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Abstract 

This work investigates lexical organizat ion of 

verbs looking at the influence of some linguis-

tic factors on the process of lexical acquisition  

and use. Among the factors that may play a 

role in acquisition, in this paper we investigate 

the influence of polysemy. We examine data 

obtained from psycholinguistic action naming  

tasks performed by children and adults 

(speakers of Brazilian Portuguese), and ana-

lyze some characteristics of the verbs used by 

each group in terms of similarity of content, 

using Jaccard‟s coefficient, and of topology, 

using graph theory. The experiments suggest 

that younger children tend to use more poly-

semic verbs than adults to describe events in 

the world. 

1 Introduction 

Lexical acquisition is restrained by perception and 
comprehension difficulties, which are associated 
with a number of linguistic and psycholinguistic 
factors. Among these we can cite age of acquis i-
tion (Ellis and Morrison, 1998; Ellis and Ralph, 
2000), frequency (Morrison and Ellis, 1995) , syn-
tactic (Ferrer-i-Cancho et al., 2004; Goldberg, 
1999; Thompson et. al, 2003) and semantic (Bree-
din et. al, 1998; Barde et al., 2006) characteristics 
of words. In terms of semantic features, acquisition 
may be influenced by the polysemy and generality 
of a word, among others. 

In terms of semantic features, acquisition may 
be influenced by the generality and polysemy of a 
word, among others. For instance, considering 
acquisition of verbs in particular, Goldberg (1999) 
observes that verbs such as go, put and give are 

among those to be acquired first, for they are more 
general and frequent, and have lower “semantic 
weight” (a relative measure of complexity; Breedin 
et. al, 1998; Barde et al., 2006). These verbs, 
known as light verbs, not only are acquired first: 
they are also known to be more easily used by 
aphasics (Breedin et al., 1998; Thompson, 2003; 
Thompson et al. 2003; Barde et al. 2006; but see 
Kim and Thompson, 2004), which suggest their 
great importance for human cognition. The prefe-
rence for light verbs may be explained by the more 
general meanings they tend to present and their 
more polysemic nature, that is their ability to con-
vey multiple meanings, since the more polysemic 
the verb is, the more contexts in which it can be 
used (Kim and Thompson, 2004; Barde et al., 
2006). The importance of the number of relation-
ships a word has in the learning environment has 
been pointed out by Hills et al. (2009), regardless 
of generality. Several factors may influence acqui-
sition, but in this paper we will focus on polysemy.   

Understanding how characteristics like polyse-
my influence acquisition is essential for the con-
struction of more precise theories. Therefore, the 
hypothesis we investigate is that more polysemous 
words have a higher chance of earlier acquisition. 
For this purpose, we compare data from children 
and adults from the same linguistic community, 
native speakers of Brazilian Portuguese, in an ac-
tion naming task, looking at lexical evolution by 
using statistical and topological analysis of the data 
modeled as graphs (following Steyvers and Tenen-
baum, 2005, and Gorman and Curran, 2007). This 
approach innovates in the sense that it directly 
simulates the influence of a linguistic factor over 
the process of lexical evolution.  
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This paper is structured as follows. Section 2 de-
scribes relevant work on computational modeling 
of language acquisition. Section 3 presents the 
materials and methods employed in the exper i-
ments of the present work. Sections 4 and 5 present 
the results, and section 6 concludes and presents 
future work. 

2 Related Work   

In recent years, there has been growing interest in 
the investigation of language acquisition using 
computational models. For instance, some work 
has investigated language properties such as age-
of-acquisition effects (Ellis and Ralph, 2000; Li et 
al., 2004). Others have simulated aspects of the 
acquisition process (Siskind, 1996; Yu, 2005; Yu, 
2006; Xu and Tenenbaum, 2007; Fazly et al, 2008) 
and lexical growth (Steyvers and Tenenbaum, 
2005; Gorman and Curran, 2007).  

Some authors employ graph theory metrics to 
directly analyze word senses (Sinha and Mihalcea, 
2007; Navigli and Lapata, 2007). In this paper, 
word senses are implicitly expressed by graph 
edges, thus being considered indirectly. Graph 
theory has also been successfully used in more 
theoretical fields, like the characterization and 
comparison of languages (Motter et al., 2002; Fer-
rer-i-Cancho et al., 2004; Masucci and Rodgers, 
2006). For example, the works by Sigman and 
Cecchi (2002), and Gorman and Curran (2007) use 
graph measures to extensively analyze WordNet 
properties. Steyvers and Tenenbaum (2005) use 
some properties of language networks to propose a 
model of semantic growth, which is compatible 
with the effects of learning history variables, such 
as age of acquisition and frequency, in semantic 
processing tasks. The approach proposed  in this 
work follows Steyvers and Tenenbaum (2005), and 
Gorman and Curran (2007) in the sense of iterative 
modifications of graphs, but differs in method (we 
use involutions instead of evolutions) and objec-
tive: modifications are motivated by the study of 
polysemy instead of production of a given topolog-
ical arrangement. It also follows Deyne and Storms 
(2008), in the sense that it directly relates linguistic 
factors and graph theory metrics, and Coronges et 
al. (2007), in the sense that it compares networks 
of different populations with the given approach. 

As to Brazilian Portuguese, in particular, Anti-
queira et al. (2007) relate graph theory metrics and 

text quality measurement, while Soares et al (2005) 
report on a phonetic study. Tonietto et al. (2008) 
analyze the influence of pragmatic aspects, such as 
conventionality of use, over the lexical organiza-
tion of verbs, and observe that adults tend to prefer 
more conventional labels than children.  

In this context, this study follows Tonietto et al 
(2008) in using data from a psycholinguistic action 
naming task. However, the analysis is done in 
terms of lexical evolution, by using graph and set 
theory metrics (explained below) to understand the 
influence of some linguistic characteristics of 
words, especially polysemy.  

3 Materials and Methods  

3.1 The Data  

This paper investigates the lexical evolution of 
verbs by using data from an action naming task 
performed by different age groups: 55 children and 
55 young adults. In order to study the evolution of 
the lexicon in children, children‟s data are longitu-
dinal; participants of the first data collection (G1) 
aged between 2;0 and 3;11 (average 3;1), and in 
the second collection (G2), between 4;1 and 6;6 
(average 5;5) as described by Tonietto et al. 
(2008). The adult group is unrelated to the child-
ren, and aged between 17;0 and 34;0 (average 
21;8). The longitudinal data enabled the compari-
son across the lexical evolution of children at age 
of acquisition (G1), two years later (G2), and the 
reference group of adults (G3). Participants were 
shown 17 actions of destruction or division (To-
nietto et al, 2008); answers were preprocessed in 
order to eliminate both invalid answers (like “I 
don't know”) and answers with only 1 occurrence 
per group. The selection of this particular domain 
(destruction and division) is due to its cognitive 
importance: it was found to be one of the four con-
ceptual zones, grouping a great amount of verbs

1
 

(Tonietto, 2009).  
There were a total of 935 answers per group, out 

of which 785, 911 and 917 were valid answers to 
G1, G2 and G3, respectively. These made averages 
of 46.18, 53.59 and 53.94 valid answers per action, 
respectively. The average numbers of distinct valid 
answers per action, before merging (explained in 
section 3.2), were 6.76, 5.53 and 4, respectively.   

                                                                 
1 The others are evasion, excitation, and union. 
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The answers given by each participant were col-
lected and annotated two polysemy scores, each 
calculated from a different source:  

 Wscore is the polysemy score of a verb ac-
cording to its number of synsets (synonym 
sets) in WordNetBR (Dias-da-Silva et al., 
2000, Maziero, 2008), the Brazilian Portu-
guese version of Wordnet (Fellbaum, 1998). 

 Hscore is the number of different entries for 
a verb in the Houaiss dictionary (Houaiss, 
2007). 

 

Information about these two scores for each 
group is shown in Table 1. 
 

 G1 G2 G3 

Average type Wscore 10.55 10.64 10.48 
Average token Wscore 16.25 14.66 11.13 

Average type Hscore 21.59 20.84 16.26 

Average token Hscore 26.93 23.02 17.82 

Table 1: Score per group and per participant.  
 

We notice that most scores, i.e., type and token 
Hscores, and token Wscore, decrease as age in-
creases, which is compatible with the hypothesis 
investigated. However, due to the limited coverage 
of WordNetBR

2
, some verbs had a null value, and 

this is reflected in type Wscore. This is the case of 
“serrar” (to saw) which appears in both G1 and 
G2, but not in G3.  

A comparative analysis of linguistic production 
across the different groups is presented in Table 2. 
There is a significant similarity across the groups, 
with 12 verbs (out of a total of 44) being common 
to all of them. In each column, the second graph is 
compared to the first. In the “G1-G2” column, 
there are 16 verbs common to both graphs, which 
represents 64% of the verbs in G2 (with 36% of the 
verbs in G2 not appearing in G1). As expected, due 
to the proximity in age, results show a higher simi-
larity between G1 and G2 than between G2 and 
G3. 

 
 

 

 

 

 

                                                                 
2 WordNetBR was still under construction when annotation 

was performed. 

 G1-G2 G2-G3 G1-G3 All 
Common verbs 16 17 12 12 

Verbs only in 
older group (%) 

36 45.16 58.06 - 
á 

Table 2: Comparisons between groups
3
. 

3.2 Simulation Dynamics 

Linguistic production of each group was 
represented in terms of graphs, whose nodes 
represent the verbs mentioned in the task. Verbs 
uttered for the same action were assumed to share 
semantic information, thus being related to each 
other. The existence of conceptual relationships 
due to semantic association is in accordance with 
Nelson et al. (1998), where implicit semantic rela-
tions were shown to influence on recall and recog-
nition. Therefore, for each age group, all the verbs 
uttered for a given action were linked together, 
forming a (clique) subgraph. The subgraphs for the 
different actions were then connected in a merging 
step, through the polysemic words uttered for more 
than one action.  

As the goal of this research is to investigate 
whether a factor such as polysemy has any influ-
ence on language acquisition, we examine the ef-
fects of using it to incrementally change the 
network over time. Strategies for network modif i-
cation, such as network growth (Albert and Ba-
rabási, 2002), have been used to help evaluate the 
effects of particular factors by iteratively changing 
the network (e.g., Steyvers and Tenenbaum, 2005; 
Gorman and Curran, 2007). Network growth in-
crementally adds nodes to an initial state of the 
network, by means of some criteria, allowing ana l-
ysis of its convergence to a final state. The longi-
tudinal data used in this paper provides references 
to both an initial and a final state. However, due to 
differences in vocabulary size and content between 
the groups, network growth would require com-
plete knowledge of the vocabulary of both the 
source and target groups to precisely decide on the 
nodes to include and where. Network involution, 
the strategy adopted, works in the opposite way 
than network growth. It takes an older group graph 
as the source and decides on the nodes to iterative-
ly remove, regardless of the younger group graph, 
and uses the latter only as a reference for compari-

                                                                 
3 Relevant comparisons are for G1-G2 and G2-G3 pairs. Val-

ues for G1-G3 are only presented for reference.  
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son of the structure and content of the resulting 
graph.   

For comparison, graph theory metrics allow us 
to measure structural similarity, abstracting away 
from the particular verbs in the graphs. Since 
graphs represent vocabularies, by these metrics we 
aim to analyze vocabulary structure, verifying 
whether it is possible for structures to approximate 
each other. The graphs were measured in relation 
to the following:    

• number of vertices (n), 
• number of edges (M), 
• average minimal path length (L), 
• density (D), 
• average node connectivity (k), 
• average clustering coefficient (C/s)

 4
, 

• average number of repetitions (r). 
L assesses structure in the sense of positioning: 

how far the nodes are from one another. D and k 
express the relation between number of edges and 
number of nodes in different ways; they are a 
measure of edge proportion. C/s measures the dis-
tribution of edges among the nodes, assessing the 
structure per se. The division by the number of 
disconnected subgraphs extends the concept to 
account for partitioning. Finally, r captures the 
number of different actions for which the same 
verb was employed.  

Although all metrics are useful for analyzing the 
graphs, a subset of four was selected to be used in 
the involution process: k , D, L and C/s. With k  and 
D, we measure semantic share, since that is what 
relations among nodes are supposed to mean (see 
above). L and C/s are intended to measure vocabu-
lary uniformity, since greater distances and lower 
clusterization are related to the presence of subcen-
ters of meaning (again, taking relations as effect of 
semantic share).    

  In order to compare the contents of each graph 
as well, we employed a measure of set similarity; 
in this case, Jaccard‟s similarity coefficient (Jac-
card, 1901). With these measures, we analyze how 
close vocabularies of each two groups are in re-
spect to their content. Given two sets A and B, the 
Jaccard‟s coefficient J can be calculated as fol-
lows:  

                                                                 
4 We adopt the local clustering coefficient of Watts and Stro-

gatz (1998), but as the graphs may become disconnected 
during network modification, this value is further divided by 

the number of subgraphs. 

  , 

where “x” is the number of elements in both A and 
B, “y” is the number of elements only in A, and 
“z” is the number of elements only in B. For this 
purpose, graphs were taken as verb sets, regardless 
of their inner relations. 

To verify the hypothesis that more polysemic 
verbs are more likely to be acquired, by node eli-
mination, verbs were ranked in increasing order of 
polysemy (from less to more polysemic verbs). 
Therefore, at each step of graph involution, a verb 
was selected to be removed, and the resulting 
graph was measured. In case of a tie, verbs with 
the same polysemy value were randomly selected 
until all of them have been removed. Results are 
reported in terms of the averages of 10-fold cross-
validation. 

4 Results 

A topological analysis of the graphs is shown in 
Table 3. As expected, vocabulary size, represented 
by n, increases with age, with G1 and G2 being 
closer in age and size than G2 and G3. A concomi-
tant decrease in the average connectivity (k) of the 
nodes with age suggests vocabulary specialization. 
This decrease is even more clearly shown by densi-
ty (D), since it measures the proportion of edges 
against the theoretical maximum. As age increases, 
so does the average minimal path length (L), with 
less paths through each node, which leads to a 
more structured and distributed network. Speciali-
zation is again represented by a decrease in r, the 
average number of actions for which each verb was 
mentioned (the more repeatedly it is mentioned, 
the less specialized the vocabulary tends to be). 

 

 G1 G2 G3 
n 22 25 31 

L 1.46 1.6 1.98 

D 0.55 0.42 0.27 
M 128 126 126 

C/s 0.84 0.78 0.78 

k 
μ = 11.64, 

SD = 6.73 
μ = 10.08, 

SD = 4.86 
μ = 8.13, 

SD = 4.76 

r 
μ = 5.23, 

SD = 4.41 

μ = 3.76, 

SD = 3.15 

μ = 2.19, 

SD = 1.58 

Table 3: Properties of graphs. 
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Figure 1. Graphs G1, G2 and G3 respectively.  

 

Results suggest a greater similarity between G1 
and G2 than between G2 and G3. Jaccard‟s coeffi-
cient reinforces this result, with a score of 0.52 
between G1 and G2, and of 0.44 between G2 and 
G3. 

Figure 1 shows the graphs for each group, where 
progressive structuring and decentralization can be 
seen. 

The effect of polysemy is observed in the pro-
portion of verbs with a higher degree: G1 is struc-
tured by highly connected verbs (there is a low 
proportion of verbs with low degree), while in G3 
more than 80% of the nodes have a degree of 11 or 
less (Figure 2). 

 

 
Figure 2. Cumulative histogram of node degree. 

5 Simulation Results 

This research investigates the relation between the 
number of meanings and ease of learning, hypothe-
sizing that the more meanings a verb has, the easier 
it is to be learned, and the earlier children will use 
it. Particularly considering graph theory metrics, if 
we remove the verbs with fewer meanings from the 
graph of an older group, the overall structure will 
approximate to that of a younger group. Consider-
ing set theory metrics, as we remove these verbs, 
there should be an increase in the similarity be-
tween the contents of the graphs.  

Therefore, the most relevant part of each chart is 
its initial state. The verbs to be first removed are 
expected to be those that differentiate graphs con-
cerning both structure and content.  

Although the previous results in section 4 sug-
gest an influence of polysemy on the lexical organ-
ization of verbs, we intend to use involutions to 
confirm these tendencies. Each involution is com-
pared to a random counterpart, making the inter-
pretation easy. 

5.1 Network Involution Topology 

The graph theory metrics (k , L, C/s and D) of the 
collected data are shown in Figures 3 and 4 in 
terms of 2 lines: network involution with node 
removal (a) by using the selected criterion, and (b) 
by using random selection (10-fold cross valida-
tion). In addition, each figure also shows the meas-
ure for the younger group as reference (a dashed, 
straight, thick line).   

In each figure, charts are displayed in four col-
umns and two rows. Each column represents a 
graph theory metric, and each row refers to the use 
of a different score. For example, the first chart of 
each figure is the result of average connectivity (k) 
in a complete involution, using Wscore. Each le-
gend refers to all eight charts in the figure. 

The results of the simulations from G2 to G1 
(Figure 3) show that the four metrics are clearly 
distinct from random elimination from the begin-
ning, indicating that polysemy plays a role in the 
process. C/s is particularly distinct from random 
elimination: while the former remains constant 
almost to the end, indicating a highly structured 
(clustered) graph, even during node removal, the 
random elimination shows effects of graph part i-
tioning. The remaining metrics presented their 
greatest approximations to the reference line before 
the middle of the chart, suggesting that the initial 
verbs were actually the ones differentiating both 
graphs. These results suggest an initial increase in 
semantic share, as the proportion of edges by node 
increases (k and D), and in uniformity, as nodes get 
closer to one another (L) and remain clustered 
(C/s). 
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 Simulation Random Reference - G2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Network involution from G2 to G1 using two scores for node removal: graph theory metrics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 4. Network involution from G3 to G2 using two scores for node removal: graph theory metrics 

 

Looking at the involution charts of G3, taking G2 
as reference, the same tendencies are maintained, 
although not as clearly as the previous results (Fig-
ure 4). The greatest approximations between k and 
D happen in the first half of the chart, but much 
closer to the middle when compared with Figure 3. 
C/s still behaves steadily, remaining stable during 
most of the simulation, suggesting maintenance of 
the clustered structure.  

The quasi-random behavior of L can be ex-
plained by the initial structure of the graphs. They 
become progressively sparser as age increases, but 
the difference between G3 and G2 is greater than 
between G2 and G1 (this was both visually and 

statically confirmed). Therefore, G3 would require 
too many removals until the most distant nodes 
were eliminated, even in an ideal elimination s imu-
lation, thus preventing a descent from the begin-
ning. The same can be said about average 
connectivity: since G3 has such a low initial score, 
and low deviation, even if the nodes with the low-
est degrees were eliminated, it would not result in a 
much better result.  

5.2 Network Involution Similarity 

The main metric to analyze set similarity is Jac-
card‟s coefficient. There are two important factors 
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influencing it: the number of verbs common to 
both sets (the “x” component of the formula), 
“common verbs” hereby; and the number of verbs 
which are exclusive for the older group, the “dif-
ferent verbs” (the “z” component of the formula, 
where the older group is represented by “B”). In 
the charts, a rise means that “different verbs” were 
eliminated one by one (increasing set similarity),  
 

    Jaccard’s Coefficient                Excluded Verbs                 

      

      
 
   

 

 
Figure 5. Network involution from G2 to G1 using 
two scores for node removal: set theory metrics. 

 
    Jaccard’s Coefficient                Excluded Verbs                 

          

      
 
   

 

 
Figure 6. Network involution from G3 to G2 using 
two scores for node removal: set theory metrics. 
 

and a descent means that “common verbs” were 
eliminated instead. 

In addition to Jaccard‟s coefficient, we included 
the measures for “excluded different” verbs and 
“excluded common” verbs (and their random coun-
terparts) in percentage. In this sense, the “Excluded 
Different” line presents the percentage of the “dif-
ferent verbs” excluded so far, and similarly in the 
“Excluded Common” line. By doing so, it is possi-
ble to measure the exact evolution of both sets 
despite the proportion between them (there are 
much more “common” than “different” verbs). A 
rise in the “Excluded Different” line means that 
sets are getting similar, while stabilization (since 
descents are not possible) means that they are get-
ting different. The opposite applies to the “Ex-
cluded Common” line. All lines start at 0% and 
end at 100%. 

In the figures, charts are arranged in columns 
(the parameter being measured) and rows (the 
score being used). This time, each legend is partic-
ular to each parameter (one to Jaccard‟s coefficient 
and another to the excluded verbs). 

Both simulation sets (Figures 5 and 6) confirm 
the expected pattern: an initial increase in the pro-
portion between "different" and "common" verbs. 
Jaccard‟s coefficient behaves more satisfactorily in 
the second simulation set (Figure 6), where a sharp 
rise is observed before the middle of the chart, thus 
indicating that many “different verbs” were ex-
cluded. In the first set (Figure 5), Wscore behaves 
ambiguously with two rises: one before and anoth-
er after de middle of the chart. Hscore behaves the 
same way, but the second rise is much sharper than 
the first. Even so, the positive effect of polysemy is 
clear in the “Excluded Different” and “Excluded 
Common” lines. We notice that the “Excluded 
Different” line is usually above the “Excluded 
Common” in the beginning and far from the ran-
dom values. Wscore in Figure 5 is an exception, 
although a significant rise is observed in the begin-
ning. 

5.3 Discussion 

Results show that metrics behaved in a consistent 
manner, considering the natural variation of differ-
ent sources of information.

5
 Concerning graph 

                                                                 
5 Since the measures were taken from the whole graph, it was 
not possible to determine a measure of significance without 

other graph configurations to compare to. However, the com-
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theory metrics, the early graph disconnection in the 
random simulation alone (in the C/s metric) con-
firmed a structural stability by using polysemy. 

The regular behavior of the Jaccard‟s coeffi-
cient in the simulations may be attributed to a high 
similarity between the pair of sets: just 45.16% of 
the verbs in G3 were able to increase the index, 
and just 36% of the verbs in G2 (Table 2). Even so, 
an analysis of the “Excluded Different” curves 
made it clear that the results were better than they 
appeared to be.  

6 Conclusions and Future Work 

This study investigated the influence of polysemy 
on verb acquisition and organization using both 
graph and set theory metrics. In general, results 
from the topological analysis showed a tendency 
towards the reference value, and the greatest simi-
larities were mostly collected in the beginning, as 
expected, pointing for a preference of children to 
use more polysemous verbs. The static analysis of 
the initial graphs (Tables 1, 2 and 3) corroborate 
the hypothesis. As a result, we note that not only 
does the evolution of human vocabulary lead to a 
decrease in the average polysemy measure, but its 
structure also evolves according to this linguistic 
factor. So we conclude that both the model of invo-
lution and the given analysis are appropriate for 
linguistic studies concerning vocabulary evolution. 

The analyses highlighted also some interesting 
properties reflected in the graphs, such as vocabu-
lary growth and specialization with the increase of 
participants‟ age. In addition, the analysis was 
useful in showing that the graphs of the two groups 
of children were more similar to each other than to 
that of adults, both in structure and content. 

For future work, we intend to apply the same 
approach to other parameters, such as frequency, 
concreteness, and syntactic complexity. As they 
may simultaneously influence acquisition, we also 
plan to investigate possible combinations of these 
factors. We also intend to apply this methodology 
to investigate lexical dissolution in the context of 
pathologies, such as Alzheimer‟s disease, and in 

                                                                                                      
parisons with random elimination can be seen as a tendency. 

Additionally, the experiments consist of two simulations, over 

three different data sets, by using two different sets of polyse-
my, two kinds of metrics, and five different metrics, which 

provide robustness to the results. 

larger data sets, in order to further confirm the 
results obtained so far. 
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