Nivre Hua-Wu Christopher-Manning
David-Chiang Jens-Nilsson Philipp-Koehn Hisami-Suzuk
Qun-Liu David-Temperley Ming-Zhou Kenji-Sagae
Philipp-Koehn Wei-He Shouxun-Lin Jens-Nilsson
Chi-Ho-Li Elijah-Mayfield David-Chiang Jinxi-Xu
Christoph-Tillmann Valentin-Jijkoun Yajuan-Lu Joakim-Nivre
Chris-Dyer Christopher-Manning Haifeng-Wang Valentin-Jijkoun
G-Haffari Jiri-Havelka Aiti-Aw Elijah-Mayfield
Taro-Watanabe Ryan-McDonald Chris-Callison-Burch David-Temperley
Aiti-Aw Andre-Martins Franz-Och Julia-Hockenmaier

Table 3: Two examples for topic and author coherece from multiword-enhanced model and unigram model. Top 10
words and authors are listed accordingly for each model.

For example, we did not getKevin Knight for the
machine translation topic. This may be due to the
limitation of our corpus since we only collected pa-
pers from one conference in a limited time, or be-
cause usually theseexperts write more divergent on
various topics.

Another observation in our experiment is that
some experts with many papers may not be ranked
at the very top by our system. However, they have
pretty high probability to associate with several top-
ics. Intuitively this makes sense, since many of these
famous experts write papers with their students in
various topics. Their scores may therefore not be as
high as authors who have fewer papers in the corpus
which are concentrated in one topic.

4.3.2 Results from Expert Search

One annotator labeled the relevance of the re-
trieval results from our expert search system. The
annotator was also given all the paper titles of each
corresponding retrieved author to help make the bi-
nary judgment. We experimented with ten queries
and retrieved the top ten authors for each query.

We first used the precision at K for evaluation. we
calculate the precision at K for both of our multi-
word model and the unigram model and the results
are listed in Table 5. It is obvious that at every rank
position, the multiword model works better than the
unigram model. In order to focus more on relevant
retrieval results, we then calculate the average preci-
sion for each query and mean average precision for
both models. The results are in Table 6.

When only comparing the mean average precision
(MAP), the multiword model works better. How-
ever, when examining the average precision of each
query within these two models, the unigram model
also works pretty well with some queries. How the
query words may interact with our model deserves
further investigation.

5 Discussion and Further Development

In this paper, we extended the existing author topic
model with multiword term-document input and ap-
plied it to the domain of expert retrieval. Although
our study is preliminary, our experiments do return

16

Author Papers from ACL(03-09)

Shouxun-Lin

Log-linear Models for Word Alignment
Maximum Entropy Based Phrase Reordering Model for Statistical Machine Translation
Tree-to-String Alignment Template for Statistical Machine Translation
Forest-to-String Statistical Translation Rules
Partial Matching Strategy for Phrase-based Statistical Machine Translation

David-Chiang

A Hierarchical Phrase-Based Model for Statistical MachineTranslation
Word Sense Disambiguation Improves Statistical Machine Translation
Forest Rescoring: Faster Decoding with Integrated Language Models
Fast Consensus Decoding over Translation Forests

Philipp-Koehn

Feature-Rich Statistical Translation of Noun Phrases
Clause Restructuring for Statistical Machine Translation
Moses: Open Source Toolkit for Statistical Machine Translation
Enriching Morphologically Poor Languages for StatisticalMachine Translation
A Web-Based Interactive Computer Aided Translation Tool
Topics in Statistical Machine Translation

Table 4: Papers in our ACL corpus for three authors related tothe “machine translation” topic in Table 3.

Precision@K
K Multiword Model Unigram Model
1 0.90 0.80
2 0.80 0.80
3 0.73 0.67
4 0.70 0.65
5 0.70 0.64
6 0.72 0.65
7 0.71 0.64
8 0.71 0.66
9 0.71 0.66
10 0.70 0.64

Table 5: Precision at K evaluation of the multiword-
enhanced model and the unigram model.

promising results, demonstrating the effectiveness
of our model in improving coherence in topic clus-
ters. In addition, the use of the MATM for expert
retrieval returned some useful preliminary results,
which can be further improved in a number of ways.

One immediate improvement would be an exten-
sion of our corpus. In our experiments, we consid-
ered only ACL papers from the last 7 years. If we
extend our data to cover papers from additional con-
ferences, we will be able to strengthen author-topic
associations for authors who submit papers on the
same topics to different conferences. This will also
allow more prominent authors to come to the fore-
front in our search application. Such a modifica-

Average Precision (AP)
Query Multi. Mod. Uni. Mod.
Language Model 0.79 0.58
Unsupervised Learning 1.0 0.78
Supervised Learning 0.84 0.74
Machine Translation 0.95 1.0
Semantic Role Labeling 0.81 0.57
Coreference Resolution 0.59 0.72
Hidden Markov Model 0.93 0.37
Dependency Parsing 0.75 0.94
Parsing 0.81 0.98
Transliteration 0.62 0.85

MAP: 0.81 0.75

Table 6: Average Precision (AP) for each query and Mean
Average Precision (MAP) of the multiword-enhanced
model and the unigram model.

tion would require us to further increase the model’s
computational efficiency to handle huge volumes of
data encountered in real retrieval systems.

Another further development of this paper is the
addition of citation information to the model as a
layer of supervision for the retrieval system. For in-
stance, an author who is cited frequently could have
a higher weight in our system than one who isn’t,
and could occur more prominently in query results.

Finally, we can provide a better evaluation of our
system through a measure of recall and a simple
baseline system founded on keyword search of pa-
per titles. Recall can be computed via comparison to
a set of expected prominent authors for each query.

17

Acknowledgments

The research in this paper was supported by the Mul-
timodal Information Access & Synthesis Center at
UIUC, part of CCICADA, a DHS Science and Tech-
nology Center of Excellence.

References

S. Banerjee and T. Pedersen. 2003. The design, im-
plementation, and use of the Ngram Statistic Package.
In Proceedings of the Fourth International Conference
on Intelligent Text Processing and Computational Lin-
guistics, pages 370–381.

D. Blei and J. Lafferty. 2009a. Topic models. In A. Sri-
vastava and M. Sahami, editors,Text Mining: Theory
and Applications. Taylor and Francis.

D. Blei and J. Lafferty. 2009b. Visualiz-
ing topics with multi-word expressions. In
http://arxiv.org/abs/0907.1013.

D. Blei, A. Ng, and M. Jordan. 2003. Latent dirichlet
allocation.Journal of Machine Learning Research.

T. Griffiths and M. Steyvers. 2004. Finding scientific
topic. InProceedings of the National Academy of Sci-
ence.

T. Griffiths, M. Steyvers, and J. Tenenbaum. 2007. Top-
ics in semantic representation.Psychological Review.

T. Hofmann. 1999. Probabilistic latent semantic index-
ing. In Proceedings of SIGIR.

J. Justenson and S. Katz. 1995. Technical terminology:
some linguistic properties and an algorithm for inden-
tification in text.Natural Language Engineering.

D. Magatti, S. Calegari, D. Ciucci, and F. Stella. 2009.
Automatic labeling of topics. InISDA, pages 1227–
1232.

Christopher D. Manning and Hinrich Schtze. 1999.
Foundations of Statistical Natural Language Process-
ing. Cambridge, Massachusetts.

Q. Mei, X. Shen, and C. Zhai. 2007. Automatic la-
beling of multinomial topic models. InProceedings
of the 13th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 490–
499.

M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth.
2004. the author-topic model for authors and docu-
ments. InProceedings of UAI.

M. Steyvers and T. Griffiths. 2007. Probabilistic topic
models. InHandbook of Latent Semantic Analysis.
Lawrence Erlbaum Associates.

M. Steyvers, P. Smyth, and T. Griffiths. 2004. Proba-
bilistic author-topic models for information discovery.
In Proceedings of KDD.

H. Wallach. 2006. Topic modeling; beyond bag
of words. In International Conference on Machine
Learning.

X. Wang and A. McCallum. 2005. A note on topical n-
grams. Technical report, University of Massachusetts.

X. Wang, A. McCallum, and X. Wei. 2007. Topical n-
grams: Phrase and topic discoery with an application
to information retrieval. InProceedings of ICDM.

18

Proceedings of the NAACL HLT 2010 Workshop on Semantic Search, pages 19–26,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Query-based Text Normalization Selection Models for Enhanced Retrieval
Accuracy

Si-Chi Chin Rhonda DeCook W. Nick Street David Eichmann
The University of Iowa

Iowa City, USA.
{si-chi-chin, rhonda-decook, nick-street, david-eichmann}@uiowa.edu

Abstract

Text normalization transforms words into a
base form so that terms from common equiv-
alent classes match. Traditionally, informa-
tion retrieval systems employ stemming tech-
niques to remove derivational affixes. Deplu-
ralization, the transformation of plurals into
singular forms, is also used as a low-level text
normalization technique to preserve more pre-
cise lexical semantics of text.

Experiment results suggest that the choice of
text normalization technique should be made
individually on each topic to enhance informa-
tion retrieval accuracy. This paper proposes a
hybrid approach, constructing a query-based
selection model to select the appropriate text
normalization technique (stemming, deplural-
ization, or not doing any text normalization).
The selection model utilized ambiguity prop-
erties extracted from queries to train a com-
posite of Support Vector Regression (SVR)
models to predict a text normalization tech-
nique that yields the highest Mean Average
Precision (MAP). Based on our study, such
a selection model holds promise in improving
retrieval accuracy.

1 Introduction

Stemming removes derivational affixes of terms
therefore allowing terms from common equivalence
classes to be clustered. However, stemming also in-
troduces noise by mapping words of different con-
cepts or meanings into one base form, thus impeding
word-sense disambiguation. Depluralization, the
conversion of plural word forms to singular form,
preserves more precise semantics of text than stem-
ming (Krovetz, 2000).

Empirical research has demonstrated the ambiva-
lent effect of stemming on text retrieval perfor-
mance. Hull (1996) conducted a comprehensive
case study on the effects of four stemmer tech-
niques and the removal of plural “s” 1 on retrieval
performance. Hull suggested that the adoption of
stemming is beneficial but plural removal is as well
competitive when the size of documents is small.
Prior research (Manning and Schtze, 1999; Mc-
Namee et al., 2008) indicated that traditional stem-
ming, though still benefiting some queries, would
not necessarily enhance the average retrieval perfor-
mance. In addition, stemming was considered one of
the technique failures undermining retrieval perfor-
mance in the TREC 2004 Robust Track (Voorhees,
2006). Prior research also noted the semantic differ-
ences between plurals and singulars. Riloff (1995)
indicated that plural and singular nouns are distinct
because plural nouns usually pertain to the “general
types of incidents,” while singular nouns often per-
tain to “a specific incident.”

Nevertheless, prior research has not closely ex-
amined the effect of the change of the semantics
caused by different level of text normalization tech-
niques. In our work, we conducted extensive exper-
iments on the TREC 2004 Robust track collection to
evaluate the effect of stemming and depluralization
on information retrieval. In addition, we quantify
the ambiguity of a query, extracting five ambiguity
properties from queries. The extracted ambiguity
properties are used to construct query-based selec-
tion model, a composite of multiple Support Vector

1In our work, we not only removed the plural “s” or “es”
but also changed irregular plural forms such as “children” to its
singular form “child”.

19

Regression models, to determine the most appropri-
ate text normalization technique for a given query.
To our knowledge, our work is the first study to con-
struct a query-based selection model, using ambigu-
ity properties extracted from provided queries to se-
lect an optimal text normalization technique for each
query.

The remainder of this paper is organized as fol-
lows. In section 2 we describe our experimental
setups and dataset. Section 3 describes and ana-
lyzes experiment results of different text normaliza-
tion techniques on the dataset. We discuss five am-
biguity properties and validate each property in sec-
tion 4. In section 5 we describe the framework and
the prediction results of the proposed query-based
selection model. Finally, we summarize our findings
and discuss future work in section 6.

2 Experiment Setup

The experiment utilizes the queries and relevance
judgment results from the TREC 2004 Robust
Track to evaluate the effect of three text normal-
ization techniques – raw text, depluralized text, and
stemmed text. The TREC 2004 Robust Track used a
document set of approximately 528,000 documents
comprising 1,904 MB of text. In total, 249 query
topics were used in TREC Robust 2004.

Figure 1 illustrates the setup of the experiment.
The collection is parsed with a SAX parser and
stored in a Postgres database. Lucene is then used to
generate three indices: indices of raw text, deplural-
ized text, and stemmed text. The Postgres database
stores each document of the collection, the query
topics of the TREC 2004 Robust Track, and results
of experiments. The ambiguity properties for each
query is also computed in the Postgres system. We
query Lucene indices to obtain the top 1,000 relevant
results and compute Mean Average Precision (MAP)
with the trec eval program to evaluate performance.
We use R to analyze performance scores, generate
descriptive charts, conduct non-parametric statisti-
cal tests, and perform a paired t-test. We use Weka
(Hall et al., 2009) to construct query-based selection
model that incorporates multiple Support Vector Re-
gression (SVR) models.

2.1 Query Models

The TREC 2004 Robust Track provides 249 query
topics; each includes a title, a short description,

and a narrative (usually one-paragraph). We se-
lected three basic query models as a modest base-
line to demonstrate the effect of different text nor-
malization techniques. Our future work will exploit
other ranking models such as BM25 and LMIR. The
three query models used in the experiment are: (1)
boolean search with the title words of topics con-
catenated with logical AND (e.g. hydrogen AND
fuel AND automobiles); (2) boolean search with the
title words of topics concatenated with logical OR
(e.g. hydrogen OR fuel OR automobiles); (3) co-
sine similarity with the title words of topics. Lucene
MoreLikeThis (MLT) class supports both boolean
and cosine similarity query methods for the exper-
iment. Figure 2 shows how query topics are pro-
cessed before interrogating the indices. Original
queries are first depluralized or stemmed, further
processed according to each query model, and fi-
nally run against the depluralized and stemmed in-
dices. The experiment runs unprocessed raw queries
against the index of raw text, depluralized queries
against the index of depluralized text, and stemmed
queries against the index of stemmed text.

3 Experiment Results

Table 3 and Figure 3 summarize the results for the
full set of topics. Each row in Table 3 represents a
query model combined with a given text normaliza-
tion technique as described in section 2.1.

For each query model and text normalization
technique, we present the MAP value computed
across all relevant topics. We also provide the p-
value for comparing MAP between each normaliza-
tion technique and the baseline (i.e. non-normalized
(raw) queries). The p-value is generated from the
pairwise Wilcoxon signed rank sum test. Figure 3
describes the distribution of MAP across the three
text normalization techniques and three query mod-
els. The distributions are skewed and many out-
liers are observed. In general, boolean OR and MLT
query models perform similarly and stemming has
the highest median MAP value across all three query
models. The results from Table 3 for the combined
topic set show that depluralization and stemming
perform significantly better than the raw baseline.
However, the performance difference between de-
pluralization and stemming is not significant except
for the AND boolean query model. In general, the
differences of MAP among three text normalization

20

XMLParser
Postgres
DBMS Lucene

R

Lexicon
Analysis

Lexicon
Analysis

Lucene

Index Files
Index Files

Index FilesXML
Documents

TREC Robust Track 2004

Ambiguity
Calculator

Trec Eval
Document

Process

DBMS

Legend

Data

Query
Topics

Search
Results

Performance
Score

GraphsGraphsGraphs

Wilcoxon Tests

Paired T-test

Weka
SVM

Regression

Ambiguity
Measures

Text

Figure 1: Flow chart of experiment setup

Final Query

Text Normalization

Query Topic

Lexicon Analysis

Query Model Lucene
MoreLikeThisOR booleanAND

boolean

hydrogen
fuel

automobile

hydrogen
fuel

automobil

hydrogen fuel
automobiles

StemmerDepluralizer

Depluralized
Index

Stemmed
Index

hydrogen
AND
fuel
AND

automobile

Index

hydrogen
OR
fuel
OR

automobile

hydrogen
automobile

^0.939
fuel^0.631

Figure 2: Using the query “hydrogen fuel automobiles”
as an example, the depluralized query becomes “hydro-
gen fuel automobile” and the stemmed query becomes
“hydrogen fuel automobil.” Final boolean queries for de-
pluralized topic become “hydrogen AND fuel AND au-
tomobile” and “hydrogen OR fuel OR automobil.” More-
LikeThis (MLT) is the Lucene class used for cosine sim-
ilarity retrieval. A term vector score appends each word
in the topic.

techniques are within 2%.
To visualize the relative performances among

three text normalization techniques, we standardized
the three MAP values for a single topic (one from
each text normalization technique) to have mean 0
and standard deviation of 1. The result provides a 3-
value pattern emphasizing the ordering of the MAPs
across the text normalization techniques, rather than
the raw MAP values themselves. We then used
the K-medoids algorithm (Kaufman and Rousseeuw,
1990) to cluster the transformed data, applying Eu-
clidean distance as the distance measure. Figure 4
is an example of 9 constructed clusters based on the
MAP scores of the MLT query model. In a clus-
ter, a line represents the standardized MAP value
of a topic on each text normalization technique.
Given the small differences in aggregate MAP per-
formance, it is interesting to note that the clusters
demonstrate variable patterns, indicating that some
topics performed better as a depluralized query than
a stemmed query.

The cluster analysis suggests that the choice of
text normalization technique should be made indi-
vidually on each topic. As we choose an appropri-
ate text normalization technique for a given topic,
we would further enhance retrieval performance. In

21

Query Model

A
v
e

ra
g

e
 P

re
c
is

io
n

and or mlt

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Mean Average Precision vs. Query Model
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

raw

deplural

stem

Figure 3: Profile plot of MAP

the next section, we address the issue of inconsis-
tent performance by constructing regression models
to predict the mean average precision of each query
from the ambiguity measures, and choose an appro-
priate normalization method based on these predic-
tions.

4 Ambiguity Properties

Research has affirmed the negative impact of query
ambiguity on an information retrieval system. As
stemming clusters terms of different concepts, it
should increase query ambiguity. To quantify the
query ambiguity potentially caused by stemming,
we compute five ambiguity properties for each
query: 1) the product of the number of senses, re-
ferred as the sense product; 2) the product of the
number of words mapped to one base form (e.g. a
stem), referred as the word product; 3) the ratio of
the sense product of depluralized query to which of
stemmed query, referred as the deplural-stem ratio;
4) the sum of the inverse document frequency for
each word in a query, referred as the idf-sum; 5) the
length of a query.

4.1 Sense Product

Sense product measures the extent of query ambigu-
ity after stemming. We first find all words mapped to
a given stem and, for each word, we then count the
number of senses found in WordNet. To compute

Figure 4: Example of relative performance similarities
among text normalization techniques. The cluster analy-
sis uses the MAP scores of the MLT query model

Combined Topic Set
Run MAP p-value
AND Raw 0.1213 N/A
AND Dep 0.1324 5.598e-06*
AND Stem 0.1550 † 1.599e-07*
OR Raw 0.1851 N/A
OR Dep 0.1922 0.03035*
OR Stem 0.2069 0.01123*
MLT Raw 0.1893 N/A
MLT Dep 0.1959 0.04837*
MLT Stem 0.2093 0.009955*

Table 1: Paired Wilcoxon signed-ranked test on Mean
Average Precision (MAP), utilizing raw query as the
baseline. Significant differences between query models
are labeled with *. Results labeled with † indicate sig-
nificant differences between depluralized queries and a
stemmed queries.

22

the number of senses for a given stem, we accumu-
late the number of senses of each word mapped to
the stem. The sense product is then the multiply-
ing of the number of senses for each stemmed query
term, computed as:

sense product =
n∏

i=1

m∑
j=1

Sj (1)

Sj denotes the number of senses for each word
mapped to a stem i. We have m words mapped to a
stem i and have n stems in a query. As the sense
product increases, the query ambiguity increases.
Figure 5 illustrates the computation of the sense
product for the query “organic soil enhancement.”
The term “organic” has the stem organ, which is a
stem for 9 different words. The accumulated num-
ber of senses for “organ” is 39. With the same ap-
proach, we obtain 7 senses for 1 “soil” and 7 senses
for “enhanc.” Therefore, multiplication 39, 7, and 7
gives us the sense product value 1911.

4.2 Word Product
Word product is an alternative measure of query am-
biguity after stemming. To compute the word prod-
uct, we multiply the number of words mapped to
each stem of a given query, which is formulated as:

word product =
n∏

i=1

Wi (2)

Wi denotes the number of words mapped to a
stem i, and n is the number of stems in a query.
We assume that the query ambiguity increases as the
word product increases. Consider the query “organic
soil enhancement” in Figure 5. We find 9 words
mapped to the stem “organ”; 3 words mapped to the
stem “soil”; 5 words mapped to the stem “enhance-
ment”. Therefore the word product for the query is
105, the product of 9, 3, and 5.

4.3 Deplural-Stem Ratio
Deplural-stem ratio is a variation of sense product. It
takes the ratio of the sense product of a depluralized
query to the stemmed query. As the deplural-stem
ratio increases, the query ambiguity after stemming
increases. In the example illustrated in Figure 5, the
deplural-stem ratio is the sense product of the deplu-
ralized query “organic soil enhancement” divided by

the sense product of the stemmed query “organ soil
enhanc”. The deplural-stem ratio is computed as:

deplural-stem ratio =

∏n
i=1

∑m
j=1 Smj∏n

i=1

∑m
j=1 Dj

(3)

4.4 Idf-sum

The idf-sum is the sum of the inverse document fre-
quency (IDF) of each word in the query. The IDF of
a given word measures the importance of the word
in the document collection. Queries with high values
of IDF are more likely to return relevant documents
from the collection. For example, the term “ZX-
Turbo,” describing a series of racing cars, has a high
IDF and occurs only once in the entire TREC 2004
Robust Track collection. Therefore, searching the
collection with the term “ZX-Turb” will return the
only relevant document in the collection and achieve
high precision and recall. The idf-sum is computed
as:

idf sum =
n∑

i=1

IDFi (4)

IDFi denotes the idf of each query term i and
n is the number of words in a query. We assume
that the query ambiguity decreases as the idf-sum in-
creases. For the query “organic soil enhancement”,
the IDF for each term is 5.97082 (organic), 5.18994
(soil), and 4.86996 (enhancement). The idf-sum of
the query is 16.0307.

4.5 Query Length

The length of the query is the number of words in a
query.

4.6 Feature Validation

We performed simple linear regression on each fea-
ture as the first step to exclude ineffectual features.
Table 2 demonstrates example results of simple lin-
ear regression from the MLT query model, using the
MAP of stemmed queries as the dependent variable.
We take the logarithm of the sense product and word
product and the square root of the deplural-stem ra-
tio (ds ratio) to mitigate skewness of the data. We
included all five ambiguity properties to construct
a query-based selection model as they demonstrate
statistical significance in prediction.

23

organic soil enhancement

organic soil enhancement

organ soil enhanc

organic

organism

organizer

organization

organize

organ

organized

organically

soil

soiled

soiling

organs

8

7

6

6

3

3

3

2

1

5

1

1

enhancive

enhance

enhanced

enhancement

enhancer

2

2

1

1

1

39 7 7

39x7x7=1911
1911

5.97082 5.18994 4.86996

16.0307

token

n number of senses

n IDF

Legend

5

3

9

n number of words

105
9x3x5=105

Figure 5: Example of ambiguity indicators on the query
“organic soil enhancement”

Figure 6 demonstrates the distribution of ambigu-
ity properties against the actual best text normaliza-
tion technique. It is noted that stemming is the actual
best method when a query has lower sense product,
or lower word product, or a higher idf-sum. It im-
plies that stemming is less likely to be the actual best
method as a query is ambiguous. The results demon-
strate the potential of utilizing ambiguity measures
to select the actual best text normalization technique.

5 Query-based Selection Model

The cluster analysis in Section 3 suggests that the
choice of text normalization technique should be
made individually on each topic. The retrieval per-
formance would be enhanced as we choose an ap-
propriate text normalization technique for a given
topic. Given the five ambiguity properties described
in Section 4, we constructed Support Vector Regres-
sion (SVR) (Smola and Schlkopf, 2004) models to
choose between stemming, depluralization, and not
doing any text normalization for different queries.
Regression models aim to discover the relationship
between two random variables x and y. In our work,
independent variable x is a vector of the five prop-
erties described in section 4: x = (sense product,

word product, deplural-stem ratio, Idf-sum, length),
and dependent variable y is the MAP score of a
given topic. SVR has been successfully applied
for many time series and function estimation prob-
lems. We utilized training data to construct multiple
SVR models for each of nine combinations of query
models (AND, OR, and MLT) and text normaliza-
tion techniques (raw, depluralized, and stemmed
queries). For example, the regression model for an
MLT query model using stemmed queries is:

Map MLT stem = 0.0853
− 0.0849 ∗ length

+ 0.6286 ∗ sense prod

+ 0.0171 ∗ word prod

− 0.0774 ∗ gap ds

+ 0.4189 ∗ idf sum

For a given query model, MLT, for example, we
utilized training data to construct three SVR models
each to predict the MAP scores of raw queries, de-
pluralized queries, and stemmed queries in the test
set. We then compared the predicted MAP score of a
query and selected the text normalization technique
with the highest predicted score. Figure 5 illustrates
our experiment framework on the query-based se-
lection model. We used five-fold cross-validation to
evaluate the performance of the selection model. For
each iteration (fold) we used the 4 out of the 5 parti-
tions as training data, constructing SVR models and
using the remaining fifth partition for testing. We ac-
cumulated all testing results and computed one over-
all MAP score for evaluation. Table 3 shows the re-
sults of the five-fold cross-validation performed on
249 query topics provided by the TREC 2004 Ro-
bust Track. We utilized a paired t-test to determine
the performance difference between the query-based
selection model (hybrid model) and other three text
normalization techniques. The results in Table 3
shows that the query-based selection model attained
the highest MAP score and achieved significant im-
provement.

6 Conclusion and Future work

This paper evaluates the performance of stemming
and depluralization on the TREC 2004 Robust track
collection. We assume that the depluralization, as

24

Feature Coefficient R-square P-value
length -0.06811 0.07864 5.768e-05*
log(sense prod) -0.034692 0.1482 1.819e-08*
log(word prod) -0.04557 0.09426 9.78e-06*
sqrt(ds ratio) -0.021657 0.03738 0.006088*
idf sum 0.008498 0.04165 0.003747*

Table 2: Results of simple linear regression on the MAP of stemmed queries in MLT query model.

dep raw stem

0
2

4
6

8
10

Sense Product(log) vs. Actual Best Method

Actual Best Lexical Analysis

lo
g(
se
ns
e_
pr
od
)

dep raw stem

0
1

2
3

4
5

Word Product(log) vs. Actual Best Method

Actual Best Lexical Analysis

lo
g(
w
or
d_
pr
od
)

dep raw stem

5
10

15
20

25
30

35

IDF-sum vs. Actual Best Method

Actual Best Lexical Analysis
id
f_
su
m

Figure 6: Boxplots of the distribution of three ambiguity properties in each actual best text normalization technique

2

3

4

1

5

Divide all query
topics into five

groups

Training

MAP score from
raw queries

MAP score from
depluralized queries

MAP score from
stemmed queries

2
3
4
5

SVR for
raw queries

2
3
4
5

SVR for
depluralized

queries

2
3
4
5

SVR for
stemmed
queries

Building Support
Vector Regression

(SVR) models

Testing and
predicting Mean

Average Precision
(MAP)

1

1

1

Select the text
normalization
technique with

highest predicted
MAP score

Figure 7: Five-fold cross validation on query-based selection model (hybrid model)

25

Raw Dep Stem Hybrid
AND MAP 0.1213 0.1324 0.1550 0.2094

p-value <2.2e-16* <2.2e-16* <2.2e-16*
OR MAP 0.1851 0.1922 0.2069 0.2131

p-value 1.286e-05* 0.0003815* 0.09
MLT MAP 0.1893 0.1959 0.2093 0.2132

p-value 3.979e-05* 0.000939* 0.09677

Table 3: Paired T-test was performed to examine the differences of each text normalization techniques (raw, deplu-
ralizer, and stemmer) and query-based selection model (hybrid model). Significant differences between models are
labeled with *.

a low-level text-normalization technique, introduces
less ambiguity than stemming and preserves more
precise semantics of text. The experimental re-
sults demonstrate variable patterns, indicating that
some topics performed better as a depluralized query
than as a stemmed query. From Figure 4 in Sec-
tion 3, we conclude that the choice of text nor-
malization technique should be made individually
on each topic. An effective query-based selection
model would enhance information retrieval perfor-
mance. The query-based selection model utilizes
Support Vector Regression (SVR) models to predict
the mean average precision (MAP) of each query
from the ambiguity measures, and to choose an ap-
propriate normalization technique based on these
predictions. The selection is lightweight, requiring
only analysis of the topic title itself against infor-
mation readily available regarding the corpus (e.g,
term idf values). We extracted 5 measures to quan-
tify the ambiguity of a query: 1) sense product; 2)
word product; 3) deplural-stem ratio; 4) idf-sum;
5) length of a query. The constructed query-based
selection model demonstrate positive results on en-
hanced performance. The experiments reported here
show that, even when the improvement is modest
(1%), the selection model competes well with tra-
ditional approaches. To improve the model, future
work may first explore and introduce more powerful
features to the models, considering properties such
as part of speech of text. Second, future work may
explore the effect of noise and outliers in the data
to improve the accuracy of the model. Finally, ad-
ditional data mining techniques may be adopted in
future work to further improve the prediction.

References
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-

mann, and I.H. Witten. 2009. The WEKA Data Min-
ing Software: An Update. SIGKDD Explorations,
1:10–18.

David A. Hull. 1996. Stemming algorithms: A case
study for detailed evaluation. Journal of the American
Society for Information Science, 47(1):70–84.

L. Kaufman and P.J. Rousseeuw. 1990. Finding groups
in data. An introduction to cluster analysis. Wiley,
New York.

Robert Krovetz. 2000. Viewing morphology as an in-
ference process. Artificial Intelligence, 118(1-2):277–
294, April.

Christopher D Manning and Hinrich Schtze. 1999. Foun-
dations of Statistical Natural Language Processing.
MIT Press, Cambridge, Mass.

Paul McNamee, Charles Nicholas, and James Mayfield.
2008. Don’t have a stemmer?: be un+concern+ed.
In Proceedings of the 31st International ACM SIGIR
Conference on Research and Development in Informa-
tion retrieval, pages 813–814, Singapore, Singapore.
ACM.

Ellen Riloff. 1995. Little words can make a big differ-
ence for text classification. In Proceedings of the 18th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 130–
136, Seattle, Washington, United States. ACM.

Alex J. Smola and Bernhard Schlkopf. 2004. A tutorial
on support vector regression. Statistics and Comput-
ing, 14(3):199–222.

E. M. Voorhees. 2006. The TREC 2005 robust track.
In ACM SIGIR Forum, volume 40, pages 41–48. ACM
New York, NY, USA.

26

Proceedings of the NAACL HLT 2010 Workshop on Semantic Search, pages 27–35,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

A Graph-Based Semi-Supervised Learning for Question Semantic Labeling

Asli Celikyilmaz
Computer Science Division

University of California, Berkeley
asli@berkeley.edu

Dilek Hakkani-Tur
International Computer Science Institute

Berkeley, CA
dilek@icsi.berkeley.edu

Abstract

We investigate a graph-based semi-supervised
learning approach for labeling semantic com-
ponents of questions such as topic, focus,
event, etc., for question understanding task.
We focus on graph construction to handle
learning with dense/sparse graphs and present
Relaxed Linear Neighborhoods method, in
which each node is linearly constructed from
varying sizes of its neighbors based on the
density/sparsity of its surrounding. With the
new graph representation, we show perfor-
mance improvements on syntactic and real
datasets, primarily due to the use of unlabeled
data and relaxed graph construction.

1 Introduction

One of the important steps in Question Answering
(QA) is question understanding to identify semantic
components of questions. In this paper, we inves-
tigate question understanding based on a machine
learning approach to discover semantic components
(Table 1).

An important issue in information extraction from
text is that one often deals with insufficient la-
beled data and large number of unlabeled data,
which have led to improvements in semi-supervised
learning (SSL) methods, e.g., (Belkin and Niyogi.,
2002b), (Zhou et al., 2004). Recently, graph based
SSL methods have gained interest (Alexandrescu
and Kirchhoff, 2007), (Goldberg and Zhu, 2009).
These methods create graphs whose vertices corre-
spond to labeled and unlabeled data, while the edge
weights encode the similarity between each pair of
data points. Classification is performed using these
graphs by scoring unlabeled points in such a way

What︸ ︷︷ ︸
other

film︸ ︷︷ ︸
focus

introduced︸ ︷︷ ︸
event

Jar Jar Binks︸ ︷︷ ︸
topic

?

Semantic Components & Named-Entitiy Types
topic: ’Jar’ (Begin-Topic); ’Jar’ (In-Topic) ;

’Binks’ (In-Topic)(HUMAN:Individual)
focus: ’film’ (Begin-Focus) (DESCRIPTION:Definition)
action / event: ’introduced’ (Begin-Event)
expected answer-type: ENTITY:creative

Table 1: Question Analysis - Semantic Components of a
sample question from TREC QA task.

that instances connected by large weights are given
similar labels. Such methods can perform well when
no parametric information about distribution of data
is available and when data is characterized by an un-
derlying manifold structure.

In this paper, we present a semantic component
labeling module for our QA system using a new
graph-based SSL to benefit from unlabeled ques-
tions. One of the issues affecting the performance
of graph-based methods (Maier and Luxburg, 2008)
is that there is no reliable approach for model se-
lection when there are too few labeled points (Zhou
et al., 2004). Such issues have only recently came
into focus (Wang and Zhang, 2006). This is some-
what surprising because graph construction is a
fundamental step. Rather than proposing yet an-
other learning algorithm, we focus on graph con-
struction for our labeling task, which suffers from
insufficient graph sparsification methods. Such
problems are caused by fixed neighborhood assign-
ments in k-nearest neighbor approaches, treating
sparse and denser regions of data equally or using
improper threshold assumptions in ε-neighborhood

27

graphs, yielding disconnected components or sub-
graphs or isolated singleton vertices. We propose
a Relaxed Linear Neighborhood (RLN) method to
overcome fixed k or ε assumptions. RLN approx-
imates the entire graph by a series of overlapped
linear neighborhood patches, where neighborhood
N (xi) of any node xi is captured dynamically based
on the density/sparsity of its surrounding. Moreover,
RLN exploits degree of neighborhood during re-
construction method rather than fixed assignments,
which does not get affected by outliers, producing a
more robust graph, demonstrated in Experiment #1.

We present our question semantic component
model in section 3 with the following contributions:
(1) a new graph construction method for SSL,
which relaxes neighborhood assumptions yielding
robust graphs as defined in section 5,
(2) a new inference approach to enable learning
from unlabeled data as defined in section 6.
The experiments in section 7 yield performance im-
provement in comparison to other labeling methods
on different datasets. Finally we draw conclusions.

2 Related Work on Question Analysis

An important step in question analysis is extracting
semantic components like answer type, focus, event,
etc. The ’answer-type’ is a quantity that a question
is seeking. A question ’topic’ usually represents ma-
jor context/constraint of a question (”Jar Jar Binks”
in Table 1). A question ’focus’ (e.g., film) denotes a
certain aspect (or descriptive feature) of a question
’topic’. To extract topic-focus from questions, (Ha-
jicova et al., 1993) used rule-based approaches via
dependency parser structures. (Burger, 2006) im-
plemented parsers and a mixture of rule-based and
learning methods to extract different salient features
such as question type, event, entities, etc. (Chai and
Jin, 2004) explored semantic units based on their
discourse relations via rule-based systems.

In (Duan et al., 2008) a language model is pre-
sented to extract semantic components from ques-
tions. Similarly, (Fan et al., 2008)’s semantic chunk
annotation uses conditional random fields (CRF)
(Lafferty et al., 2001) to annotate semantic chunks
of questions in Chinese. Our work aparts from
these studies in that we use a graph-based SSL
method to extract semantic components from unla-

beled questions. Graph-based methods are suitable
for labeling tasks because when two lexical units
in different questions are close in the intrinsic ge-
ometry of question forms, their semantic compo-
nents (labels) will be similar to each other. Labels
vary smoothly along the geodesics, i.e., manifold
assumption, which plays an essential role in SSL
(Belkin et al., 2006).

This paper presents a new graph construction to
improve performance of an important module of QA
when labeled data is sparse. We compare our re-
sults with other graph construction methods. Next,
we present the dataset construction for our semantic
component labeling model before we introduce the
new graph construction and inference for SSL.

3 Semantic Component Labeling

Each word (token) in a question is associated with
a label among a pre-determined list of semantic
tags. A question i is defined as a sequence of in-
put units (words/tokens) xi = (x1i, ..., xT i) ∈ X T
which are tagged with a sequence of class labels,
yi = (y1i, ..., yT i) ∈ YT , semantic components.
The task is to learn classifier F that, given a new
sequence xnew, predicts a sequence of class labels
ynew = F(xnew). Among different semantic com-
ponent types presented in previous studies, we give
each token a MUC style semantic label from a list of
11 labels.
(1) O: other;
(2) BT:begin-topic;
(3) IT:in-topic
(4) BF:begin-focus;
(5) IF:in-focus
(6) BE:begin-event;
(7) IE:in-event
(8) BCL:begin-clause
(9) ICL:in-clause
(10) BC:begin-complement
(11) IC:in-complement
More labels can be appended if necessary. The first
token of a component gets ’begin’ prefix and con-
secutive words are given ’in’ prefix, e.g., Jar (begin-
topic), Jar (in-topic), Binks (in-topic) in Table 1.

In graph-based SSL methods, a graph is con-
structed G = 〈V, E〉, where V = X is a vertex set,
E is an edge set, associated with each edge eij rep-

28

resents a relation between xi and xj . The task is to
assign a label (out of 11 possible labels) to each to-
ken of a question i, xti, t = 1, ..., T , T is the max
number of tokens in a given query. We introduce
a set of nodes for each token (xti), each represent-
ing a binary relation between that token and one of
possible tags (yti). A binary relation represents an
agreement between a given token and assigned label,
so our SSL classifier predicts the probability of true
relation between token and assigned label. Thus,
for each token, we introduce 11 different nodes us-
ing yk ∈ {O,BT,IT,BF,IF,BC,IC,BE,IE,BCL,ICL}.
There will be 11 label probability assignments ob-
tained from each of the 11 corresponding nodes. For
labeled questions, intuitively, only one node per to-
ken is introduced to the graph for known(true) to-
ken/label relations. We find the best question label
sequence via Viterbi algorithm (Forney, 1973).

3.1 Feature Extraction For Labeling Task

The following pre-processing modules are built for
feature extraction prior to graph construction.

3.1.1 Pre-Processing For Feature Extraction
Phrase Analysis(PA): Using basic syntactic anal-

ysis (shallow parsing), the PA module re-builds
phrases from linguistic structures such as noun-
phrases (NN), basic prepositional phrases (PP) or
verb groups (VG). Using Stanford dependency
parser (Klein and Manning, 2003), (Marneffe et al.,
2006), which produces 48 different grammatical re-
lations, PA module re-constructs the phrases. For
example for the question in Table 1, dependency
parser generates two relations:
− nn(Binks-3, Jar-1) and nn(Binks-3, Jar-2),
PA reveals ”Jar Jar Binks” as a noun phrase re-
constructing the nn:noun compound modifier. We
also extract part of speech tags of questions via de-
pendency parser to be used for feature extraction.

Question Dependency Relations (QDR): Using
shallow semantics, we decode underlying Stanford
dependency trees (Marneffe et al., 2006) that em-
body linguistic relationships such as head-subject
(H-S), head-modifier (complement) (H-M), head-
object (H-O), etc. For example: ”How did Troops
enter the area last Friday?” is chunked as:
− Head (H): enter − Object (O): area
− Subject (S): Troops −Modifier (M): last Friday

Later, the feature functions (FF) are extracted based
on generalized rules such as S and O’s are usually
considered topic/focus, H is usually an event, etc.

3.1.2 Features for Token-Label Pairs
Each node vi in a graph G represents a relation of

any token(word) i, xti to its label yti, denoted as a
feature vector xti ∈ <d. A list of feature functions
are formed to construct multi-dimensional training
examples. We extract mainly first and second order
features to identify token-label relations, as follows:

Lexicon Features (LF): These features are over
words and their labels along with information about
words such as POS tags, etc. A sample first order
lexicon feature, z(yt, x1:T , t):

z =

{
1 if yt =(BE/IE) and POSxt=VB
0 otherwise

(1)

is set to 1, if its assigned label yt is of event type
(BE/IE) and word’s POS tag is VB(verb) (such
token-label assignment would be correct). A simi-
lar feature is set to 1 if a word has ’VB’ as its POS
tag and it is a copula word, so it’s correct label can
only be ”O:other”. Nodes satisfying only this con-
straint and have a relation to ”O” label get the value
of ’1’. Similar binary features are: if the word is a
WH type (query word), if its POS tag is an article, if
its POS tag is NN(P)(noun), IN, etc.

Compound Features (CF): These features ex-
ploit semantic compound information obtained from
our PA and QDR modules, in which noun-phrases
are labeled as focus/topics, or verb-phrases as event.
For instance, if a token is part of a semantic com-
pound, e.g., subject, identified via our QDR mod-
ule, then for any of the 11 nodes generated for this
token, if token-label is other than ’O(Other)’, then
such feature would be 1, and 0 otherwise. Similarly,
if a word is part of a noun-phrase, then a node having
a relation to any of the labels other than ’O/BE/IE’
would be given the value 1, and 0 otherwise We
eliminate inclusion of some nodes with certain la-
bels such as words with ”NN” tags are not usually
considered events.

Probability Feature Functions (PFF): We cal-
culate word unigram and bigram frequencies from
training samples to extract label conditional prob-
abilities given a word, e.g., P(BT—”IBM”), P(O-
BE—”Who founded”). When no match is found in

29

unigram and bigram label conditional probability ta-
bles for testing cases, we use unigram and bigram
label probabilities given the POS tag of that word,
e.g., P(BT—NNP), P(O-BE—”WP-VBD”). We ex-
tract 11 different features for each word correspond-
ing to each possible label to form the probability fea-
tures from unigram frequencies, max. of 11X11 fea-
tures for bigram frequencies, where some bigrams
are never seen in training dataset.

Second-Order Features (SOF): Such features
denote relation between a token, tag and tag−1, e.g.,:

z =

{
1 if yt−1 =BT, yt =IT and POSxt

=NN
0 otherwise

(2)
which indicates if previous label is a start of a topic
tag (BT) and current POS tag is NN, then a node
with a relation to label ”In-Topic (IT)” would yield
value ’1’. For any given token, one should introduce
112 different nodes to represent a single property. In
experiments we found that only a limited number of
second order nodes are feasible.

4 Graph Construction for SSL

Let XL = {x1, ..., xl} be labeled question tokens
with associated labels YL = {y1, ..., yl}T and XU =
{x1, ..., xu} be unlabeled tokens, X = XL ∪ XU .

A weighted symmetric adjacency matrix W is
formed in two steps with edges E in G whereWij ∈
<nxn, and non-zero elements represent the edge
weight between vi and vj . Firstly, similarity be-
tween each pair of nodes is obtained by a measure
to create a full affinity matrix, A ∈ <nxn, using a
kernel function, Aij = k(xi, xj) as weight measure
(Zhou et al., 2004) wij ∈ <n×n:

wij = exp
(
−‖xi − xj‖ /2σ2

)
(3)

Secondly, based on chosen graph sparsification
method, a sparse affinity matrix is obtained by re-
moving edges that do not convey with neighborhood
assumption. Usually a k-nearest neighbor (kNN) or
ε neighbor (εN) methods are used for sparsification.

Graph formation is crucial in graph based SSL
since sparsity ensures that the predicted model re-
mains efficient and robust to noise, e.g., especially
in text processing noise is inevitable. εN graphs pro-
vide weaker performance than the k-nearest neigh-
borhood graphs (Jebara et al., 2009). In addition,

the issue with kNN sparsification of graph is that the
number of neighbors is fixed at the start, which may
cause fault neighborhood assumptions even when
neighbors are far apart. Additionally, kernel simi-
larity functions may not rate edge weights because
they might be useful locally but not quite efficient
when nodes are far apart. Next, we present Relaxed
Linear Neighborhoods to address these issues.

5 Relaxed Linear Neighborhoods (RLN)

Instead of measuring pairwise relations (3), we use
neighborhood information to construct G. When
building a sparse affinity matrix, we re-construct
each node using a linear combination of its neigh-
bors, similar to Locally Linear Embedding (Roweis
and Saul, 2000) and Linear Neighborhoods (Wang
and Zhang, 2006), and minimize:

min
∑
i ||xi −

∑
j:xj∈N (xi)wijxj ||

2 (4)

where N (xi) is neighborhood of xi, and wij is the
degree of contribution of xj to xi. In (4) each node
can be optimally reconstructed using a linear combi-
nation of its neighborhood (Roweis and Saul, 2000).
However, having fixed k neighbors at start of the
algorithm can effect generalization of classifier and
can also cause confusion on different manifolds.

We present novel RLN method to reconstruct
each object (node) by using dynamic neighborhood
information, as opposed to fixed k neighbors of
(Wang and Zhang, 2006). RLN approximates entire
graph by a series of overlapped linear neighborhood
patches, where neighborhood N (xi) of a node xi is
captured dynamically via its neighbor’s density.

Boundary Detection: Instead of finding fixed k
neighbors of each node xi (Wang and Zhang, 2006),
RLN captures boundary of each node B(xi) based
on neighborhood information and pins each node
within this boundary as its neighbors. We define
weightW matrix using a measure like (3) as a first
pass sparsification. We identify neighbors for each
node xi ∈ X and save information in boundary ma-
trix, B. kNN recovers its k neighbors using a simi-
larity function, e.g., a kernel distance function, and
instantiates via:

Nxi;k(xj) =

{
1 d(xi, xj1) < d(xi, xj2)
0 otherwise

}
(5)

30

Figure 1: Neighborhood Boundary. Having same number
of neighbors (n=15), boundaries of x1 and x2 are similar
based on kNN (e.g., k=15), but dissimilar based on εN .

Similarly, with the εN approach the neighbors are
instantiated when they are at most ε far away:

Nxi;ε(xj) =

{
1 d(xi, xj) < ε
0 otherwise

}
(6)

Both methods have limitations when sparsity or den-
sity is to concern. For sparse regions, if we restrict
definition to k neighbors, thenN (xi) would contain
dissimilar points. Similarly, improper threshold val-
ues could result in disconnected components or sub-
graphs or isolated singleton vertices. ε-radius would
not define a graph because not every neighborhood
radius would have the same density (see Fig. 1).
Neighborhoods of two points (x1, x2) are different,
although they contain same number of nodes.

We can use both kNN and εNN approaches to
define the neighborhood between any xi and xj as:

Nxi;k,ε(xj) =

{
1 |Nε(xi)| > k
Nxi;k(xj) otherwise

}
(7)

|Nε(xi)| denotes cardinality of ε-neighbors of xi,
and Nxi;k(xj) ∈ {0, 1} according to (5). Thus if
there are enough number of nodes in the ε vicinity
(> k), then the boundary is identified. Otherwise
we use kNN . Boundary set of any xi is defined as:

B(xi) =
{
xj=1..n ∈ X

∣∣∣INxi;k,ε(xj)=1

}
(8)

Relaxed Boundary Detection: Adjusting bound-
aries based on a neighborhood radius and density
might cause some problems. Specifically, if dense
regions (clusters) exist and parameters are set large
for sparse datasets, e.g., k and ε, then neighborhood
sets would include more (and even noisy) nodes
than necessary. Similarly, for low density regions
if parameters are set for dense neighborhoods, weak

neighborhood bonds will be formed to re-construct
via linear neighborhoods. An algorithm that can
handle a wide range of change interval would be
advantageous. It should also include information
provided by neighboring nodes closest to the corre-
sponding node, which can take neighborhood rela-
tion into consideration more sensitively. Thus we
extend neighborhood definition in (7) and (8) ac-
counting for sensitivity of points with varying dis-
tances to neighbor points based on parameter k > 0:

Nxi(xj) = max {(1− k (d(xi, xj)/dmax)) , 0}
(9)

dmax = maxxi,xj∈X d(xi, xj)
d(xi, xj) =

√∑m
p=1(xip − xjp)2

(10)

In (10) m is the max. feature vector dimension of
any xi, k plays a role in determining neighborhood
radius, such that it could be adjusted as follows:

1− k (ε/dmax) = 0⇒ k = dmax/ε (11)

The new boundary set of any given xi includes:

B(xi) = {xj=1..n ∈ X |Nxi(xj) ∈ [0, 1]} (12)

In the experiments, we tested our RLN approach
(9), 0 < Nxi(xj) < 1 for boundary detection, in
comparison to the static neighborhood assignments
where the number of neighbors, k is fixed.

(3) Graph Formation: Instead of measuring pair-
wise relations as in (3), we use neighborhood in-
formation to represent G. In an analogical man-
ner to (Roweis and Saul, 2000), (Wang and Zhang,
2006), for graph sparcification, for our Relaxed Lin-
ear Neighborhood, we re-construct each node using
a linear combination of its dynamic neighbors:

minw
∑
i

∥∥∥xi −∑j:xj∈B(xi)Nxi(xj)wijxj
∥∥∥2

s.t.
∑
j wij = 1, wij ≥ 0

(13)
where 0 < Nxi(xj) < 1 is the degree of neighbor-
hood to boundary set B(xi) andwij is degree of con-
tribution of xj to xi, to be predicted. ANxi(xj) = 0
means no edge link. To prevent negative weights,
and satisfy their normalization to unity, we used a
constraint in (13) for RLN.

Edge weights of G are found using above relaxed
boundary assumption, and relaxed neighborhood

31

method. A sparse relaxed weight matrix (W̃)ij =
w̃ij is formed representing different number of con-
nected edges for every node, which are weighted ac-
cording to their neighborhood density. Since wij is
constructed via linear combination of varying num-
ber of neighbors of each node, W̃ is used as the edge
weights of G. Next we form a regularization frame-
work in place of label propagation (LP).

6 Regularization and Inference

Given a set of token-label assignments X =
{x1, ..., xl, xl+1, ..., xn}, and binary labels of first l
points, Y = {y1, ..., yl, 0, .., 0}, the goal is to predict
if the label assignment of any token of a given test
question is true or false. Let F denote set of clas-
sifying functions defined on X , and ∀f ∈ F a real
value fi to every point xi is assigned. At each it-
eration, any given data point exploits a part of label
information from its neighbors, which is determined
by RLN. Thus, predicted label of a node xi at t+1:

f t+1
i = λyi + (1− λ)

∑
j Nxi(xj)wijf tj (14)

where xj ∈ Bxi, 0< λ <1 sets a portion of la-
bel information that xi gets from its local neighbors,
ft = (f t1, f

t
2, ..., f

t
n) is the prediction label vector at

iteration t and f0 = y. We can re-state (14) as:

ft+1 = λyi + (1− λ)W̃ft (15)

Each node’s label is updated via (15) until conver-
gence, which might be at t → ∞. In place of LP,
we can develop a regularization framework (Zhou et
al., 2004) to learn f. In graph-based SSL, a function
over a graph is estimated to satisfy two conditions:
(i) close to the observed labels , and (ii) be smooth
on the whole graph via following loss function:

argminQ(f) =
∑n
i=1 (fi − yi)2+

λ
∑n
i,j=1

∑
j:xj∈B(xi) φxi(xj) 〈fi, fj〉

(16)

where φxi(xj) = Nxi(xj)w̃ij . Setting gradient of
loss function Q(f) to zero, we obtain:

∂fQ(f) = 2(Y− f)+λ[(I−Φ)+(I−Φ)T]f (17)

Relaxed weight matrix W̃ is normalized according
to constraint in (13), so as degree matrix, D =∑
j W̃ij , and graph Laplacian, i.e., L = (D̃ −

W̃)/D̃ = I − W̃ . Since f is a function on the man-
ifold and the graph is discretized form of a manifold
(Belkin and Niyogi, 2002a), f can also be regarded
as the discrete form of f , which is equivalent at the
nodes of graph. So the second term of (16) yields:

[(I−W̃)+(I−W̃)T]f ≈ 2Lf ≈ [(I−W̃)]f (18)

Hence optimum f∗ is obtained by new form of
derivative in (17) after replacing (18):

f∗ = (1− λ)
(
I − λW̃

)−1
Y (19)

Most graph-based SSLs are transductive, i.e., not
easily expendable to new testing points. In (Delal-
leau et al., 2005) an induction scheme is proposed to
classify a new point xTe by

f̂(xTe) =
∑
i∈L∪U W̃xifi/

∑
i∈L∪U W̃xi (20)

Thus, we use induction, where we can, to avoid re-
construction of the graph for new test points.

7 Experiments and Discussions

In the next, we evaluate the performance of the pro-
posed RLN in comparison to the other methods on
syntactic and real datasets.

Exp. 1. Graph Construction Performance:
Here we use a similar syntactic data in (Jebara et
al., 2009) shown in Fig.2.a, which contains two
clusters of dissimilar densities and shapes. We
investigate three graph construction methods, lin-
ear k-neighborhoods of (Roweis and Saul, 2000) in
Fig.2.b, b-matching(Jebara et al., 2009) in Fig.2.c
and RLN of this work in Fig.2.d using a dataset of
300 points with binary output values. b-matching
permits a given datum to select k neighboring points
but also ensures that exactly k points selects given
datum as their neighbor.

In each graph construction method Gaussian ker-
nel distance is used. Experiments are run 50 times
where at each fold only 2 labeled samples from op-
posite classes are used to predict the rest. The exper-
iments are repeated for different k, b and ε values. In
Fig. 2, average of trials is shown when k, b are 10
and ε >0.5. We also used the εN approach but it did
not show any improvement over kNN approach.

32

Figure 2: Graph Construction Experiments. (a) Syntactic data. (b) linear k-neighborhood (c) b-matching (d) RLN.

In Fig. 2.d, RLN can separate two classes
more efficiently than the rest. Compared to the b-
matching approach, RLN clearly improves the ro-
bustness. There are more links between clusters in
other graph methods than RLN, which shows that
RLN can separate two classes much efficiently. Also
since dynamic number of edges are constructed with
RLN, unnecessary links are avoided, but for the rest
of the graph methods there are edges between far
away nodes (shown with arrows). In the rest of the
experiments, we use b-matching for benchmark as it
is the closest approach to the proposed RLN.

Exp. 2. Semantic Component Recognition:
We demonstrate the performance of the new RLN
with two sets of experiments for sequence labeling
of question recognition task. As a first step in un-
derstanding semantic components of questions, we
asked two annotators to annotate a random subsam-
ple of 4000 TREC factoid and description questions
obtained from tasks of 1999-2006. There are 11
predefined semantic categories (section 3), close to
280K labeled tokens. Annotators are told that each
question must have one topic and zero or one focus
and event, zero or more of the rest of the compo-
nents. Inter-tagger agreement is κ = 0.68, which
denotes a considerable agreement.

We trained models on 3500 random set of ques-
tions and reserved the rest of 500 for testing the per-
formance. We applied pre-processing and feature
selection of section 3 to compile labeled and unla-
beled training and labeled testing datasets. At train-
ing time, we performed manual iterative parameter
optimization based on prediction accuracy to find
the best parameter sets, i.e., k = {3, 5, 10, 20, 50},
ε ∈ {0, 1}, distance = {linear, gaussion}.

We use the average loss (L̄) per sequence (query)

other topic focus event rest
Samples 1997 1142 525 264 217

CRF 0.935 0.903 0.823 0.894 0.198
b-matching 0.871 0.900 0.711 0.847 0.174

RLN 0.911 0.910 0.761 0.834 0.180

Table 2: Chunking accuracy on testing data. ’other’=O,
’topic’=BT+IT, ’focus’ = BF+IF, ’event’= ’BE+IE”,
’rest’= rest of the labels, i.e., IE, BC, IC, BCL, ICL.

to evaluate the semantic chunking performance:

L̄ = 1
N

∑N
i=1

[
1
Li

∑Li
j=1 I ((ŷi)j 6= (yi)j)

]
(21)

where ŷ and y are predicted and actual sequence re-
spectively; N is the number of test examples; Li is
the length of ith sequence; I is the 0-1 loss function.

(1) Chunking Performance: Here, we investigate
the accuracy of our models on individual component
prediction. We use CRF, b-matching and our RLN
to learn models from labeled training data and eval-
uate performance on testing dataset. For RLN and
b-matching we use training as labeled and testing as
unlabeled dataset in transductive way to predict to-
ken labels. The testing results are shown in Table 2
for different group of components. The accuracy for
’topic’ and ’focus’ components are relatively high
compared to other components. Most of the errors
on the ’rest’ labels are due to confusion with ’topic’
or ’focus’. On some components, i.e., topic, other,
RLN performed significantly better than b-matching
based on t-test statistics (at 95% confidence). No
statistical significance between CRF and RLN is ob-
served indicating that RLN’s good performance on
individual label scoring, as it shows that RLN can
be used efficiently for sequence labeling.
(2) Question Labeling Performance. Having

33

Labeled CRF SSL sCRF b-match RLN
1% 0.240 0.235 0.223 0.233 0.220
5% 0.222 0.218 0.215 0.203 0.189

10% 0.170 0.219 0.186 0.194 0.180
25% 0.173 0.196 0.175 0.174 0.170
50% 0.160 0.158 0.147 0.156 0.158
75% 0.140 0.163 0.138 0.160 0.155

100% 0.120 0.170 0.123 0.155 0.149

Table 3: Test Data Average Loss on graph construction
with RLN, b-matching, standard SSL with kNN as well
as CRF, CRF with Self Learning (sCRF).

demonstrated that RLN is an alternative method
to the standard sequence learning methods for
the question labeling task, next we evaluate per
sequence (question) performance, rather than in-
dividual label performance using unlabeled data.
Firstly, we randomly select subset of labeled train-
ing dataset, Xi

L ⊂ XL with different sample sizes,
niL = 5% ∗ nL, 10% ∗ nL, 25% ∗ nL, 50% ∗ nL,
75% ∗ nL, 100% ∗ nL, where nL is the size of XL.
Thus, instead of fixing the number of labeled records
and varying the number of unlabeled points, we pro-
pose to fix the percentage of unlabeled points in
training dataset. We hypothetically use unselected
part of the labeled dataset as unlabeled data at each
random selection. We compare the result of RLN to
other graph based methods including standard SSL
(Zhu et al., 2003) using kNN, and b-matching. We
also build a CRF model using the same features
as RLN except the output information, which CRF
learns through probabilistic structure. In addition,
we implemente self training for CRF (sCRF), most
commonly known SSL method, by adding most con-
fident (x, f(x)) unlabeled data back to the data and
repeat the process 10 times. Table 3 reports average
loss of question recognition tasks on testing dataset
using these methods.

When the number of labeled data is small (niL <
25%nL), RLN has better performance compared to
the rest (an average of 7% improvement). The SSL
and sCRF performance is slightly better than CRF at
this stage. As expected, as the percentage of labeled
points in training is increased, the CRF outperforms
the rest of the models. However, observing no sta-
tistical significance between CRF, b-matching and

Unlabeled tokens 25K 50K 75K 100K
Average Loss 0.150 0.146 0.141 0.139

Table 4: Average Loss Results for RLN graph based SSL
as unlabeled tokens is increased.

RLN up to 25-50% labeled points indicates RLNs
performance on unlabeled datasets. Thus, for se-
quence labeling, the RLN can be a better alternative
to known sequence labeling methods, when manual
annotation of the entire dataset is not feasible.

Exp. 3. Unlabeled Data Performance: Here
we evaluate the effect of the size of unlabeled data
on the performance of RLN by gradually increas-
ing the size of unlabeled questions. The assump-
tion is that as more unlabeled data is used, the model
would have additional spatial information about to-
ken neighbors that would help to improve its gener-
alization performance. We used the questions from
the Question and Answer pair dataset distributed by
Linguistic Data Consortium for the DARPA GALE
project (LDC catalog number: LDC2008E16). We
compiled 10K questions, consisting of 100K tokens.

Although the error reduction is small (Table 4),
the empirical results indicate that unlabeled data can
have positive effect on the performance of the RLN
method. As we introduce more unlabeled data, the
RLN performance is increased, which indicates that
there is a lot to discover from unlabeled questions.

8 Conclusions

In this paper, we presented a graph-based semi-
supervised learning method with a new graph con-
struction. Our new graph construction relaxes the
neighborhood assumptions yielding robust graphs
when the labeled data is sparse, in comparison to
previous methods, which set rigid boundaries. The
new algorithm is particularly appealing to question
semantic component recognition task, namely ques-
tion understanding, in that in this task we usually
deal with very few labeled data and considerably
larger unlabeled data. Experiments on question se-
mantic component recognition show that our semi-
supervised graph-based method can improve perfor-
mance by up to 7-10% compared to well-known se-
quence labeling methods, especially when there are
more unlabeled data than the labeled data.

34

References
A. Alexandrescu and K. Kirchhoff. 2007. Data-driven

graph construction for semi-supervised graph-based
learning in nlp. In Proc. of HLT 2007.

M. Belkin and P. Niyogi. 2002a. Laplacian eigenmaps
and spectral techniques for embedding and clustering.
In Advances in Neural Information Processing Sys-
tems.

M. Belkin and P. Niyogi. 2002b. Using manifold struc-
ture for partially labeled classification. In Proc. of
NIPS 2002.

M. Belkin, P. Niyogi, and V. Sindhwani. 2006. A ge-
ometric framework for learning from examples. In
Journal of Machine Learning Research.

J. D. Burger. 2006. Mitre’s qanda at trec-15. In Proc. of
the TREC-2006.

J.Y. Chai and R. Jin. 2004. Discourse structure for
context question answering. In Proc. of HLT-NAACL
2004.

O. Delalleau, Y. Bengio, and N.L. Roux. 2005. Efficient
non-parametric function induction in semi-supervised
learning. In Proc. of AISTAT-2005.

H. Duan, Cao Y, C.Y. Lin, and Y. Yu. 2008. Searching
questions by identifying question topic and question
focus. In Proc. of ACL-08.

S. Fan, Y. Zhang, W.W.Y. Ng, Xuan Wang, and X. Wang.
2008. Semantic chunk annotation for complex ques-
tions using conditional random field. In Coling 2008:
Proc. of Workshop on Knowledge and Reasoning for
Answering Questions.

GD. Forney. 1973. The viterbi algorithm. In Proc. of
IEEE 61(3), pages 269–278.

A. Goldberg and X. Zhu. 2009. Keepin’ it real: Semi-
supervised learning with realistic tuning. In Proc.
of NAACL-09 Workshop on Semi-Supervised Learning
for NLP.

E. Hajicova, P. Sgall, and H. Skoumalova. 1993. Iden-
tifying topic and focus by an automatic procedure. In
Proc. of the EACL-1993.

T. Jebara, J. Wang, and S.F. Chang. 2009. Graph con-
struction and b-matching for semi-supervised learning.
In Proc. of ICML-09.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of the 41st
Meeting of the ACL-2003, pages 423–430.

J.D. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proc. of 18th
International Conf. on Machine Learning (ICML’01).

M. Maier and U.V. Luxburg. 2008. Influence of graph
construction on graph-based clustering measures. In
Proc. of Neural Infor. Proc. Sys. (NIPS 2008).

M.-C.D. Marneffe, B. MacCartney, and C.D. Manning.
2006. Generating typed-dependency parsers from
phrase structure parsers. In In LREC2006.

S.T. Roweis and L.K. Saul. 2000. Nonlinear dimension-
ality reduction by locally embedding. In Science, vol-
ume 290, pages 2323–2326.

F. Wang and C. Zhang. 2006. Label propagation through
linear neighborhoods. In Proc. of the ICML-2006.

Dengyong Zhou, Olivier Bousquet, Thomas N. Lal, Ja-
son Weston, and Bernhard Schölkopf. 2004. Learning
with local and global consistency. Advances in Neural
Information Processing Systems, 16:321–328.

Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani.
2003. Semi-supervised learning: From Gaussian
Fields to Gaussian processes. Technical Report CMU-
CS-03-175, Carnegie Mellon University, Pittsburgh.

35

Proceedings of the NAACL HLT 2010 Workshop on Semantic Search, pages 36–43,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Capturing the stars: predicting ratings for service and product reviews

Narendra Gupta, Giuseppe Di Fabbrizio and Patrick Haffner
AT&T Labs - Research, Inc.

Florham Park, NJ 07932 - USA
{ngupta,pino,haffner}@research.att.com

Abstract

Bloggers, professional reviewers, and con-
sumers continuously create opinion–rich web
reviews about products and services, with the
result that textual reviews are now abundant on
the web and often convey a useful overall rat-
ing (number of stars). However, an overall rat-
ing cannot express the multiple or conflicting
opinions that might be contained in the text,
or explicitly rate the different aspects of the
evaluated entity. This work addresses the task
of automatically predicting ratings, for given
aspects of a textual review, by assigning a nu-
merical score to each evaluated aspect in the
reviews. We handle this task as both a re-
gression and a classification modeling prob-
lem and explore several combinations of syn-
tactic and semantic features. Our results sug-
gest that classification techniques perform bet-
ter than ranking modeling when handling eval-
uative text.

1 Introduction

An abundance of service and products reviews are
today available on the Web. Bloggers, professional
reviewers, and consumers continuously contribute
to this rich content both by providing text reviews
and often by assigning useful overall ratings (num-
ber of stars) to their overall experience. However,
the overall rating that usually accompanies online
reviews cannot express the multiple or conflicting
opinions that might be contained in the text, or ex-
plicitly rate the different aspects of the evaluated
entity. For example, a restaurant might receive an
overall great evaluation, while the service might

be rated below average due to slow and discourte-
ous wait staff. Pinpointing opinions in documents,
and the entities being referenced, would provide a
finer–grained sentiment analysis and a solid foun-
dation to automatically summarize evaluative text,
but such a task becomes even more challenging
when applied to a generic domain and with unsu-
pervised methods. Some significant contributions
by Hu and Liu (2004), Popescu and Etzioni (2005),
and Carenini et al. (2006) illustrate different tech-
niques to find and measure opinion orientation in
text documents. Other work in sentiment analysis
(often referred as opinion mining) has explored sev-
eral facets of the problem, ranging from predicting
binary ratings (e.g., thumbs up/down) (Turney, 2002;
Pang et al., 2002; Dave et al., 2003; Yu and Hatzivas-
siloglou, 2003; Pang and Lee, 2004; Yi and Niblack,
2005; Carenini et al., 2006), to more detailed opin-
ion analysis methods predicting multi–scale ratings
(e.g., number of stars) (Pang and Lee, 2005; Sny-
der and Barzilay, 2007; Shimada and Endo, 2008;
Okanohara and Tsujii, 2005).

This paper focuses on multi–scale multi–aspect
rating prediction for textual reviews. As mentioned
before, textual reviews are abundant, but when try-
ing to make a buy decision on a specific product
or service, getting sufficient and reliable informa-
tion can be a daunting and time consuming task.
On one hand, a single overall rating does not pro-
vide enough information and could be unreliable, if
not supported over a large number of independent
reviews/ratings. From another standpoint, reading
through a large number of textual reviews in order
to infer the aspect ratings could be quite time con-

36

suming, and, at the same time, the outcome of the
evaluation could be biased by the reader’s interpre-
tation. In this work, instead of a single overall rat-
ing, we propose to provide ratings for multiple as-
pects of the product/service. For example, in the
case of restaurant reviews, we consider ratings for
five aspects: food, atmosphere, value, service and
overall experience. In Lu et al. (2009) such aspect
ratings are called rated aspect summaries, in Shi-
mada and Endo (2008) they have been referred to as
seeing stars and in Snyder and Barzilay (2007) they
are referred to as multi–aspect ranking. We use su-
pervised learning methods to train predictive models
and use a specific decoding method to optimize the
aspect rating assignment to a review.

In the rest of this paper, we overview the previous
work in this research area in Section 2. We describe
the corpus used in the experiments in Section 3. In
Section 4 we present various learning algorithms we
experimented with. Section 5 explains our experi-
mental setup, while in Section 6 we provide analy-
sis of our experimental results. Section 7 presents
details of modeling and exploiting interdependence
among aspect ratings to boost the predictive perfor-
mance. Finally, we describe the future work in Sec-
tion 8 and report the concluding remarks in Section
9.

2 Related work

Previous work in sentiment analysis (Turney, 2002;
Pang et al., 2002; Dave et al., 2003; Yu and Hatzivas-
siloglou, 2003; Pang and Lee, 2004; Yi and Niblack,
2005; Carenini et al., 2006) used different informa-
tion extraction and supervised classification meth-
ods to detect document opinion polarity (positive vs.
negative).

By conducting a limited experiment with two sub-
jects, Pang and Lee (2005) demonstrated that hu-
mans can discern more grades of positive or neg-
ative judgments by accurately detecting small dif-
ferences in rating scores by just looking at review
text. In a five–star schema, for instance, the subjects
were able to perfectly distinguish rating differences
of three notches or 1.5 stars and correctly perceive
differences of one star with an average of 83% accu-
racy. This insight confirms that a five–star scale im-
proves the evaluative information and is perceived

with the right discriminative strength by the users.
Pang and Lee applied supervised and semi–

supervised classification techniques, in addition to
linear, ε-insensitive SVM regression methods, to
predict the overall ratings of movie reviews in three
and four–class star rating schemes. In the books
review domain, Okanohara and Tsujii (2005) show
a similar approach with comparable results. Both
these contributions consider only overall ratings,
which could be sufficient to describe sentiment for
movie and book reviews. Two recent endeavors,
Snyder and Barzilay (2007) for the restaurants do-
main, and Shimada and Endo (2008) for video
games reviews, exploit multi–aspect, multiple rat-
ing modeling. Snyder and Barzilay (2007) assume
inter–dependencies among the aspect ratings and
capture the relationship between the ratings via the
agreement relation. The agreement relation de-
scribes the likelihood that the user will express the
same rating for all the rated aspects. Interestingly,
Snyder and Barzilay (2007) show that modeling as-
pect rating dependencies helps to reduce the rank
loss by keeping in consideration the contributions of
the opinion strength of the single aspects referred
to in the review. They incorporated information
about the aspect rating dependencies in a regression
model and minimized the loss (overall grief) dur-
ing decoding. Shimada and Endo (2008) exploits
a more traditional supervised machine learning ap-
proach where features such as word unigrams and
frequency counts are used to train classification and
regression models. As detailed in Section 4, our ap-
proach is similar to (Snyder and Barzilay, 2007) in
terms of review domain and algorithms, but we im-
prove on their performances by optimizing classifi-
cation predictions.

3 Reviews corpus

Labeled data containing textual reviews and aspect
ratings are rarely available. For this work, reviews
were mined from the we8there.com websites
around the end of 2008. we8there.com is one
of the few websites, where, besides textual reviews,
numerical ratings for different aspects of restaurants
are also provided. Aspects used for rating on this
site are: food, service, atmosphere, value and over-
all experience. Ratings are given on a scale from 1

37

to 5; for example, reviewers posting opinions were
asked to rank their overall experience by the follow-
ing prompt: “On a scale of 1 (poor) to 5 (excel-
lent), please rate your dining experience”, and then
enter a textual description by the prompt: “Please
describe your experience (30 words minimum)”. At
the time of mining, this site had reviews of about
3,800 restaurants with an average of two reviews
per restaurant containing around eight sentences per
review. A more detailed description is reported in
Table 1. Table 2 shows review ratings distribution
over the aspects. Rating distributions are evidently
skewed toward high ratings with 70% or more re-
views appraised as excellent (rank 5) or above aver-
age (rank 4).

Restaurants 3,866
Reviewers 4,660
Reviews 6,823
Average reviews per restaurant 1.76
Number of sentences 58,031
Average sentences per review 8.51

Table 1: Restaurant review corpus

Rating 1 2 3 4 5
Atmosphere 6.96 7.81 14.36 23.70 47.18
Food 8.24 6.72 9.86 18.53 56.65
Value 9.37 7.57 13.61 23.27 46.18
Service 11.83 6.12 11.91 22.00 48.14
Overall 10.48 8.19 10.17 20.47 50.69

Table 2: Restaurant review ratings distribution per aspect

4 Learning algorithms

In this section we review machine learning ap-
proaches that can predict ordinal ratings from textual
data. The goal is ordinal regression, which differs
from traditional numeric regression because the tar-
gets belong to a discrete space, but also differs from
classification as one wants to minimize the rank loss
rather than the classification error. The rank loss is
the average difference between actual and predicted
ratings and is defined as

RankLoss =
1
N

N∑
i

(|rai − rpi |)

where rai and rpi are actual and predicted ratings
respectively for the instance i, and N is the number
of considered reviews. There are several possible
approaches to such a regression problem.

1. The most obvious approach is numeric regres-
sion. It is implemented with a neural network
trained using the back–propagation algorithm.

2. Ordinal regression can also be implemented
with multiple thresholds (r − 1 thresholds are
used to split r ranks). This is implemented
with a Perceptron based ranking model called
PRank (Crammer and Singer, 2001).

3. Since rating aspects with values 1, 2, 3, 4 and
5 is an ordinal regression problem it can also
be interpreted as a classification problem, with
one class per possible rank. In this interpreta-
tion, ordering information is not directly used
to help classification. Our implementation uses
binary one-vs-all Maximum Entropy (MaxEnt)
classifiers. We will see that this very simple
approach can be extended to handle aspect in-
terdependency, as presented in section 7.

In order to provide us with a broad range of rating
prediction strategies, we experimented with a nu-
merical regression technique viz. neural network, an
ordinal regression technique viz. PRank algorithm,
and a classification technique viz. MaxEnt classi-
fiers. Their implementations are straightforward and
the run–time highly efficient. After selecting a strat-
egy from the previous list, one could consider more
advanced algorithms described in Section 8.

5 Experimental setup

To predict aspect ratings of restaurants from their
textual reviews we used the reviews mined from the
we8there.com website to train different regres-
sion and classification models as outlined in Sec-
tion 4. In each of our experiments, we randomly
partitioned the data into 90% for training and 10%
for testing. This ensures that the distributions in
training and test data are identical. All the results
quoted in this paper are averages of 10–fold cross–
validation over 6,823 review examples. We con-
ducted repeatedly the same experiment on 10 differ-
ent training/test partitions and computed the average
rank loss over all the test partitions.

38

Figure 1 illustrates the training process where
each aspect is described by a separate predictive
model.

Figure 1: Predictive model training

We introduce the following notation that will be
helpful in further discussion. There are m aspects.
For our data m is 5. Each aspect can have an inte-
ger rating from 1 to k. Once again, for our data k
is 5. Each review text document t can have ratings
r, which is a vector of m integers ranging 1 to k
(bold faced letters indicate vectors). Using the train-
ing data (t1, r1)..(ti, ri)..(tn, rn) we train m rating
predictors Rj(ti), one for each aspect j. Given text
ti predictor Rj outputs the most likely rating l for
the aspect j. In these experiments, we treated aspect
rating predictors as independent of each other. For
each rated aspect, predictor models were trained in-
dependently and were used independently to predict
ratings for each aspect.

5.1 Feature Selection

We experimented with different combinations of
features, including word unigrams, bigrams, word
chunks, and parts–of–speech (POS) chunks. The as-
sumption is that bag–of–unigrams capture the ba-
sic word statistic and that bigrams take into account
some limited word context. POS chunks and word
chunks discriminate the use of words in the con-
text (e.g., a simple form word sense disambigua-
tion) and, at the same time, aggregate co–occurring
words (e.g., collocations), such as sautéed onions,
buffalo burger, etc.

Most of the web–based reviews do not usually
provide fine–grained aspect ratings of products or
services, however, they often give an overall rating
evaluation. We therefore also experimented with the
overall rating as an input feature to predict the more

specific aspect ratings. Results of our experiments
are shown in Table 3.

Aspects Uni- Bi- Word Word Uni
gram gram Chunks Chunks gram

POS Overall
Chunks Rating

Atmosphere 0.740 0.763 0.789 0.783 0.527
Food 0.567 0.571 0.596 0.588 0.311
Value 0.703 0.725 0.751 0.743 0.406
Service 0.627 0.640 0.651 0.653 0.377
overall 0.548 0.559 0.577 0.583
Average 0.637 0.652 0.673 0.670 0.405

Table 3: Average ranking losses using MaxEnt classifier
with different feature sets

Review sentences
<s>Poor service made the lunch unpleasant.</s>
<s>The staff was unapologetic about their mistakes they
just didn’t seem to care.</s>
<s>For example the buffalo burger I ordered with sauteed
onions and fries initially was served without either.</s>
<s> The waitress said she’d bring out the onions but had
I waited for them before eating the burger the meat would
have been cold.</s>
<s>Other examples of the poor service were that the
waitress forgot to bring out my soup when she brought out
my friend’s salad and we had to repeatedly ask to get our
water glasses refilled.</s>
<s> When asked how our meal was I did politely mention my
dissatisfaction with the service but the staff person’s
response was silence not even a simple I m sorry.</s>
<s>I won’t return. </s>
Word Chunks
poor service made lunch unpleasant
staff unapologetic mistakes n’t care
example buffalo burger ordered sauteed onions fries served
waitress said bring onions waited eating burger meat cold
other examples poor service waitress forgot bring
soup brought friend salad repeatedly ask to get water
glasses refilled
asked meal politely mention dissatisfaction service
staff person response silence not simple sorry
n’t return
Parts-of-speech Chunks
NNP NN VBD NN JJ
NN JJ NNS RB VB
NN NN NN VBD NN NNS NNS VBN
NN VBD VB NNS VBD VBG NN NN JJ
JJ NNS JJ NN NN NN VB NN VBD NN NN RB VB TO VB NN VBZ VBN
VBD NN RB VB NN NN NN NN NN NN RB JJ JJ
RB VB

Table 4: Example of reviews and extracted word chunks

Unigram and bigram features refer to unigram
words and bigram words occurring more than 3
times in the training corpus. Word chunks are ob-
tained by only processing Noun (NP), Verb (VP) and
Adjective (ADJP) phrases in the review text. We re-
moved modals and auxiliary verbs form VPs, pro-
nouns from NPs and we broke the chunks containing
conjunctions. Table 4 shows an example of extracted
word and parts–of–speech chunks from review text.
As can be seen, word chunks largely keep the infor-
mation bearing chunks phrases and remove the rest.
Parts–of–speech chunks are simply parts–of–speech

39

of word chunks.

In spite of richness of word and parts-of-speech,
chunks models using word unigrams perform the
best. We can attribute this to the data sparseness,
never–the–less, this results is in line with the find-
ings in Pang et al. (2002). Last column of Table 3
clearly shows that use of overall rating as input fea-
ture significantly improves the performance. Clearly
this validates the intuition that aspect ratings are
highly co–related with overall ratings.

For the remaining experiments, we used only the
unigram words as features of the review text. Since
overall ratings given by reviewers may contain their
biases and since they may not always be available,
we did not use them as input features. Our hope
is that even though we train the predictors using re-
viewers provided aspect ratings, learned models will
be able to predict aspect ratings that depend only on
the review text and not on reviewer’s biases.

5.2 Results

Table 5 shows the results of our evaluation. Each
row in this table reports average rank loss of four
different models for each aspect. The baseline rank
loss is computed by setting the predicted rank for all
test examples to 5, as it is the most frequently occur-
ring rank in the training data (see also Table 2). As
shown in Table 5, the average baseline rank loss is
greater than one. The third column shows the results
from the neural network–based numeric regression.
The fourth column corresponds to the Perceptron–
based PRank algorithm. The MaxEnt classification
results appear in the last column. For these results,
we also detail the standard deviation over the 10
cross–validation trials.

Aspects Base- Back- Percep- MaxEnt
line Prop. tron

Atmosphere 1.036 0.772 0.930 0.740 ± 0.022
Food 0.912 0.618 0.739 0.567± 0.033
Value 1.114 0.740 0.867 0.703± 0.028
Service 1.116 0.708 0.851 0.627± 0.033
Overall 1.077 0.602 0.756 0.548± 0.026
Average 1.053 0.694 0.833 0.637± 0.020

Table 5: Average ranking losses using different predictive
models

6 Analysis

As can be seen in table Table 5, Atmosphere and
Value are the worst performers. This is caused by
the missing textual support for these aspects in the
training data. Using manual examination of small
number of examples, we found that only 62% of
user given ratings have supporting text for ratings
of these aspects in the reviews.

For example, in Figure 2 the first review clearly
expresses opinions about food, service and atmo-
sphere (under appall of cigarette smoke), but there is
no evidence about value which is ranked three, two
notches above the other aspects. Similarly, the sec-
ond review is all about food without any reference
to service rated two notches above the other aspects,
or atmosphere or value.

Because of this reason, we do not expect any pre-
dictive model to do much better than 62% accuracy.
Manual examination of a small number of examples
also showed that 55% of ratings predicted by Max-
Ent models are supported by the review text. This is
89% of 62% (a rough upper bound) and can be con-
sidered satisfactory given small data set and differ-
ences among reviewers rating preference. One way
to boost the predictive performance would be to first
determine if there is a textual support for an aspect
rating, and use only the supported aspect ratings for
training and evaluation of the models. This however,
will require labeled data that we tried to avoid in this
work.

Figure 2: Example of ratings with partial support in the
text review

To our surprise, MaxEnt classification, although it
minimizes a classification error, performs best even

40

when evaluated using rank loss. As can be noticed,
the performance difference over the second best ap-
proach (back–propagation) usually exceeds the stan-
dard deviation.

MaxEnt results are also comparable to those pre-
sented in Snyder and Barzilay (2007) using the
Good Grief algorithm. Snyder and Barzilay (2007)
also used data from the we8there.com website.
While we are using the same data source, note
the following differences: (i) Snyder and Barzilay
(2007) used only 4,488 reviews as opposed to the
6,823 reviews used in our work; (ii) our results are
averaged over a 10 fold cross validation. As shown
with the baseline results reported in Table 6, the im-
pact on performance that can be attributed to these
differences is small. The most significant number,
which should minimize the impact of data discrep-
ancy, is the improvement over baseline (labeled as
“gain over baseline” in Table 6). In that respect,
our MaxEnt classification–based approach outper-
forms Good Grief for every aspect. Note also that,
while we trained 5 independent predictors (one for
each aspect) using only word unigrams as features,
the Good Grief algorithm additionally modeled the
agreements among aspect ratings and used the pres-
ence/absence of opposing polarity words in reviews
as additional features.

Our results Snyder and Barzilay
(2007)

Aspects Base- Max Gain Base- Good Gain
line Ent. over line Grief over

Base- Base-
line line

Atmosphere 1.039 0.740 0.299 1.044 0.774 0.270
Food 0.912 0.567 0.344 0.848 0.534 0.314
Value 1.114 0.703 0.411 1.030 0.644 0.386
Service 1.116 0.627 0.489 1.056 0.622 0.434
Overall 1.077 0.548 0.529 1.028 0.632 0.396

Table 6: Comparison of rank loss obtained from MaxEnt
classification and those reported in Snyder and Barzilay
(2007)

7 Modeling interdependence among aspect
ratings

Inspired by these observations, we also trained Max-
Ent classifiers to predict pair–wise absolute differ-
ences in aspect ratings. Since the difference in rat-
ings of any two aspects can only be 0,1,2,3 or 4,

there are 5 classes to predict. For each test exam-
ple, MaxEnt classifiers output the posterior proba-
bility to observe a class given an input example. In
our approach, we use these probabilities to compute
the best joint assignment of ratings to all aspects.
More specifically, in our modified algorithm we use
2 types of classifiers.

• Rating predictors - Given the text ti, our clas-
sifiers Rj(ti) output vectors pi consisting of
probabilities pi

l for text ti having a rating l for
the aspect j.

• Difference predictors - These correspond to
classifiers Dj,k(ti) which output vectors pij,k .
Elements of these vectors are the probabilities
that the difference between ratings of aspects j
and k is 0,1,2,3 and 4, respectively. While j
ranges from 1 to m, k ranges from 1 to j − 1.
Thus, we trained a total of m(m − 1)/2 = 10
difference predictors.

To predict aspect ratings for a given review text
ti we use both rating predictors and difference pre-
dictors and generate output probabilities. We then
select the most likely values of ri for text ti that sat-
isfies the probabilistic constraints generated by the
predictors. More specifically:

ri = argmax
r∈R

m∑
j=1

log(pi
rj

) +
m∑

j=1

j∑
k=1

log(pij,k

|rj−rk|)

R is the set of all possible ratings assignments to
all aspects. In our case it contains 55 (3,125) tuples.
tuples in our case. Like Snyder and Barzilay (2007),
we also experimented with additional features in-
dicating presence of positive and negative polarity
words in the review text. Besides unigrams in the
review text, we also used 3 features: the counts of
positive and negative polarity words and their dif-
ferences. Polarity labels are obtained from a dictio-
nary of about 700 words. This dictionary was cre-
ated by first collecting words used as adjectives in a
corpus of un–related review text. We then retained
only those words in the dictionary that, in a context
free manner generally conveyed positive or negative
evaluation of any object, event or situation. Some

41

examples of negative words are awful, bad, bor-
ing, crude, disappointing, horrible, worst, worth-
less, yucky and some examples of positive words
are amazing, beautiful, delightful, good, impecca-
ble, lovable, marvelous, pleasant, recommendable,
sophisticated, superb, wonderful, wow. Table 7 first
shows gains obtained from using difference predic-
tors, and then gains from using polarity word fea-
tures in addition to these difference predictors.

Aspects MaxEnt + Difference + Polarity
predictor features

Atmosphere 0.740 0.718 0.707
Food 0.567 0.552 0.547
Value 0.703 0.695 0.685
Service 0.627 0.627 0.617
Overall 0.548 0.547 0.528
Average 0.637 0.628 0.617

Table 7: Improved rank loss obtained by using difference
predictors and polarity word features

8 Future Work

We have presented 3 algorithms chosen for their
simplicity of implementation and run time effi-
ciency. The results suggest that our classification–
based approach performs better than numeric or or-
dinal regression approaches. Our next step is to ver-
ify these results with the more advanced algorithms
outlined below.

1. For many numeric regression problems,
(boosted) classification trees have shown good
performance.

2. Several multi–threshold implementations of
Support Vector Ordinal Regression are com-
pared in Chu and Keerthi (2005). While they
are more principled than the Perceptron–based
PRank, their implementation is significantly
more complex. A simpler approach that per-
forms regression using a single classifier ex-
tracts extended examples from the original ex-
amples (Li and Lin, 2007).

3. Among classification–based approaches,
nested binary classifiers have been pro-
posed (Frank and Hall, 2001) to take into
account the ordering information, but the

prediction procedure based on classifier score
difference is ad–hoc.

9 Conclusions

Textual reviews for different products and services
are abundant. Still, when trying to make a buy deci-
sion, getting sufficient and reliable information can
be a daunting task. In this work, instead of a sin-
gle overall rating we focus on providing ratings for
multiple aspects of the product/service. Since most
textual reviews are rarely accompanied by multiple
aspect ratings, such ratings must be deduced from
predictive models. Several authors in the past have
studied this problem using both classification and re-
gression models. In this work we show that even
though the aspect rating problem seems like a re-
gression problem, maximum entropy classification
models perform the best. Results also show a strong
inter–dependence in the way users rate different as-
pects.

Acknowledgments

We thank Remi Zajac and his team for their support.

References

Carenini, Giuseppe, Raymond T. Ng, and Adam
Pauls. 2006. Interactive multimedia summaries of
evaluative text. In Proceedings of Intelligent User
Interfaces (IUI). ACM Press, pages 124–131.

Chu, Wei and S. Sathiya Keerthi. 2005. New ap-
proaches to support vector ordinal regression. In
Proceedings of the 22nd International Conference
on Machine Learning. Bonn, Germany, pages
145–152.

Crammer, Koby and Yoram Singer. 2001. Prank-
ing with ranking. In Advances in Neural Infor-
mation Processing Systems 14. MIT Press, pages
641–647.

Dave, Kushal, Steve Lawrence, and David M. Pen-
nock. 2003. Mining the peanut gallery: Opinion
extraction and semantic classification of product
reviews. In WWW ’03: Proceedings of the 12th
International Conference on World Wide Web.
ACM, New York, NY, USA, pages 519–528.

Frank, Eibe and Mark Hall. 2001. A simple ap-
proach to ordinal classification. In Proceedings

42

of the Twelfth European Conference on Machine
Learning. Springer-Verlag, Berlin, pages 145–
156.

Hu, Minqing and Bing Liu. 2004. Mining and sum-
marizing customer reviews. In KDD ’04: Pro-
ceedings of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining. ACM, New York, NY, USA, pages 168–
177.

Li, Ling and Hsuan-Tien Lin. 2007. Ordinal re-
gression by extended binary classification. In
B. Schölkopf, J. C. Platt, and T. Hofmann, edi-
tors, Advances in Neural Information Processing
Systems 19. MIT Press, pages 865–872.

Lu, Yue, ChengXiang Zhai, and Neel Sundaresan.
2009. Rated aspect summarization of short com-
ments. In WWW ’09: Proceedings of the 18th
International Conference on World Wide Web.
ACM, New York, NY, USA, pages 131–140.

Okanohara, Daisuke and Jun-ichi Tsujii. 2005. As-
signing polarity scores to reviews using machine
learning techniques. In Robert Dale, Kam-Fai
Wong, Jian Su, and Oi Yee Kwong, editors, IJC-
NLP. Springer, volume 3651 of Lecture Notes in
Computer Science, pages 314–325.

Pang, Bo and Lillian Lee. 2004. A sentimental
education: Sentiment analysis using subjectivity
summarization based on minimum cuts. In Pro-
ceedings of the Association for Computational
Linguistics (ACL). pages 271–278.

Pang, Bo and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment catego-
rization with respect to rating scales. In Proceed-
ings of the Association for Computational Lin-
guistics (ACL). pages 115–124.

Pang, Bo, Lillian Lee, and Shivakumar
Vaithyanathan. 2002. Thumbs up? Senti-
ment classification using machine learning
techniques. In Proceedings of the Conference
on Empirical Methods in Natural Language
Processing (EMNLP). pages 79–86.

Popescu, Ana-Maria and Oren Etzioni. 2005. Ex-
tracting product features and opinions from re-
views. In Proceedings of the Human Language
Technology Conference and the Conference on

Empirical Methods in Natural Language Process-
ing (HLT/EMNLP).

Shimada, Kazutaka and Tsutomu Endo. 2008. See-
ing several stars: A rating inference task for a doc-
ument containing several evaluation criteria. In
Advances in Knowledge Discovery and Data Min-
ing, 12th Pacific-Asia Conference, PAKDD 2008.
Springer, Osaka, Japan, volume 5012 of Lecture
Notes in Computer Science, pages 1006–1014.

Snyder, Benjamin and Regina Barzilay. 2007. Mul-
tiple aspect ranking using the Good Grief algo-
rithm. In Proceedings of the Joint Human Lan-
guage Technology/North American Chapter of the
ACL Conference (HLT-NAACL). pages 300–307.

Turney, Peter. 2002. Thumbs up or thumbs
down? Semantic orientation applied to unsuper-
vised classification of reviews. In Proceedings
of the Association for Computational Linguistics
(ACL). pages 417–424.

Yi, Jeonghee and Wayne Niblack. 2005. Senti-
ment mining in WebFountain. In Proceedings of
the International Conference on Data Engineer-
ing (ICDE).

Yu, Hong and Vasileios Hatzivassiloglou. 2003. To-
wards answering opinion questions: Separating
facts from opinions and identifying the polarity of
opinion sentences. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP).

43

Proceedings of the NAACL HLT 2010 Workshop on Semantic Search, pages 44–52,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Object Search: Supporting Structured Queries in Web Search Engines

Kim Cuong Pham†, Nicholas Rizzolo†, Kevin Small‡, Kevin Chen-Chuan Chang†, Dan Roth†

University of Illinois at Urbana-Champaign†

Department of Computer Science
{kimpham2, rizzolo, kcchang, danr}@illinois.edu

Tufts University‡

Department of Computer Science
kevin.small@tufts.edu

Abstract

As the web evolves, increasing quantities of

structured information is embedded in web

pages in disparate formats. For example, a

digital camera’s description may include its

price and megapixels whereas a professor’s

description may include her name, univer-

sity, and research interests. Both types of

pages may include additional ambiguous in-

formation. General search engines (GSEs)

do not support queries over these types of

data because they ignore the web document

semantics. Conversely, describing requi-

site semantics through structured queries into

databases populated by information extraction

(IE) techniques are expensive and not easily

adaptable to new domains. This paper de-

scribes a methodology for rapidly develop-

ing search engines capable of answering struc-

tured queries over unstructured corpora by uti-

lizing machine learning to avoid explicit IE.

We empirically show that with minimum ad-

ditional human effort, our system outperforms

a GSE with respect to structured queries with

clear object semantics.

1 Introduction

General search engines (GSEs) are sufficient for

fulfilling the information needs of most queries.

However, they are often inadequate for retrieving

web pages that concisely describe real world ob-

jects as these queries require analysis of both un-

structured text and structured data contained in web

pages. For example, digital cameras with specific

brand, megapixel, zoom, and price attributes might

be found on an online shopping website, or a pro-

fessor with her name, university, department, and

research interest attributes might be found on her

homepage. Correspondingly, as the web continues

to evolve from a general text corpus into a hetero-

geneous collection of documents, targeted retrieval

strategies must be developed for satisfying these

more precise information needs. We accomplish this

by using structured queries to capture the intended

semantics of a user query and learning domain spe-

cific ranking functions to represent the hidden se-

mantics of object classes contained in web pages.

It is not uncommon for a user to want to pose an

object query on the web. For example, an online

shopper might be looking for shopping pages that

sell canon digital cameras with 5 megapixels cost-

ing no more than $300. A graduate student might

be looking for homepages of computer science pro-

fessors who work in the information retrieval area.

Such users expect to get a list web pages containing

objects they are looking for, or object pages, which

we will define more precisely in later sections.

GSEs rarely return satisfactory results when the

user has a structured query in mind for two primary

reasons. Firstly, GSEs only handle keyword queries

whereas structured queries frequently involve data

field semantics (e.g. numerical constraints) and ex-

hibit field interdependencies. Secondly, since GSEs

are domain-agnostic, they will generally rank cam-

era pages utilizing the same functions as a profes-

sor’s homepage, ignoring much of the structured in-

formation specific to particular domains.

Conversely, vertical search engines (e.g. DBLife,

cazoodle.com, Rexa.info, etc.) approach this prob-

44

lem from the information extraction (IE) perspec-

tive. Instead of searching an inverted index directly,

they first extract data records from text (Kushmer-

ick et al., 1997; McCallum et al., 2000). IE solu-

tions, even with large scale techniques (Agichtein,

2005), do not scale to the entire web and cost signif-

icantly more than GSEs. Secondly, creating domain-

specific models or wrappers require labeling training

examples and human expertise for each individual

site. Thirdly, pre-extracting information lacks flexi-

bility; decisions made during IE are irrevocable, and

at query time, users may find additional value in par-

tial or noisy records that were discarded by the IE

system.

These issues motivate our novel approach for de-

signing a GSE capable of answering complex struc-

tured queries, which we refer to as Object Search.

At a high level, we search web pages containing

structured information directly over their feature in-

dex, similarly to GSEs, adding expressivity by re-

formulating the structured query such that it can be

executed on a traditional inverted index. Thus, we

avoid the expense incurred by IE approaches when

supporting new object domains. From a techni-

cal perspective, this work describes a principled ap-

proach to customizing GSEs to answer structured

queries from any domain by proposing a composi-

tional ranking model for ranking web pages with

regards to structured queries and presenting an in-

teractive learning approach that eases the process of

training for a new domain.

2 The Object Search Problem

The Object Search problem is to find the object

pages that answer a user’s object query. An object

query belongs to an object domain. An object do-

main defines a set of object attributes. An object

query is simply a set of constraints over these at-

tributes. Thus we define an object query as a tuple

of n constraints q ≡ c1 ∧ c2 ∧ .. ∧ cn, where ci is a

constraint on attribute ai. More specifically, a con-

straint ci is defined as a set of acceptable values θi
for attribute ai; i.e. ci = (ai ∈ θi). For example, an

equality constraint such as “the brand is Canon” can

be specified as (abrand ∈ {Canon}) and a numeric

range constraint such as “the price is at most $200”

can be specified as (aprice ∈ [0, 200]). When the

user does not care about an attribute, the constraint

is the constant true.

Given an object query, we want a set of satis-

fying object pages. Specifically, object pages are

pages that represent exactly one inherent object on

the web. Pages that list several objects such as a

department directory page or camera listing pages

are not considered object pages because even though

they mentioned the object, they do not represent any

particular object. There is often a single object page

but there are many web pages that mention the ob-

ject.

The goal of Object Search is similar to learning to

rank problems (Liu, 2009), in that its goal is to learn

a ranking function ρ : D × Q → R that ranks any

(document, query) pairs. This is accomplished by

learning an function over a set of relevant features.

Each feature can be modeled as a function that takes

the pair and outputs a real value φ : D × Q → R.

For example, a term frequency feature outputs the

number of times the query appears in the document.

We define a function Φ = (φ1, φ2, ...φn) that takes a

(document, query) pair and outputs a vector of fea-

tures. The original ranking function can be written

as ρ(d, q) = ρ′(Φ(d, q)) where ρ′ : Rn → R is the

function; i.e.:

ρ = ρ′ ◦ Φ (1)

Despite the similarities, Object Search differs

from traditional information retrieval (IR) problems

in many respects. First, IR can answer only keyword

queries whereas an object query is structured by

keyword constraints as well as numeric constraints.

Second, Object Search results are “focused”, in the

sense that they must contain an object, as opposed

to the broad notion of relevance in IR. Finally, since

object pages of different domains might have little

in common, we cannot apply the same ranking func-

tion for different object domains.

As a consequence, in a learning to rank problem,

the set of features Φ are fixed for all query. The

major concern is learning the function ρ′. In Object

Search settings, we expect different Φ for each ob-

ject domain. Thus, we have to derive both Φ and

ρ′.

There are a number of challenges in solving these

problems. First, we need a deeper understanding of

45

structured information embedded in web pages. In

many cases, an object attribute such as professor’s

university might appear only once in his homepage.

Thus, using a traditional bag-of-words model is of-

ten insufficient, because one cannot distinguish the

professor own university from other university men-

tioned in his homepage. Second, we will need train-

ing data to train a new ranking function for each

new object domain. Thus, we require an efficient

bootstrapping method to tackle this problem. Fi-

nally, any acceptable solution must scale to the size

of the web. This requirement poses challenges for

efficient query processing and efficient ranking via

the learned ranking function.

3 Object Search Framework

In this section, we illustrate the primary intuitions

behind our aproach for an Object Search solu-

tion. We describe its architecture, which serves

as a search engine framework to support structured

queries of any domain. The technical details of ma-

jor components are left for subsequent sections.

3.1 Intuition

The main idea behind our proposed approach is that

we develop different vertical search engines to sup-

port object queries in different domains. However,

we want to keep the cost of supporting each new

domain as small as possible. The key principles to

keep the cost small are to 1) share as much as pos-

sible between search engines of different domains

and 2) automate the process as much as possible

using machine learning techniques. To illustrate

our proposed approach, we suppose that an user is

searching the web for cameras. Her object query is

q = abrand ∈ {canon} ∧ aprice ∈ [0, 200].

First, we have to automatically learn a function ρ

that ranks web pages given an object query as de-

scribed in Section 2. We observe web pages rele-

vant to the query and notice several salient features

such as “the word canon appears in the title”, “the

word canon appears near manufacturer”, “interest-

ing words that appear include powershot, eos, ixus”,

and “a price value appears after ’$’ near the word

price or sale”. Intuitively, pages containing these

features have a much higher chance of containing

the Canon camera being searched. Given labeled

training data, we can learn a ranking function that

combines these features to produce the probability

of a page containing the desired camera object.

Furthermore, we need to answer user query at

query time. We need to be able to look up these

features efficiently from our index of the web. A

naı̈ve method to index the web is to store a list of

web pages that have the above features, and at query

time, union all pages that have one or more features,

aggregate the score for each web page, and return

the ranked result. There are three problems with this

method. First, these features are dependent on each

object domain; thus, the size of the index will in-

crease as the number of domains grows. Second,

each time a new domain is added, a new set of fea-

tures needs to be indexed, and we have to extract

features for every single web page again. Third, we

have to know beforehand the list of camera brands,

megapixel ranges, price ranges, etc, which is infea-

sible for most object domain.

However, we observe that the above query de-

pendent features can be computed efficiently from

a query independent index. For example, whether

“the word canon appears near manufacturer” can be

computed if we index all occurrences of the words

canon and manufacturer. Similarly, the feature “the

word canon appears in the title” can be computed if

we index all the words from web pages’ title, which

only depends on the web pages themselves. Since

the words and numbers from different parts of a web

page can be indexed independently of the object do-

main, we can share them across different domains.

Thus, we follow the first principle mentioned above.

Of course, computing query dependent features

from the domain independent index is more expen-

sive than computing it from the naı̈ve index above.

However, this cost is scalable to the web. As a mat-

ter of fact, these features are equivalent to “phrase

search” features in modern search engines.

Thus, at a high level, we solve the Object Search

problem by learning a domain dependent ranking

function for each object domain. We store basic do-

main independent features of the web in our index.

At query time, we compute domain dependent fea-

tures from this index and apply the ranking function

to return a ranked list of web pages. In this paper, we

focus on the learning problems, leaving the problem

of efficient query processing for future work.

46

Figure 1: Object Search Architecture

3.2 System Architecture

The main goal of our Object Search system is to en-

able searching the web with object queries. In order

to do this, the system must address the challenges

described in Section 2. From the end-user’s point

of view, the system must promptly and accurately

return web pages for their object query. From the

developer’s point of view, the system must facilitate

building a new search engine to support his object

domain of interest. The goal of the architecture is to

orchestrate all of these requirements.

Figure 1 depicts Object Search architecture. It

shows how different components of Object Search

interact with an end-user and a developer. The end-

user can issue any object query of known domains.

Each time the system receives an object query from

the end-user, it translates the query into a domain in-

dependent feature query. Then the Query Processor

executes the feature query on the inverted index, ag-

gregates the features using learned function ρ′, and

returns a ranked list of web pages to the user.

The developer’s job is to define his object domain

and train a ranking function for it. He does it by

incrementally training the function. He starts by an-

notating a few web pages and running a learning al-

gorithm to produce a ranking function, which is then

used to retrieve more data for the developer to anno-

tate. The process iterates until the developer is satis-

fied with his trained ranking function for the object

domain.

More specifically, the Ranking Function Learner

module learns the function ρ′ and Φ as mentioned in

Section 2. The Query Translator instantiates Φ with

user object query q, resulting in Φ(q). Recall that Φ
is a set of feature functions φi. Each φi is a function

of a (d, q) pair such as “term frequency of ak in title”

(ak is an attribute of the object). Thus we can instan-

tiate φ(q) by replacing ak with θk, which is part of

the query q. For example, if θk = {canon} in the

previous example, then φ(q) is “term frequency of

canon in title”. Thus φ(q) becomes a query indepen-

dent feature and Φ(q) becomes a feature query that

can be executed in our inverted index by the Query

Processor.

4 Learning for Structured Ranking

We now describe how we learn the domain depen-

dent ranking function ρ, which is the core learn-

ing aspect of Object Search. As mentioned in the

previous section, ρ differs from existing learning

to rank work due to the structure in object queries.

We exploit this structure to decompose the ranking

function into several components (Section 4.1) and

combine them using a probabilistic model. Exist-

ing learning to rank methods can then be leveraged

to rank the individual components. Section 4.2 de-

scribes how we fit individual ranking scores into our

probabilistic model by calibrating their probability.

4.1 Ranking model

As stated, ρ models the joint probability distribu-

tion over the space of documents and queries ρ =
P (d, q). Once estimated, this distribution can rank

documents inD according to their probability of sat-

isfying q. Since we are only interested in finding

satisfying object pages, we introduce a variable ω

which indicates if the document d is an object page.

Furthermore, we introduce n variables ζi which in-

dicate whether constraint ci in the query q is satis-

fied. The probability computed by ρ is then:

P (d, q) = P (ζ1, . . . , ζn, d)

= P (ζ1, . . . , ζn, d, ω)

+P (ζ1, . . . , ζn, d, ω)

= P (d)P (ω|d)P (ζ1, . . . , ζn|d, ω)

+P (d)P (ω|d)P (ζ1, . . . , ζn|d, ω)

= P (d)P (ω|d)P (ζ1, . . . , ζn|d, ω) (2)

47

' P (ω|d)

n∏

i=1

P (ζi|d, ω) (3)

Equation 2 holds because non-object pages do

not satisfy the query, thus, P (ζ1, . . . , ζn|d, ω) = 0.

Equation 3 holds because we assume a uniform dis-

tribution over d and conditional independence over

ζi given d and ω.

Thus, the rest of the problem is estimating P (ω|d)
and P (ζi|d, ω). The difference between these prob-

ability estimates lies in the features we use. Since ω

depends only in d but not q, we use query indepen-

dent features. Similarly, ζi only depends on d and

ci, thus we use features depending on ci and d.

4.2 Calibrating ranking probability

In theory, we can use any learning algorithm men-

tioned in (Liu, 2009)’s survey to obtain the terms in

Equation 3. In practice, however, such learning al-

gorithms often output a ranking score that does not

estimate the probability. Thus, in order to use them

in our ranking model, we must transform that rank-

ing score into a probability.

For empirical purposes, we use the averaged Per-

ceptron (Freund and Schapire, 1999) to discrimina-

tively train each component of the factored distri-

bution independently. This algorithm requires a set

of input vectors, which we obtain by applying the

relational feature functions to the paired documents

and queries. For each constraint ci, we have a fea-

ture vector xi = Φi(d, q). The algorithm produces a

weight vector of parameters wi as output. The prob-

ability of ci being satisfied by d given that d contains

an object can then be estimated with a sigmoid func-

tion as:

P (ci|d, ω) ≡ P (true|Φi(d, q)) ≡
1

1 + exp(−wT

i xi)
(4)

Similarly, to estimate P (ω|d), we use a fea-

ture vector that is dependent only on d. De-

noting the function as Φ0, we have P (ω|d) =
P (true|Φ0(d, q)), which can be obtained from (4).

While the sigmoid function has performed well

empirically, probabilities it produces are not cali-

brated. For better calibrated probabilities, one can

apply Platt scaling (Platt, 1999). This method intro-

duces two parameters A and B, which can be com-

puted using maximum likelihood estimation:

P (true|Φi(d, q)) ≡
1

1 + exp(Aw
T

i Φi(d, q) + B)
(5)

In contrast to the sigmoid function, Platt scaling can

also be applied to methods that give un-normalized

scores such as RankSVM (Cao et al., 2006).

Substituting (4) and (5) into (3), we see that our

final learned ranking function has the form

ρ(d, q) =

n∏

i=0

1

(1 + exp(Aiw
T

i Φi(d, q) + Bi))
(6)

5 Learning Based Programming

Learning plays a crucial role in developing a new ob-

ject domain. In addition to using supervised meth-

ods to learn ρ, we also exploit active learning to ac-

quire training data from unlabeled web pages. The

combination of these efforts would benefit from a

unified framework and interface to machine learn-

ing. Learning Based Programming (LBP) (Roth,

2005) is such a principled framework. In this sec-

tion, we describe how we applied and extended LBP

to provide a user friendly interface for the developer

to specify features and guide the learning process.

Section 5.1 describes how we structured our frame-

work around Learning Based Java (LBJ), an instance

of LBP. Section 5.2 extends the framework to sup-

port interactive learning.

5.1 Learning Based Java

LBP is a programming paradigm for systems whose

behaviors depend on naturally occurring data and

that require reasoning about data and concepts in

ways that are hard, if not impossible, to write explic-

itly. This is exactly our situation. Not only do we

not know how to specify a ranking function for an

object query, we might not even know exactly what

features to use. Using LBP, we can specify abstract

information sources that might contribute to deci-

sions and apply a learning operator to them, thereby

letting a learning algorithm figure out their impor-

tances in a data-driven way.

Learning Based Java (LBJ) (Rizzolo and Roth,

2007) is an implementation of LBP which we used

and extended for our purposes. The most useful

abstraction in LBJ is that of the feature generation

48

function (FGF). This allows the programmer to rea-

son in terms of feature types, rather than specifying

individual features separately, and to treat them as

native building blocks in a language for constructing

learned functions. For example, instead of specify-

ing individual features such as the phrases “profes-

sor of”,“product description”, etc., we can specify a

higher level feature type called “bigram”, and let an

algorithm select individual features for ranking pur-

poses.

From the programming point of view, LBJ pro-

vides a clean interface and abstracts away the te-

dium of feature extraction and learning implemen-

tations. This enabled us to build our system quickly

and shorten our development cycle.

5.2 Interactive Machine Learning

We advocate an interactive training process (Fails

and Olsen, 2003), in which the developer iteratively

improves the learner via two types of interaction

(Algorithm 1).

The first type of interaction is similar to active

learning where the learner presents unlabeled in-

stances to the developer for annotation which it be-

lieves will most positively impact learning. In rank-

ing problems, top ranked documents are presented

as they strongly influence the loss function. The

small difference from traditional active learning in

our setting is that the developer assists this process

by also providing more queries other than those en-

countered in the current training set.

The second type of interaction is feature selec-

tion. We observed that feature selection contributed

significantly in the performance of the learner espe-

cially when training data is scarce. This is because

with little training data and a huge feature space, the

learner tends to over-fit. Fortunately in web search,

the features used in ranking are in natural language

and thereby intuitive to the developer. For example,

one type of feature used in ranking the university

constraint of a professor object query is the words

surrounding the query field as in “university of ...”

or “... university”. If the learner only sees examples

from the University of Anystate at Anytown, then

it’s likely that Anytown will have a high weight in

addition to University and of. However, the Any-

town feature will not generalize for documents from

other universities. Having background knowledge

like this, the developer can unselect such features.

Furthermore, the fact that Anytown has a high weight

is also an indication that the developer needs to pro-

vide more examples of other universities so that the

learner can generalize (the first type of interaction).

Algorithm 1 Interactive Learning Algorithm

1: The developer uses keyword search to find and

annotate an initial training set.

2: The system presents a ranked list of features

computed from labeled data.

3: The developer adds/removes features.

4: The system learns the ranking function using se-

lected features.

5: The developer issues queries and annotates top

ranked unlabeled documents returned by the

system.

6: If performance is not satisfactory, go to step 2.

The iterative algorithm starts with zero training

data and continues until the learner’s performance

reaches a satisfactory point. At step 2, the developer

is presented with a ranked list of features. To deter-

mine which features played the biggest role in the

classifier’s decision making, we use a simple rank-

ing metric called expected entropy loss (Glover et

al., 2001). Let f represent the event that a given

feature is active. Let C be the event that the given

example is classified as true. The conditional en-

tropy of the classification distribution given that

f occurs is H(C|f) ≡ −P (C|f) log(P (C|f)) −
P (C|f) log(P (C|f) and similarly, when f does not

occur, we replace f by f . The expected entropy loss

is

L(C|f) ≡ H(C)− E[H(C|f)]

= H(C)− (P (f)H(C|f) +

P (f)H(C|f) (7)

The intuition here is that if the classification loses

a lot of entropy when conditioned on a particular

feature, that feature must be very discriminative and

correlated with the classification itself.

It is noted that feature selection plays two impor-

tant roles in our framework. First, it avoids over-

fitting when training data is scarce, thus increas-

ing the effectiveness of our active learning protocol.

Second, since search time depends on how many

49

domain # pages train test

homepage 22.1 11.1 11

laptop 21 10.6 10.4

camera 18 9 9

random 97.8 48.9 48.8

total 158.9 79.6 79.2

Table 1: Number of web pages (in thousands) collected

for experiment

features we use to query the web pages, keeping the

number of features small will ensure that searching

is fast enough to be useful.

6 Experimental Results

In this section we present an experiment that com-

pares Object Search with keyword search engines.

6.1 Experimental Setting

Since we are the first to tackle this problem of an-

swering structured query on the web, there is no

known dataset available for our experiment. We col-

lected the data ourselves using various sources from

the web. Then we labeled search results from differ-

ent object queries using the same annotation proce-

dure described in Section 5.

We collected URLs from two main sources: the

open directory (DMOZ) and existing search en-

gines (SE). For DMOZ, we included URLs from

relevant categories. For SE, we manually entered

queries with keywords related to professors’ home-

pages, laptops, and digital cameras, and included

all returned URLs. Having collected the URLs, we

crawled their content and indexed them. Table 1

summarizes web page data we have collected.

We split the data randomly into two parts, one for

training and one for testing, and created a single in-

verted index for both of them. The developer can

only see the training documents to select features

and train ranking functions. At testing time, we ran-

domly generate object queries, and evaluate on the

testing set. Since Google’s results come not from

our corpus but the whole web, it might not be fair to

compare against our small corpus. To accommodate

this, we also added Google’s results into our testing

corpus. We believe that most ‘difficult’ web pages

that hurt Google’s performance would have been in-

Field Keywords Example

Laptop domain

brand laptop,notebook lenovo laptop

processor ghz, processor 2.2 ghz

price $, price $1000..1100

Professor domain

name professor, re-

search professor,

faculty

research profes-

sor scott

university university, uni-

versity of

stanford

university

Table 2: Sample keyword reformulation for Google

cluded in the top Google result. Thus, they are also

available to test ours. In the future, we plan to im-

plement a local IR engine to compare against ours

and conduct a larger scale experiment to compare to

Google.

We evaluated the experiment with two different

domains: professor and laptop. We consider home-

pages and online shopping pages as object pages for

the professor and laptop domains respectively.

For each domain, we generated 5 random object

queries with different field configurations. Since

Google does not understand structured queries, we

reformulated each structured query into a simple

keyword query. We do so by pairing the query field

with several keywords. For example, a query field

abrand ∈ {lenovo} can be reformulated as “lenovo

laptop”. We tried different combinations of key-

words as shown in table 2. To deal with numbers,

we use Google’s advanced search feature that sup-

ports numeric range queries1. For example, a price

constraint aprice ∈ [100, 200] might be reformulated

as “price $100..200”. Since it is too expensive to

find the best keyword formulations for every query,

we picked the combination that gives the best result

for the first Google result page (Top 10 URLs).

6.2 Result

We measure the ranking performance with average

precision. Table 3 shows the results for our search

engine (OSE) and Google. Our ranking function

outperforms Google for most queries, especially in

1A numeric range written as “100..200” is treated as a key-

word that appears everywhere a number in the range appears

50

Qry
Professor Laptop

OSE Google OSE Google

1 0.92 (71) 0.90(65) 0.7 (15) 0.44 (12)

2 0.83(88) 0.91(73) 0.62 (12) 0.26 (11)

3 0.51(73) 0.66(48) 0.44 (40) 0.31 (24)

4 0.42(49) 0.3(30) 0.36 (3) 0.09 (1)

5 0.91(18) 0.2(16) 0.77 (17) 0.42 (3)

Table 3: Average precision for 5 random queries. The

number of positive documents are in brackets

the laptop domain. In the professor domain, Google

wins in two queries (“UC Berkeley professor” and

“economics professors”). This suggests that in cer-

tain cases, reformulating to keyword query is a sen-

sible approach, especially if all the fields in the ob-

ject query are keywords. Even though Google can

be used to reformulate some queries, it is not clear

how and when this will succeed. Therefore, we need

a principled solution as proposed in this paper.

7 Related Work

Many recent works propose methods for supporting

structured queries on unstructured text (Jain et al.,

2007), (Cafarella et al., 2007), (Gruhl et al., 2004).

These works follow a typical extract-then-query ap-

proach, which has several problems as we discussed

in section 1. (Agichtein, 2005) proposed using sev-

eral large scale techniques. Their idea of using spe-

cialized index and search engine is similar to our

work. However those methods assumes that struc-

tured data follows some textual patterns whereas our

system can flexibly handle structured object using

textual patterns as well as web page features.

Interestingly, the approach of translating struc-

tured queries to unstructured queries has been stud-

ied in (Liu et al., 2006). The main difference is

that SEMEX relies on carefully hand-tuned heuris-

tics on open-domain SQL queries while we use ma-

chine learning to do the translation on domain spe-

cific queries.

Machine Learning approaches to rank documents

have been studied extensively in IR (Liu, 2009).

Even though much of existing works can be used to

rank individual constraints in the structured query.

We proposed an effective way to aggregate these

ranking scores. Further more, existing learning to

rank works assumed a fixed set of features, whereas,

the feature set in object search depends on object

domain. As we have shown, the effectiveness of

the ranking function depends much on the set of

features. Thus, an semi-automatic method to learn

these was proposed in section 5.

Our interactive learning protocol inherits features

from existing works in Active Learning (see (Set-

tles, 2009) for a survey). (Fails and Olsen, 2003)

coined the term “interactive machine learning” and

showed that a learner can take advantage of user in-

teraction to quickly acquire necessary training data.

(Roth and Small, 2009) proposed another interactive

learning protocol that improves upon a relation ex-

traction task by incremetally modifying the feature

representation.

Finally, this work is related to document re-

trieval mechanisms used for question answering

tasks (Voorhees, 2001) where precise retrieval meth-

ods are necessary to find documents which con-

tain specific information for answering factoids

(Agichtein et al., 2001).

8 Conclusion

We introduces the Object Search framework that

searches the web for documents containing real-

world objects. We formalized the problem as a

learning to rank for IR problem and showed an ef-

fective method to solve it. Our approach goes be-

yond the traditional bag-of-words representation and

views each web page as a set of domain independent

features. This representation enabled us to rank web

pages with respect to object query. Our experiments

showed that, with small human effort, it is possi-

ble to create specialized search engines that out-

performs GSEs on domain specific queries. More-

over, it is possible to search the web for documents

with deeper meaning, such as those found in object

pages. Our work is a small step toward semantic

search engines by handling deeper semantic queries.

Acknowledgement

This work is supported by DARPA funding under

the Bootstrap Learning Program, MIAS, a DHS-

IDS Center for Multimodal Information Access and

Synthesis at UIUC, NSF grant NSF SoD-HCER-

0613885 and a grant from Yahoo! Inc.

51

References

Eugene Agichtein, Steve Lawrence, and Luis Gravano.

2001. Learning search engine specific query trans-

formations for question answering. In WWW ’01:

Proceedings of the 10th international conference on

World Wide Web, pages 169–178, New York, NY,

USA. ACM.

Eugene Agichtein. 2005. Scaling Information Extraction

to Large Document Collections. IEEE Data Eng. Bull,

28:3.

Michael Cafarella, Christopher Re, Dan Suciu, and Oren

Etzioni. 2007. Structured Querying of Web Text Data:

A Technical Challenge. In CIDR.

Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Huang,

and Hsiao-Wuen Hon. 2006. Adapting Ranking SVM

to Document Retrieval. In SIGIR ’06: Proceedings of

the 29th annual international ACM SIGIR conference

on Research and development in information retrieval,

pages 186–193, New York, NY, USA. ACM.

Jerry Alan Fails and Dan R. Olsen, Jr. 2003. Interactive

machine learning. In IUI ’03: Proceedings of the 8th

international conference on Intelligent user interfaces,

pages 39–45, New York, NY, USA. ACM.

Yoav Freund and Robert E. Schapire. 1999. Large Mar-

gin Classification Using the Perceptron Algorithm.

Machine Learning, 37(3):277–296.

Eric J. Glover, Gary W. Flake, Steve Lawrence, Andries

Kruger, David M. Pennock, William P. Birmingham,

and C. Lee Giles. 2001. Improving Category Specific

Web Search by Learning Query Modifications. Ap-

plications and the Internet, IEEE/IPSJ International

Symposium on, 0:23.

D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pattanayak,

A. Tomkins, and J. Zien. 2004. How to Build a Web-

Fountain: An Architecture for Very Large Scale Text

Analytics. IBM Systems Journal.

A. Jain, A. Doan, and L. Gravano. 2007. SQL Queries

Over Unstructured Text Databases. In Data Engineer-

ing, 2007. ICDE 2007. IEEE 23rd International Con-

ference on, pages 1255–1257.

N. Kushmerick, D. Weld, and R. Doorenbos. 1997.

Wrapper Induction for Information Extraction. In IJ-

CAI, pages 729–737.

Jing Liu, Xin Dong, and Alon Halevy. 2006. Answering

Structured Queries on Unstructured Data. In WebDB.

Tie-Yan Liu. 2009. Learning to Rank for Information

Retrieval. Found. Trends Inf. Retr., 3(3):225–331.

Andrew Kachites McCallum, Kamal Nigam, Jason Ren-

nie, and Kristie Seymore. 2000. Automating the Con-

struction of Internet Portals with Machine Learning.

Information Retrieval, 3(2):127–163.

J. Platt. 1999. Probabilistic outputs for support vec-

tor machines and comparison to regularized likelihood

methods. In In Advances in Large Margin Classifiers.

MIT Press.

N. Rizzolo and D. Roth. 2007. Modeling Discriminative

Global Inference. In Proceedings of the First Inter-

national Conference on Semantic Computing (ICSC),

pages 597–604, Irvine, California, September. IEEE.

Dan Roth and Kevin Small. 2009. Interactive feature

space construction using semantic information. In

CoNLL ’09: Proceedings of the Thirteenth Conference

on Computational Natural Language Learning, pages

66–74, Morristown, NJ, USA. Association for Com-

putational Linguistics.

Dan Roth. 2005. Learning Based Programming. Innova-

tions in Machine Learning: Theory and Applications.

Burr Settles. 2009. Active learning literature survey.

Computer Sciences Technical Report 1648, University

of Wisconsin-Madison.

Ellen M. Voorhees. 2001. The trec question answering

track. Nat. Lang. Eng., 7(4):361–378.

52

Author Index

Celikyilmaz, Asli, 1, 27
Chang, Kevin Chen-Chuan, 44
Chin, Si-Chi, 19

DeCook, Rhonda, 19
Di Fabbrizio, Giuseppe, 36

Eichmann, David, 19

Gupta, Narendra, 36

Haffner, Patrick, 36
Hakkani-Tur, Dilek, 1, 27

Johri, Nikhil, 10

Pham, Kim, 44

Rizzolo, Nicholas, 44
Roth, Dan, 10, 44

Small, Kevin, 44
Street, W. Nick, 19

Tu, Yuancheng, 10
Tur, Gokhan, 1

53

	Workshop Program
	LDA Based Similarity Modeling for Question Answering
	Experts' Retrieval with Multiword-Enhanced Author Topic Model
	Query-based Text Normalization Selection Models for Enhanced Retrieval Accuracy
	A Graph-Based Semi-Supervised Learning for Question Semantic Labeling
	Capturing the Stars: Predicting Ratings for Service and Product Reviews
	Object Search: Supporting Structured Queries in Web Search Engines

