
An Efficient Double Complementation Algorithm for Superposition-Based
Finite-State Morphology

Anssi Yli-Jyr ä
Department of General Linguistics

HFST Research Group
University of Helsinki

Finland
anssi.yli-jyra helsinki.fi

Abstract

This paper presents anefficient compila-
tion algorithm that is several orders of
magnitude faster than a standard method
for context restriction rules. The new al-
gorithm combines even hundreds of thou-
sands of rules in parallel when the al-
phabet is large but the resulting automa-
ton is sparse. The method opens new
possibilities for representation of context-
dependent lexical entries and the re-
lated processes. This is demonstrated
by encoding complete HunSpell dictio-
naries as a single context restriction rule
whose center placeholder in contexts is re-
placed with a new operation, calledun-
derline operation. The approach gives
rise to newsuperposition-basedcontext-
dependent lexicon formalisms and new
methods for on-demand compilation and
composition of two-level morphology.

1 Introduction

The use of the context restriction rule of two-level
morphology (Koskenniemi, 1983) has tradition-
ally been limited to relatively simple phonological
rules. The purpose of this paper is to make this op-
eration more widely applicable in finite-state mor-
phology, by improving its compilation methods
and by developing new ways to encode morpho-
logical processes with this operation.

1.1 Prior Art

Compilation of compound context restrictions is
a problem that has inspired a series related solu-
tions:

• Kaplan and Kay’s method (Karttunen et al.,
1987; Kaplan and Kay, 1994) requires that
the occurrences of the center in each string
are bracketed. Then it applies double com-
plementation (if-then idioms) to restrict the
context of each bracket. The method needs
separate brackets for each context.

• A related approach (Grimley-Evans et al.,
1996; Kiraz, 1997; Kiraz, 2000) handles sim-
ilar single-tuple rules directly with double
complementation, being a special case a star-
free compilation method of Yli-Jyrä (2003).

• Yli-Jyrä (2003) uses star-free regular opera-
tions to show that the context restriction rule
with overlapping multi-tuple centers is defin-
able in first-order predicate logic.

• Yli-Jyrä and Koskenniemi (2004; 2006) and
Hulden (2009) use first-order quantification
over substrings in order to express the same
semantics more abstractly and efficiently.

• Additional bracketing can express disjoint
but not necessarily contiguous centers (Yli-
Jyr̈a, 2008a; Yli-Jyr̈a, 2008b). Kiraz (2000)
uses it with contiguous centers.

The prior art suggests that complementation is an
essential part of context restriction whereas brack-
eting has a supplementary role.

1.2 The Problem

Complementation can be really difficult to imple-
ment efficiently due to its transition complexity.
This is illustrated in Fig. 1.

Automaton of Fig. 1(a) is a deterministic ac-
ceptor for the language (a|b)∗⋄∗a(a|c)∗, and au-
tomaton of Fig. 1(b) accepts its complement

Kristiina Jokinen and Eckhard Bick (Eds.)
NODALIDA 2009 Conference Proceedings, pp. 206–213

1 2 3

a,b

⋄

⋄

a

a,c

1 2 3

0

a,b

⋄

⋄

a

a,c

Σ′\{a,b}
Σ′\{a,⋄}

Σ′\{a,c}

Σ′

Figure 1: (a) A DFA and (b) its complement.

with respect to the universal languageΣ′∗ where
a,b, c, ⋄ ∈ Σ′. By complementation, only one
state is added, but the number of transitions grows
significantly. With an alphabet ofe.g. 500 sym-
bols and a deterministic automaton with 2 million
states, we can easily end up with an automaton
with 1 billion (109) transitions. Such a blow-up
is not only a problem for complementation itself
but also for further processing.

Finding an efficient compilation method for
context restrictions is particularly important be-
cause it would pave the way for a similar effi-
cient solution for an even more general-purpose
operation,generalized restriction (GR)(Yli-Jyrä
and Koskenniemi, 2004; Yli-Jyrä, 2008a). GR ad-
mits context restriction as one of its special cases.
Other interesting uses of the GR operation include:

• conventional, partition-based and general-
ized two-level grammars (Silfverberg and
Lindén, 2009; Barth́elemy, 2007b; Yli-Jyr̈a
and Koskenniemi, 2006; Yli-Jyrä, 2008a)

• replace rules (Yli-Jyr̈a, 2008b) and tree lin-
earization (Barth́elemy, 2007a).

The combinatorial properties of the GR oper-
ation are parallel to a first-order predicate logic
(Hulden, 2009). Thanks to these combinatorial
properties, the double-arrow rules of two-level
morphology (Karttunen, 1991) and some other
rules can be reduced into context-restriction rules.
This underlines the importance of the efficient
compilation method for context restriction rules.

1.3 The Contributions of This Paper

The first significant contribution of this paper is an
algorithm that compiles context restriction rules
much more efficiently than the prior approaches
to the underlying double complementation. The
new algorithm has been inserted to a branch of
SFST code base (Schmid, 2005) and it is in the
process of migrating from there to the HFST API
and the HFST family of tools (Koskenniemi and

Yli-Jyrä, 2009; Lind́en et al., 2009). The algo-
rithm can be used to compile also other two-level
operations such as prohibition and coercion rules.
Furthermore, the algorithm can be embedded into
a new operation,superposing composition. This
operation compiles and composes the lexicon and
the two-level grammar in parallel.

The second significant contribution of the cur-
rent paper is to initially demonstrate that large
context restrictions can be used to address a wide
range of context-dependent morphological pro-
cesses. In particular, we will show that it can be
used for

• synthesis of cyclic lexicons

• context-dependent concatenation and trunca-
tion for prefixing and suffixing

• context-dependent circumfixing (with aid of
a postprocessing step).

Moreover, we have reasons to believe that this
list could be extended with a number of other
morphological and phonological processes. In
particular, we proposeunderlined expressions
and languagesas a convenient means for repre-
senting context-dependent processes through co-
incidences and superposition. The current algo-
rithm and other efficient implementations for such
underlined languages give rise tosuperposition-
based lexicon formalisms that are more gen-
eral than concatenation-based LEXC (Karttunen,
1993) and truncation/concatenation-based Hun-
Spell (Ńemeth et al., 2004).

1.4 The Structure of the Paper

The paper is structured as follows: The definitions
and notations are given in Section 2. Section 3
motivates the aimed semantics, simplifies its rep-
resentation and generalizes it to capture a variety
of rules. Section 4 presents the new algorithm that
implements this semantics procedurally. Section 5
presents applications of the new algorithm to mor-
phological processes. Section 6 evaluates the ef-
ficiency using tiny examples and huge HunSpell
dictionaries, and then discusses further optimiza-
tions and generalizations. The paper is concluded
by Section 7.

2 Preliminaries

Denote the empty language with∅ and the empty
string with ǫ. If x is string, the set{x} is denoted

An Efficient Double Complementation Algorithm for Superposition-Based Finite-State Morphology

207

alternatively withx. Let A andB be regular lan-
guages and letk be a positive integer. Concate-
nationAB, intersectionA∩ B, unionA∪ B, com-
plementA, asymmetric differenceA\B, Kleene’s
closureA∗ and bounded iterationA≤k are defined
as usual.

A deterministic finite automaton (DFA) is a tu-
ple (A,Q, i, F, δ) whereA is thefinite input alpha-
bet, Q is thefinite set of states, i ∈ Q is theinitial
state, F ⊆ Q is theset of final states, δ : Q×A→ Q
is thetransition relation. Extended transition rela-
tion δ̂ : Q × A∗ → Q is defined in such a way
that δ̂(q, ǫ) = q andδ̂(q,aw) = δ̂(δ̂(q,a),w) for all
q ∈ Q, a ∈ Σ andw ∈ Σ∗. The automatonaccepts
a stringw ∈ Σ∗ if and only if δ̂(i,w) ∈ F. The
language recognized by the automaton is the set
{w|δ̂(i,w) ∈ F}.

Two-level systems (Koskenniemi, 1983; Kiraz,
2000) and their rules describe binary orn-ary reg-
ular same-length relations between strings. How-
ever, these systems and their rules can be viewed
also as descriptions of languages over a tuple al-
phabet. In this paper, two-level rules describe lan-
guages over a set of tuples,Σ. For related con-
ventions and the definitions of Id, Range, Domain,
and composition◦, see (Kaplan and Kay, 1994).

2.1 Context Restriction

A (compound) context restriction (CR)rule
(Koskenniemi, 1983; Kaplan and Kay, 1994) is
conventionally written in the form

X⇒ #L1 R1#, . . . , #Ln Rn#. (1)

where thecenter Xand the left and right parts
Li , ..., Ln,R1, ...,Rn of contextsare regular lan-
guages over a known alphabetΣ. It is reasonable
to assume thatǫ < X. For stringsv, y ∈ Σ∗, de-
note conditionv ∈ Li ∧ y ∈ Ri by expression
v y ∈ Li Ri . The semantics of the CR rule is
a set of strings given by

{w|w∈Σ∗∧(∀v∈Σ∗)(∀x∈X)(∀y∈Σ∗)

w , vxy∨ (∃Li Ri)v y∈Li Ri}.

2.2 Generalized Restriction

Generalized restriction (GR)(Yli-Jyrä, 2008a) is
an operation whose operands consist of the uni-
versal languageΣ∗, a set of markersM, a language
W ⊆ Σ∗(MΣ∗)≤k and a languageW′ ⊆ (Σ ∪ M)∗.
Set M is such thatM ∩ Σ = ∅ and it contains,
conventionally, symbols⋄, ⋄1, ⋄2, ... that are called

diamonds. LanguagesW andW′ are calledgener-
alized preconditionandgeneralized postcondition,
respectively. The relationship between the syntax
and the semantics of GR is defined by equation

[W
Σ,k,M
=⇒ W′] = [W

M
=⇒W′] = Σ∗\hM(W\W′)

wherehM : (Σ ∪ M)∗ → Σ is a morphism that
deletes the markers from strings.

3 The Aimed Semantics

The GR operation (Yli-Jyr̈a and Koskenniemi,
2006) yields the semantics of a CR rule by

[X => #L1 R1#, . . . , #Ln Rn#]

=[Σ∗⋄X⋄Σ∗
M
⇒ ∪n

i=1Li⋄X⋄Ri] (2)

=Σ∗\hM((Σ∗⋄X⋄Σ∗)\(∪n
i=1Li⋄X⋄Ri)). (3)

While formula (2) looks elegant, it actually em-
ploys, in (3), complementation of rather complex
languages. In the following, we will simplify the
representation of the centers and contexts and ar-
rive at formula (13) that captures the meaning of a
CR rule set. After this, we will add to this rule set
two special CR rules that account for a restricted
universe and prohibition rules.

3.1 Simplifications

3.1.1 Decomposition of Generalized Centers

CR rule centers are, in general, subsets ofΣ+

rather than subsets ofΣ. In the GR semantics,
CR rules can be reduced to a GR of more limited
kind with a decomposition technique.1 The tech-
nique expresses that every symbol in the restricted
strings must have separately a valid context. By
decomposition, (2) gives

[Σ∗ f (X) Σ∗
M
⇒ ∪n

i=1Li g(X) Ri]. (4)

employs two functionsf ,g : Σ+ → Σ∗⋄∗Σ+, that
are given by

f (x) = h−1
M (x) ∩ Σ∗⋄Σ+ (5)

g(x) = h−1
M (x) ∩ Σ∗⋄∗Σ+. (6)

3.1.2 Combining Sets of Rules

In a set of context restriction rules, separate rules
may induce right arrow conflicts. The right-arrow
conflicts of two (or more) context restrictions can

1For related techniques, see (Yli-Jyrä and Koskenniemi,
2006; Yli-Jyr̈a, 2008a).

Anssi Yli-Jyrä

208

be resolved using thecoherent intersection oper-
ation ⊎(Yli-Jyrä, 2008a) of generalized restric-
tions:

[W
M
=⇒W′] ⊎[U

M
⇒ U′] (7)

= [(W∪ U)
M
⇒ ((W∩W′) ∪ (U ∩ U′))]. (8)

The same operation can be used to combine con-
text restrictions that are not in conflict. Thus, co-
herent intersection operation combines arbitrary
many context restrictions and resolves also any
right-arrow conflicts. This gives equation

m⊎

r=1
[Xr => #Lr,1 Rr,1#, . . . , #Lr,nr Rr,nr #]

= [∪m
r=1Σ

∗ f (Xr)Σ
∗ M
⇒∪m

r=1∪
nr
i=1Lr,i g(Xr) Rr,i]. (9)

3.1.3 Constrained Center Alphabet

Let S ⊆ Σ be the alphabet of centers of rules
in such a way that∪m

r=1Xr ⊆ S∗. In fact, tra-
ditional two-level grammars admitS = ∪m

r=1Xr .
Even when∪m

r=1Xr 1 Σ, it is reasonable to as-
sume thatS ⊆ ∪m

r=1Xr . From this, it follows that
Σ∗⋄SΣ∗ = ∪m

r=1Σ
∗ f (Xr)Σ∗. This equation (9) to

[Σ∗⋄SΣ∗
M
⇒ ∪m

r=1∪
nr
i=1 Lr,i g(Xr) Rr,i]

=[Σ∗ g(S)Σ∗
M
⇒ ∪m

r=1∪
nr
i=1 Lr,i g(Xr) Rr,i]. (10)

3.1.4 Rearranging the Contexts

The right hand side of (10) can be viewed in such
a way that the contexts are arranged according to
the symbol that follows the marker:

[Σ∗ g(S)Σ∗
M
⇒ ∪a∈S∪

na
i=1 La,i g(a) Ra,i] (11)

3.1.5 The Underline Operator

For notational convenience, introduce anunder-
line operatorX = g(X). With this operator, (11)
can be rewritten as

[Σ∗SΣ∗
M
⇒ ∪

a∈S

na
∪
i=1

La,i a Ra,i]. (12)

3.1.6 Underlined Expressions and Languages

Regular expressions with the underline operator
admit Boolean combinations between the right-
hand sides. E.g. KiTaB ∪ KiTaB = KiTaB ∩
KiTaB. The underline operator gives a compact
representation for gapped centers.E.g.

[Σ∗{i,a}Σ∗
M
⇒ (KiTaB∪ KiTaB)]

=[Σ∗{i,a}Σ∗
M
⇒ KiTaB].

Due to the closure properties of languages with
underline, we view (12) more generally as:

[Σ∗SΣ∗
M
⇒ C] (13)

whereC ⊆ (Σ ∪ {⋄})∗ andh(C) ⊆ C.

3.2 Additional Context Restrictions

3.2.1 Constraining the Universe

The prior two-level systems present two ap-
proaches to the treatment of non-center symbols
Σ\S:

• the alphabetΣ gathered from the centers (Ki-
raz, 2000); thusΣ\S = ∅.

• the strings (Σ\S)∗ are not restricted by the
rules (Koskenniemi, 1983).

There is an approach that can emulate both the
prior approaches: in our approach, all strings are
restricted by non-underlined contextsh(C) ⊆ C
with an additional CR rule:

[Σ∗
M
⇒ h(C)]

=[Σ∗
M
⇒ C]. (14)

By combining formulas (13) and (14),2 we obtain:

[Σ∗SΣ∗ ∪ Σ∗
M
⇒ C]. (15)

3.3 Center Prohibition Rules

The rule operator of a center prohibition rule is
/<= (Karttunen, 1991). The semantics a set of in-
tersected prohibition rules is given by

∩
p
r=1 [Xr /<= #Lr,1 Rr,1#, . . . , #Lr,nr Rr,nr #]

=[∪p
r=1i ∪nr

i=1 (Lr,i Xr Rr,i)
M
⇒ ∅] (16)

Let P = ∪p
r=1i ∪nr

i=1 (Lr,i Xr Rr,i). Because the uni-
verse is already restricted toh(C), we can assume
that P ⊆ h(C) ⊆ C. Combining (16) with (15)
gives

[Σ∗SΣ∗
M
⇒C] ∩ [Σ∗

M
⇒C] ∩ [P

M
⇒∅]

=[Σ∗SΣ∗
M
⇒C] ⊎[Σ∗

M
⇒C] ⊎[P⋄2

M
⇒∅]

=[(Σ∗SΣ∗ ∪ Σ∗ ∪ P⋄2)
M
⇒ C]

=Σ∗\h((Σ∗⋄SΣ∗ ∪ Σ∗ ∪ P⋄2)\C). (17)

Observe that coherent intersection admits intersec-
tion when both the preconditions and the post-
conditions are disjoint, or the postconditions are
equivalent.

2Formula (14) reminds us from a prior formula where no
markers are in use (Kiraz, 2000, 87).

An Efficient Double Complementation Algorithm for Superposition-Based Finite-State Morphology

209

4 The Algorithm

The algorithm to compute (17) is given in Fig. (2).

S((Σ ⊎ {⋄, ⋄2},Q, i, F, δ) ∈ DFA,S ⊆ Σ)
1: assert{ δ : Q× (Σ ⊎ {⋄, ⋄2})→ Q} %1
2: I ′ ← {(i,1)}∪{(q,2)|(i, ⋄,q)∈δ}; Q′ ← {I ′} %1%3
3: M ← ∅; B← ∅ %1
4: for q ∈ {q|(q, ⋄2,q′) ∈ δ} do %2
5: | if {a|(q,a,q) ∈ δ} = Σ then %2
6: | | B← B∪ {q} %2
7: while ∃P′(P′ ∈ Q′\M) do %1
8: | M ← M ∪ {P′} %1
9: | P← {p | (p, r)∈P′} %1

10: | c← |{q | {(q,3)∈P′}| %4
11: | if P′∩(F × {1}) , ∅ then %1
12: | | if δ∩(P×{⋄2}×Q) = ∅ then %2
13: | | | if {q|(q,3)∈P′}\F = ∅ then %4
14: | | | | F′ ← F′ ∪ {P′} %1
15: | for all a ∈ Σ do %1
16: | | C[a] ← 0;N[a] ← ∅;L[a] ← (a < S) %1%3
17: | for all (q,a,q′) ∈ δ ∩ (P×Σ×Q) do %1
18: | | for all (q,1) ∈ P′ do %1
19: | | | N[a] ← N[a] ∪ {(q′,1)} %1
20: | | if a ∈ S then %3
21: | | | for all (q,2) ∈ P′ do %3
22: | | | | N[a] ← N[a] ∪ {(q′,3)} %3
23: | | | | L[a] ← true %3
24: | | for all (q,3) ∈ P′ do %4
25: | | | N[a] ← N[a] ∪ {(q′,3)} %4
26: | | | C[a] ← C[a] + 1 %4
27: | for all b∈Σ s.t. N[b],∅ do %1
28: | | for all (q,1) ∈ N[b] ∧ (q, ⋄,q′) ∈ δ do %3
29: | | | N[b] ← N[b] ∪ {(q′,2)} %3
30: | | if N[b] ∩ (B× {1,2,3}) = ∅ then %2
31: | | | if L[b] then %3
32: | | | | if C[b] = c then %4
33: | | | | | Q′ ← Q′ ∪ {N[b]} %1
34: | | | | | δ′ ← δ′ ∪ {(P′,a,N[b])} %1
35: return (Σ,Q′, I ′, F′, δ′) %1

Figure 2: An algorithm that computes
Σ∗\h((Σ∗⋄SΣ∗ ∪ Σ∗ ∪ P⋄2)\C) from C ∪ P⋄2.

Theorem 1 When G is a DFA that recognizes the
language C∪P⋄2, algorithm S(G,S) in
Fig. 2 returns a DFA that recognizes the language
Σ∗\h((Σ∗⋄SΣ∗ ∪ Σ∗ ∪ P⋄2)\C).

Proof. Basically, the algorithm performs a sub-
set construction over the state spaceQ × {1,2,3},
using a transition functionδ2 : (Q × {1,2,3}) ×
(Σ ∪ {⋄, ⋄2}) × (Q × {1,2,3}) defined in such a
way thatδ2([q,1], ⋄) = [δ(q,a),2], δ2([q,2],a) =
[δ(q,a),3] andδ2([q, r],a) = [δ(q,a), r] for all a ∈
Σ andr ∈ {1,3}. The lines marked with comment
%1 copy a subautomatonQ×{1}whose transitions
are labeled with ordinary symbolsΣ. This aspect
of the algorithm computesΣ∗\h(Σ∗\C) = Σ∗ ∩
C. The lines marked with %2 subtract from this

subautomaton another deterministic subautoma-
ton whose final states are those that have a leav-
ing transition on⋄2. Line 13 alone performs the
subtraction, but the other lines with comment %2
implement an optimization that prevents insertion
of states that correspond to languageΣ∗ ∪ Σ∗⋄2.
This aspect of the algorithm computesΣ∗\h(P⋄2).
Lines marked with %3 compute correct prefixes
Σ∗\h((Σ∗⋄S)\(La,i⋄a)) by testing that every sym-
bol a∈S is preceded by a diamond. Finally, the
lines marked with %4 ensure that whenever the
prefixv⋄ of a context stringv⋄ay∈C has provided a
necessary and unique (sinceG is deterministic) di-
amond for prefixva, the path acceptingv⋄ay ∈ C
will continue (lines 10, 26, and 32) and finally
reach a final state (line 13) when the⋄-free string
vay∈ h(C) ends. Together with %3-lines, this as-
pect ensures that if the resulting automaton accepts
a stringx ∈ Σ∗, thenx ∈ Σ∗\h((Σ∗⋄SΣ∗)\C). The
four aspects constrain one another. In sum, the al-
gorithm computes the languageΣ∗\h((Σ∗⋄SΣ∗ ∪
Σ∗ ∪ P⋄2)\C). ¤

5 Applications to Morphology

The presented algorithm has several applications.

Two-Level Grammars The algorithm can be
used to compile traditional two-level grammars
(Koskenniemi, 1983) where left-arrow conflicts
have already been resolved. For this purpose, (1)
the center alphabetS is collected from the CR
rules, (2) the centers of CR rules are moved to
the contexts with the underline operator, (3a) the
union of resulting languages and the universal lan-
guageΣ∗ is assigned toC, (4) all surface (and lex-
ical) coercion rules are converted into prohibition
rules, (5) the union of the prohibition rules be-
comesP, (6) the unionC ∪ P⋄2 is converted to
a minimal deterministic automatonG. The com-
piled grammar automatonTG is returned by S-
(G,S).

It is well known that the size of the compiled
two-level grammar may be prohibitively large in
practice. The size blow-up can be avoided by re-
stricting the compiled grammarTG with the lexi-
con transducerTL (Karttunen, 1994) in composi-
tion TL ◦ TG. Following this general approach, we
could definesuperposing compositionwhere the
current algorithm is embedded into a composition
algorithm and compiles both the lexicon and the
grammar at the same time.

Anssi Yli-Jyrä

210

Continuation Classes The superpose algorithm
can be used to compile continuation classes that
are an essential part of the widely used LEXC for-
malism (Karttunen, 1993). Consider the following
entry in a LEXC sublexicon:

LEXICON Verbs

talk V ; (18)

In order to compile the lexicon, (1) put the sub-
lexicon names into the center alphabet:S =

{<Root>, <Verbs>, <V>, ..., <#>}, (2) compute the
alphabetΣ as a union ofS and the normal sym-
bols occurring in the lexical entries, (3) convert
each entry into a regular expressions with under-
line, e.g. <#>Σ∗<Verbs> t a l k <V>Σ∗, (4) com-
pute the union of these expressions, (5) add to the
union the expression (Σ∗<#>) ∪ (<#><Root>Σ∗),
(6) this union,C, is converted to a minimal de-
terministic automatonG. The compiled lexicon
automatonTL is returned by S(G,S).

This approach extends to HunSpell dictionary
(.dic) format. For example, the entry

glossy/TSP (19)

corresponds to underlined regular expression
<#>Σ∗<Root> g l o s s y {<T>, <S>, <P>, <#>}Σ∗.
In the terminology of LEXC, we could say that
the .dic-file contains only the Root sublexicon,
and its each entry has an implicit continuation to
the word boundary class#.

Context-Dependent Affixation and Truncation
The prefix and suffix rules of HunSpell work
largely in a symmetrical way. A HunSpell
(Németh et al., 2004) suffix rule,

SFX T y iest [ˆaeiou]y, (20)

specifies continuation classT, affix iest, trun-
cation y, condition [ˆaeiou]y and the im-
plicit continuation class#. The combina-
tion of (19) and (20) is encoded as string
<#><Root>gloss<D>y<T><-D>iest<#> where
<D> and <-D> are additional center symbols
that bracket the truncated part. The affix
rule corresponds to an underlined expression:
<#>Σ∗[ˆaeiou]<D>y<T><-D>iest<#>Σ∗.3 To
make the pieces to work together, the entry for
glossy is extended with optional<D>-brackets.

3This reminds of alternation rules that are triggered by
lexical features (Kiraz, 1997)

1 2 3

Σ

⋄ S

Σ 1,1 2,2 3,3

0,1 0,2 0,3

⋄ a a,c
a,b

S\{a}Σ\{a,b} Σ\{a, c}

⋄ S
Σ

(1,1), (2,2) (1,1), (2,2), (3,3)

(1,1), (2,2), (0,3) (0,1), (0,2), (0,3), (3,3)

(0,3)

(0,1), (0,2)
(0,3), (3,3)

(0,1),(0,2),(0,3)

a
a

Σ\S

S

b
S\{a,b}

Σ

cb

Σ\{a, c}

Σ\{a, c}

a, c
Σ\{a,b}

Σ\S

Σ

a,b

a,c

Figure 3: Minimal DFAs for languagesW′ =
{a,b}∗a{a, c}∗ andW′ = Σ\({a,b}∗a{a, c}∗) are dis-
played in Fig. 1. LetS = {a,b, c}. The three DFAs
in this figure (in clockwise order) recognize lan-
guages (a)W = Σ∗⋄SΣ∗, (b) W\W′ = W ∩ W′,
(c) h(W\W′). The shadowed states and transi-
tions do not contribute to the final result that is
a∗ = Σ∗\h(W\W′).

Circumfixing The prefix-suffix pair un+iable
can be viewed, however, as a circumfix because
the prefix cannot be attached alone to some stems.
Our encoding for wordunidentifiable is
<#>un<U-><Root>identif<D>y<U><D>iable<#>.
In principle, each circumfix could be described
as a gapped underlined expression, but because
the superposition algorithm works from left to
right, it does not see in the beginning of the word
if suffix iable is encountered in the end of the
word. This uncertainty generates alternative paths
and slows down the algorithm. Often this effect
is seen already during the determinization of the
input DFA G. A practical solution is to compile
prefixes and suffixes as separate entries and then
check afterwards that for each bracket<U-> in a
prefix there is a matching bracket<U> in a suffix.

6 Discussion

6.1 Efficiency

When the input DFAG is known, the size com-
plexity of the result (17) can be analyzed: The
complement ofC is in O(|Σ| · |Q|). When |H| is
the number of states of a recognizer for language
Σ∗⋄SΣ∗, automaton forH\C is in O(|Σ| · |Q| · |H|).
A ⋄-removal ofH\C results in sizeO(|Σ| · (|Q| ·
|H|)2). Finally, determinizing and complementing
automatonh(H\C) results in sizeO(|Σ| ·2(|Q|·|H|)2)).
In addition, computingΣ∗\h((Σ∗∪P⋄2)\C) results

An Efficient Double Complementation Algorithm for Superposition-Based Finite-State Morphology

211

in O(|Q| + |E|). In sum, computing of (17) results
in a DFA of sizeO(c|Q|).

In comparison to a standard step-wise approach
(=the baseline method) in Fig. 3, the superpose
algorithm avoids creating many useless transitions
and states because it does not construct state sub-
sets that contain states (0,1), (0,2), (0,3) ∈ (Q ∪
{0}) × {1,2,3} of Fig. 3b. These are reached only
with stringsw ∈ h(W\W′) none of which belongs
to the aimed result.

The algorithm was tested with some HunSpell
lexicons.4 The execution time of the superpose al-
gorithm was roughly proportional to the sizes of
the input and the output (Table 1) and several or-
ders of magnitude faster than the baseline. With
the superpose algorithm, the number of arcs did
not typically grow, but the number of states would
grow by a small factor before minimization.

6.2 Optimization

We can optimize the superpose algorithm in sev-
eral ways.

When the automatonG recognizingC ∪ P⋄2 is
minimized, information about the prohibitive role
of stringsw ∈ P⋄2 could be used. In particular,
final states that have a transition on⋄2 could be
turned non-final, which may cause more pruning
to take place during minimization. Optionally, one
could substituteC∪ (h−1(P)⋄2) for C∪P⋄2, which
would extend pruning even to strings inC\h(C),
but this can actually makeG bigger.

The data structures could be improved as well.
For example, using failure transitions (Mohri,
1997) reduces the memory footprint ofG and op-
timizes the computation of accessible subsets dur-
ing the subset construction.

During the two-level grammar compilation pro-
cedure (Sect. 5), we could restrict the shared tape
of TL andTG in the resultTG as follows: (3b) Add
markers to the tape that is extracted fromTL i.e.
U = Id(h−1(Range(TL))). (3c) Restrict the lexi-
cal side ofC with U: C ← U ◦ C. Continue the
compilation procedure from (4).

6.3 Possible Extensions

Some generalizations to the semantics of the algo-
rithm would be desirable.

4The Hungarian lexicon (hu) used 26 GB in the original
format and it had the total alphabet of 301 characters (letters
and continuation class symbols). The induced underlined ex-
pression took 83 GB and the minimized result automaton 3.2
MB in the SFST file format.

dic aff arcs i/o/m nodes i/o/m time b/s
sw 48 0 98 69 69 28 28 28 756 2
sv 55 .4 291 299 119 58 182 51 19005 17
en 46 1 483 549 116 50 333 48 n/a 95
hu 841 21 7876 2366 359418 1265 113 n/a 503

Table 1: The total number of root dictionary and
affix entries (in thousands), DFA transition and
state set sizes (input/superpose output/minimized)
(in thousands), and execution time of base-
line/superpose algorithm (in seconds).

We would like to deal with infixes and inserted
characters like<D>more abstractly without a need
to add them to the root dictionary as optional char-
acters. Such characters should emerge “out of the
blue” when needed. The idea could be based on
a simplified notion of multi-tape automata where
multiple tapes are projected to a single tape.

The current algorithm and its deterministic in-
put are not the most efficient ways to handle nested
(Barth́elemy, 2007a) or crossing bracketing. A
more efficient approach would be based on lay-
ered, iterative construction of the result. A layer-
ization method for bracketing constraints is given
(Yli-Jyrä and Koskenniemi, 2004), but it assumes
that all rules are compiled separately.

The current algorithm cannot compile two-level
grammars that have left-arrow conflicts. There are
ways to resolve the conflicts when the prohibition
rules are combined into one automaton.

There exist already three other algorithms that
generalize the idea of superposition to weighted
automata (Yli-Jyr̈a, 2009).

7 Conclusions

The paper presents a new direct algorithm to com-
pilation and combination of context restriction
rules. It does not need to know the total alphabet
and it is several orders of maginitude faster than
a standard, stepwise approach. The presented so-
lution has applications in computational morphol-
ogy and phonology, predicate logic and in general-
purpose finite-state calculus.

In addition, regular expressions with the under-
line operator are introduced. Underlined expres-
sions and languages are a natural way to describe
context restriction rules, context-dependent lexical
entries and non-concatenative phenomena.

Anssi Yli-Jyrä

212

Acknowledgements

The HunSpell compilation problem was intro-
duced to the author by András Kornai, Ṕeter
Halácsy, Gÿorgy Gyepesi, D́aniel Varga and Vik-
tor Trón during his visit to BUTE in Hungary.

References

François Barth́elemy. 2007a. Multi-grain relations.
In CIAA, volume 4783 ofLNCS, pages 243–252.
Springer.

François Barth́elemy. 2007b. Using Mazurkiewicz
trace languages for partition-based morphology. In
Proceedings of ACL 2007.

Edmund Grimley-Evans, George Anton Kiraz, and
Stephen G. Pulman. 1996. Compiling a partition-
based two-level formalism. In16th COLING 1996,
Proc. Conference, volume 1, pages 454–459.

Måns Hulden. 2009. Regular expressions and pred-
icate logic in finite-state language processing. In
Proceedings of FSMNLP 2008, pages 82–97. IOS
Press.

Ronald M. Kaplan and Martin Kay. 1994. Regu-
lar models of phonological rule systems.Compu-
tational Linguistics, 20(3):331–378.

Lauri Karttunen, Kimmo Koskenniemi, and Ronald M.
Kaplan. 1987. A compiler for two-level phonolog-
ical rules. Report CSLI-87-108, Center for Study
of Language and Information, Stanford University,
CA.

Lauri Karttunen. 1991. Finite-state constraints.
In Proceedings of the International Conference on
Current Issues in Computational Linguistics, Uni-
versiti Sains Malaysia, Penang, Malaysia.

Lauri Karttunen. 1993. Finite-state lexicon com-
piler. Technical Report ISTL-NLTT-1993-04-02,
Xerox Palo Alto Research Center.

Lauri Karttunen. 1994. Constructing lexical transduc-
ers. In15th COLING 1994, Proceedings of the Con-
ference, volume 1, pages 406–411, Kyoto, Japan.

George Anton Kiraz. 1997. Compiling regular for-
malisms with rule features into finite-state automata.
In 35th ACL 1997, 8th EACL 1997, Proceedings of
the Conference, pages 329–336.

George Anton Kiraz. 2000. Multitiered nonlinear
morphology using multitape finite automata: A case
study on Syriac and Arabic.Computational Linguis-
tics, 26(1):77–105.

Kimmo Koskenniemi and Anssi Yli-Jyrä. 2009.
Clarin and free open source finite-state tools. In
Jakub Piskorskiet al., editor, Finite-State Meth-
ods and Natural Language Processing - Post-
proceedings of the 7th International Workshop

FSMNLP 2008, volume 191 ofFrontiers in Artifi-
cial Intelligence and Applications. IOS Press.

Kimmo Koskenniemi. 1983.Two-level morphology: a
general computational model for word-form recog-
nition and production. Number 11 in Publications.
Department of General Linguistics, University of
Helsinki, Helsinki.

Krister Lindén, Miikka Silfverberg, and Tommi Piri-
nen. 2009. HFST tools for morphology – an effi-
cient open-source package for construction of mor-
phological analyzers. InProceedings of SFCM 2009
(to appear), Zurich, Switzerland.

Mehryar Mohri. 1997. String-matching with au-
tomata. Nordic Journal of Computing, 2(2):217–
231.

Lászĺo Németh, Viktor Tŕon, Ṕeter Haĺacsy, Andŕas
Kornai, Andŕas Rung, and Istv́an Szakad́at. 2004.
Leveraging the open source ispell codebase for mi-
nority language analysis. InProceedings of the
SALTMIL Workshop at LREC 2004, pages 56–59.

Helmut Schmid. 2005. A programming language
for finite state transducers. InPre-proceedings of
FSMNLP 2005, pages 280–281.

Miikka Silfverberg and Krister Lind́en. 2009. Conflict
resolution using weighted rules in HFST-TWOLC.
In Proceedings of NODALIDA 2009 (to appear),
Odense, Denmark.

Anssi Yli-Jyr̈a and Kimmo Koskenniemi. 2004. Com-
piling contextual restrictions on strings into finite-
state automata. InThe Eindhoven FASTAR Days,
Proceedings, Eindhoven, The Netherlands.

Anssi Yli-Jyr̈a and Kimmo Koskenniemi. 2006. Com-
piling generalized two-level rules and grammars. In
Proceedings of FinTAL 2006, LNAI.

Anssi Yli-Jyr̈a. 2003. Describing syntax with star-free
regular expressions. In11th EACL 2003, Proc. Con-
ference, pages 379–386, Budapest, Hungary.

Anssi Yli-Jyr̈a. 2008a. Applications of diamonded
double negation. InFinite-State Methods and Nat-
ural Language Processing, 6th International Work-
shop, FSMNL-2007, Potsdam, Germany, Septem-
ber 14–16, Revised Papers, pages 6–30. Univer-
sitätsverlag, Potsdam.

Anssi Yli-Jyr̈a. 2008b. Transducers from parallel re-
placement rules and modes with generalized lenient
composition. InProceedings of FSMNLP 2007,
Potsdam, Germany, forthcoming.

Anssi Yli-Jyr̈a. 2009. Context-dependent alignments
in ambiguous weighted automata. Manuscript.

An Efficient Double Complementation Algorithm for Superposition-Based Finite-State Morphology

213 ISSN 1736-6305 Vol. 4
http://hdl.handle.net/10062/9206

