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Abstract

Recent work has pointed out the differ-
ence between the concepts of semantic
similarity and semantic relatedness. Im-
portantly, some NLP applications depend
on measures of semantic similarity, while
others work better with measures of se-
mantic relatedness. It has also been ob-
served that methods of computing simi-
larity measures from text corpora produce
word spaces that are biased towards either
semantic similarity or relatedness. De-
spite these findings, there has been lit-
tle work that evaluates the effect of vari-
ous techniques and parameter settings in
the word space construction from corpora.
The present paper experimentally investi-
gates how the choice of context, corpus
preprocessing and size, and dimension re-
duction techniques like singular value de-
composition and frequency cutoffs influ-
ence the semantic properties of the result-
ing word spaces.

Introduction

each other in context, which must not be true for
semantically related words.

The broader concept semantic relatedness holds
between lexical items that are connected by any
kind of lexical or functional association. Dissim-
ilar words can be semantically related, e.g. via
relations like meronymypalm — leaf), or when
they belong to the same semantic figbdlfn— co-
conud. (Turney, 2008) seems to equate “related”
with “associated” and defines: “Two words are as-
sociated when they tend to co-occulo¢tor and
hospita)”.

Unfortunately, measures of semantic similarity
and relatedness rely on hand-crafted lexical re-
sources like WordNet, which are not available for
many languages and have limited coverage, partic-
ularly in specialized domains. Therefore, (Kilgar-
riff, 2003) and others have argued for using “dis-
tributional similarity” as a proxy for semantic sim-
ilarity. Distributional semantics is based on the as-
sumption that words with similar meaning occur in
similar contexts (Harris, 1968). Several successful
methods to compute the distributional similarity
of words from text corpora have been proposed,
including (Landauer and Dumais, 1997), (Grefen-
stette, 1994), and (Sahlgren, 2001).

A growing number of applications in natural lan- (Budanitsky and Hirst, 2006) emphasize the dif-

ing (Cimiano et al., 2005), information retrieval account the different senses a word has, and there-

(Miiller et al., 2007), and word sense disambiguafore mix up the similar words for all the word
tion (Patwardhan et al., 2007). Rkt Y alt
milarity” and semantic “relatedness” (Budanitsky tion between words. _ _ _
and Hirst, 2006). The first is a narrower concept-inally, (Mohammad and Hirst, 2005) differenti--
that holds between lexical items having a simi-até between distributional relatedness and distri-
lar meaning, likepalmandtree. It is usually de- PYtoONdl :
fined via the lexical relations of synonymy and hy- Similar if they have many common co-occurring
ponymy. (Geffet and Dagan, 2005) require thatvords in the same syntactic relations. By contrast,
semantically similar words can be substituted fordistributional measures that use a bag-of-words
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senses. While semantic similarity is a relation be-

butional similarity. Two words are distributionally
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context capture distributional relatedness. (Kil-of the systems against human relatedness judge-
garriff and Yallop, 2000) call these two variants ments and similarities based on WordNet. We re-
“tight” and “loose” word similarities. (Sahlgren, port on a series of experiments concerning the size
2006) comes to the conclusion that word spacesf the input corpus, the choice of context (syntac-
based on direct co-occurrences capture relatedic vs. window-based), corpus preprocessing and
ness, while spaces that are based on indirect diltering by word frequency. In section 5 we dis-
second-order co-occurrences capture similarity. cuss the findings, and in the last section we sum-
The difference between semantic similarity and resmarize our contributions.

latedness is not only of theoretical interest. In

fact some NLP applications require measures o2 Our Method: DISCO

semantic similarity, while others perform better

with semantic relatedness. (Sahlgren and KarlOur method for computing the distributional sim-
gren, 2008) give an example from the area of textlarity between words is called DISCGXtract-
mining. For the analysis of opinions in blogs anding DIStributionally similar words using CO-
discussion forums it is useful to automatically de-occurrence and works as follows. In a pre-
tect synonyms and spelling variants for an interProcessing step, the corpus at hand is tokenized
esting term likerecommengdthereby discovering and highly frequent function words are eliminated.
terms that are used similarly in the given sublan-Since we want to keep the method independent
guage, for exampldove, lurve, loooveand re- from language-specific resources, neither part of
comend To solve this task, measures of semansSPeech tagging nor lemmatization are performed,
tic similarity are much better suited. On the otherand we use a simple context window of siz@
hand, to find out what people associate with a tarords for counting co-occurrences. Our evalua-
get word likeXbox measures of semantic related-tions showed that it is beneficial to take the exact
ness should be preferred. position within the window into account, as has
Other applications where a strict notion of simi- been done by (Rapp, 1999). This can be seen as a
larity is more appropriate are automatic thesauru§rude approximation of syntactic dependency rela-
generation and paraphrasing. In contrast, fotions. Instead of syntactic dependency triples like
word sense disambiguation the semantically re<<donut OBJ-OF eat> we get triples of the form
lated context woretoconutis as useful as the sim- <donut -2, eat>. Consequently, the features that
ilar word tree to disambiguate between the mean-describe a word’s distribution are not just words as
ings ofpalm in a pure bag-of-words approach, but ordered pairs
As these example applications show it is importanff word and window position.

to employ a word space with the right type of re- Consider the example in table 1. It shows two
lations for use with a given application. But while occurrences of the worpgalmin a context of+3
(Rapp, 2002) and especially (Sahlgren, 2006) havevords. When taking the exact window position
investigated the effects of context choice and cointo account, thepalmis described by the five dif-
occurrence type on the semantic properties of théerent features that result from the two occurrences
resulting word spaces, we are only aware of (Peirstwe ignore function words), listed on the lower left
man et al., 2007) to have tested the influence o@fthe table. The features*, -3, oil> and<*, +1,
dimension reduction techniques (namely Randon®il> are distinct and have nothing more in com-
Indexing and frequency cutoffs) on the outcomemon than<*, +3, hand> and <*, -1, provides>.
The aim of the present paper is to experimentallylf the exact position is not observed, we get only
confirm that the application of other dimension re-four features (lower right of table 1), since the two
duction techniques like singular value decomposioccurrences obil can not be distinguished any
tion (SVD) and corpus preprocessing techniquegnore. A context that observes the exact window
like lemmatization also have considerable effectoosition leads to tighter similarities than a window
on the nature of the resulting word space. without exact position. In section 4.4 we evalu-
In the next section we present our method for comate the effect the window-position context bears
puting distributional similarity, in section 3 we on the resulting similarities.

describe three other systems we have chosen fdfoving the window over our corpus gives us a co-

comparison. Section 4 evaluates the performanceccurrence matrix. Every row of the matrix de-
scribes aword, and is also called a “word vector”.
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-3 -2 -1 +1 +2 +3
oil into the palm | of his hand
the nuts provides| palm | oil while the
<palm, -3, oil> 1 <palm, oit> 2
<palm, +3, hant 1 <palm, hand- 1
<palm, -2, nuts- 1 <palm, nuts> 1
<palm, -1, provides 1 <palm, provides- 1
<palm, +1, oil> 1

Table 1: Example of using window position triples (WPT) aateat for counting co-occurrences. WPT
features are shown in the 1st column of the lowest row, thedbagords features in the 4th column.

The matrix size is not x f as usual (withy being  Such a list of distributionally similar words can
the number of words for which word vectors arein turn be seen as the “second order” word vector
built, f being the number of words used as fea-of the given word, containing not only the words
tures), butv x f - r (r is the window size). The which occur together with it, but those that oc-
next step is to transform the absolute counts in theur in similar contexts. We can now compare two
matrix fields into more meaningful weights. For words based on their second order word vectors,
this feature weighting we found the measure protoo. This use of higher-order co-occurrences is
posed by (Lin, 1998c), which is based on mutuato some extent comparable to what is achieved

information, to be optimal: in LSA by singular value decomposition (Kon-

, tostathis and Pottenger, 2006).

g(w,w',r) = log (f(w,r,w') = 0,95)f(+,1%) |y conclusion, DISCO provides two different sim-
fw,r ) f(x,r,0') ilarity measures: DISCOL, that compares words
(1) based on their sets of co-occurring words, and

/ i -
wherew g_ndw stand for words and fqr awin DISCO2, that compares words based on their sets
dow position (or a dependency relation, respec-

. . of distributionally similar words (i.e. DISCO2
t|vely)_, and/ is the fre_qugnc;_/ of oceurrence. compares the second order word vectors).

To arrive at a word’s distributionally similar words

the next step is to compare every word vector with

all other word vectors. For vector comparison3 Description of the other Systems

we use Lin’s information theoretic measure ((Lin,

1998a)) as given in equation (2). Because a wordd SA. Latent semantic analysis (Landauer and
vector represents the distribution of a word in theDumais, 1997) is arguably the most popular
corpus, this vector comparison gives us the wordsariant of word space. Its core step is a dimen-
which are used in similar contexts. Put differently, sion reduction technique called singular value
it finds the words that share a maximum numbeiecomposition (SVD). SVD computes the least
of common co-occurrences. For examplégrdad  mean square error projection of a matrix onto
co-occurs witthake eat andcrispy, andcakealso  a lower dimensional matrix. It achieves a kind
co-occurs with these three words, thereadand of generalization by combining columns that
cake will be distributionally similar. Note that represent words with similar meanings. In our
breadandcakedo not need to co-occur themselvesexperiments we used the LSA implementation
a single time to be regarded as similar. accessible atttp://Isa.colorado.edu

As an example of the outcome, the twelve distri-
butionally most similar words fopalm are listed
here:

PMI-IR (pointwise mutual information - in-
formation retrieval). (Turney, 2001) presents a

palms (0.1345) coconut (0.1059) olive method for computing the similarity between ar-
(0.0870) pine (0.0823) citrus (0.0745) bitrary words that utilizes the WWW search en-

oak (0.0677) mango (0.0652) cocoa gine AltaVistd according to the following for-

(0.0645) banana (0.0627) bananas
(0.0623) trees (0.0570) fingers (0.0560) hitp://www.altavista.com
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. v g(w,w;, p) + g(w',wi,p) : g(w,w;,p) >0 and g(w',wi,p) >0
Zp:lZwi:I

Jin n 0 : else
m(w,w ) = - )
p=1 Zwi=1(g(w7 wlap) + g(wla wlap))
2
mula, adapted from pointwise mutual information: of roughly 110 million tokens.
H (wNEARw,) (Finkelstein et al., 2001) prepared a list of 353
PMI-IR(wy,we) = log— ) - i d loyed 16 subj i-
H(wy)H (ws) noun-noun pairs and employe subjects to esti

, , mate their semantic relatedness on a scale from 0
where H(w) is the number of hits the search en-y, 10 \we yse this list as our evaluation data. As

gine returns for the query. The more often two seven word pairs contained at least one word that

word_‘?‘, co—o.ccur near each other on a web Pa8&as unknown to WordNet, we deleted them from
the higher is their PMI-IR score. We computed list, leaving 346 word pairs for testing.
the PMI-IR similarity values for our evaluation

data by querying AltaVista on 4/10/2008. 4.2 Correlation with Human Judgements of
Semantic Relatedness

WordNet::Similarity.  WordNet::Similarity , . .
gur first experiment measures the correlation (ac-

(Pedersen et al., 2004) is a Perl module base ding to the P lati Hicient) of
on WordNet that has been widely used in a va—;?r m?ld'od te eatlrsr;)n C(')trr:etr? lon C?e |Z|en znon
riety of natural language processing tasks. It € candidate systems wi € averaged seman-

implements three measures of semantic related C relatedness scores assigned to the 346 word

ness (namely Hirst-St.Onge (hso), Lesk (lesk) anddirs by the human subjects. Table 2 shows the

vector pairs (vp)) and six measures of seman[esuns' The first two correlation values in the first

tic similarity (Jiang and Conrath (jcn), Leacock row of the table are taken from (Finkelstein et al.,

and Chodorow (Ich), Lin (lin), path length (path), é?g(l:)bf";]o”g tt';]e ysems "St'fdt.'” th‘?t:]”tf]t o
Resnik (res), and Wu and Palmer (wup)). The lat- 2 Shows the fowest correfation with the nu-

. : . . . man judgements, comparable to that of Finkelstein
ter utilize theis-a relations in WordNet. Since

there are onlys-arelations between nouns and be—et al.s vector approach. DISCO2 performs much

tween verbs in WordNet, the similarity measureslbegi:]’is\lljéés tj tI”PVK/?IrT; tr\],a?icl‘hsg' ;h:lct::isr:j:ﬁcc)ree
cannot be applied to adjectives or across part of . y ' . .
with other results reported in the literature (Tur-

speech.

P ney, 2001).
4 Evaluation The WordNet-based measures (shown in the sec-
41 Data ond row of the table) perform worse, which comes

as no surprise for the six measures of similarity,
We built several DISCO word spaces accordingsince they are not intended to measure relatedness.
to the method outlined above. The first wordBut the three measures of relatedness (hso, lesk,
space is based on 300,000 articles from the Enand vp) do not perform much better. The best scor-
glish Wikipedig&, amounting to some 267 million ing vector pairs measure (vp) only achieves the
tokens. We considered all words with a corpussame score as DISCOL.

frequency of at least 100, resulting in a vocabu-

lary size ofv =226,000, and used the=101,000 4.3 Correlation with WordNet::Similarity

most frequent words as feature words. This Wordpe now take the semantic similarity values pro-
space is employed in experiments 1 and 2 (sectiongyced by the six WordNet similarity measures as
4.2 and 4.3). gold standard and compare the correlation of the
In experiment 3 (section 4.4) we tested differentoiher test systems with these similarities. We as-
parameter settings, which meant we had to buildme that the six measures provide a sensible sim-
a number of word spaces. To limit the compu-jjarity gold standard since they are based exclu-
tational effort we decided to use a smaller COrsjvely on WordNets IS-A noun hierarchy and do
pus: the British National Corpus which consistsyot take into account other lexical relations or as-

2http://en.wikipedia.org sociations.
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Vector-based LSA PMI-IR DISCOl1 DISCO2

0.41 0.56 0.63 0.39 0.51
hso lesk vp jcn Ich lin path res wup
0.35 0.21 0.39 0.23 0.35 0.30 0.38 0.36 0.30

Table 2: Correlation of several systems with the semantitaeness values assigned by humans.

jecn  Ich  lin  path res wup avg. \
PMI-IR | 0.14 0.12 0.06 0.15 0.22 0.110.13
LSA 0.16 0.26 0.21 0.29 0.28 0.220.24
DISCO1| 038 0.39 0.33 045 0.43 0.33/0.38
DISCO2| 0.15 040 039 0.35 044 040 | 0.36

Table 3: Correlation between WordNet-based semantic aiityiland four systems based on word distri-
butions.

In this task, PMI-IR performs worst (cf. ta- finkel353 | res
ble 3), whereas DISCO1 shows the highest cor{ DISCO1 WPT 0.34 0.43
relation on average. The behaviour of the two| DISCO1 without WPT 0.32 0.12
DISCO measures is difficult to compare, because DISCO1 WPT lemmatized  0.36 0.41
DISCOL1 scores higher than DISCO?2 three times| DISCO1 dependency 0.36 0.39

but DISCO2 also scores higher than DISCOL1 four _ ) _ )
times. If we take the averaged score, DISCOlTalble 4 Experiment 3: Correlatlon between
turns out slightly better. In any case, both DISCOLISCO1 and two gold standards for different pa-

perform much better than PMI-IR and LSA. rameter settings.

4.4 Effect of different parameter settings and

. Net::Similarity’s Resnik measure from experiment
techniques

2 (resin table 4). As one can see from tables 3
Our third experiment tests various parameter setand 4, the reduced size of the corpus has no neg-
tings for the DISCO1 measure. As DISCO2,ative effect on semantic similarity: the correlation
which was meant as a substitute for LSA, per-stands at 0.43.

formed worse than LSA in the first experiment, we  To quantify the benefit of our poor man’s depen-
do not further evaluate this measure. Instead, wdency triples — the window position triples (WPT)
combine DISCO1 with SVD in the last part of ex- as explained in section 2 — we built a word space
periment 3. with a simple bag-of-words window as context.
In the previous experiments a 267 million tokenThe size of the window remains the same (three
corpus from the English Wikipedia was used, inwords on either side of the target word), but the po-
the following we use a smaller corpus, namely thesition inside the window is not observed any more.
British National Corpus, which consists of only The result is shown in the second row of table 4.
about 110 million tokens, i.e. has only 40% of The correlation with the semantic relatedness gold
the size of the Wikipedia corpus. standard drops from 0.34 to 0.32 (-5.9%). The cor-
The reduced size of the input data has a noticeableslation with the similarity reference crashes down
effect on the computation of semantic relatednesby 72.1% from 0.43 to 0.12.

(first row in table 4). While in the previous ex- Next we lemmatized the corpus before apply-
periments DISCOL1 achieved a correlation of 0.39ng DISCO using the well known Tree Tagger
with the Finkelstein gold standard for semantic re{Schmid, 1994). While lemmatization has a pos-
latedness (abbreviated fiuskel353in table 4), the itive effect on semantic relatedness (cf. the third
same method now only scores 0.34 on the samew in table 4) it has an almost equally strong neg-
task, which constitutes a decrease by 12.8%.  ative effect on semantic similarity.

To quantify the effect of corpus size on semanticln the next part of experiment 3 we ran the Mini-
similarity we compute the correlation with Word- par (Lin, 1998b) robust dependency parser over
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f finkel353 | res a considerable reduction of the size of our co-
101,000 0.34 0.43 occurrence matrix which enabled us to apply the
50,000 0.37 0.43 singular value decomposition to it. We used
20,000 0.40 0.45 SVDLIBC? to reduce the matrix to its 300 prin-
10,000 041 0.46 cipal components (i.e. we reduced the matrix size
5,000 0.40 0.43 from v x 10,000 - r to v x 300). The result is
1,000 0.38 0.43 shown in table 6. The use of SVD significantly

500 0.36 0.33 increases the correlation with the relatedness gold

standard, whereas it decreases the correlation with

Table 5: Frequency cutoff: Correlation of j; similarity measures.

DISCOL1 with the two gold standards for different
guantities of feature words. 5 Discussion

In the first experiment (see section 4.2) we found

our corpus to extract syntactic dependency triplesthat PMI-IR scored best at the task of comput-
This increases the correlation with the semantic reld Sémantic relatedness, outperforming LSA and

latedness gold standard from 0.34 to 0.36 (last rov§VeN more DISCO. The most interesting result of
in table 4). That is, robust parsing has the sam&xperiment 1 was that DISCO2 scored much better

effect as lemmatization. Since Minipar automat-than DISCO1. Since the only difference between

ically does lemmatization, we can conclude that® tWo measures is the use of second order co-

syntactic dependency triples are no better than olffccurrences by DISCO2, we can conclude that for
window position triples. computing semantic relatedness higher-order co-

Surprisingly, the correlation with the semantic occurrences can ;ubstitute for SVD — not fully, but
similarity gold standard drops from 0.43 to 0.392t least to a certain degree.

(-9.3%). We hypothesize that this might be the ef We also observed that the three WordNet-based
fect of noise produced by the parser. measures of semantic relatedness performed quite

Recall from section 2 that the size of the co-Padly. The reason for this is unclear.
occurrence matrix is given by x f - r with v Experiment 2 (section 4.3) evaluated the corre-

being the number of vocabulary items for which lation of different methods with semantic simi-
word vectors are collectedf being the number larities produced by WordNet::Similarity. It was

of feature words (the words that are used to popSnown that DISCO1 scored much better in this

ulate the word vectors), andbeing the window task than PMI-IR and LSA. Moreovgr, the higher-
size. As stated in section 4.1, for all experimentg’rder co-occurrences of DISCO2 did not seem to

so far we chosef = 101,000, i.e. we used the have a consistent positive gffect. From this re-
101,000 most frequent words in the corpus as feasUlt We can conclude that singular value decom-
ture words. We will now systematically decreasePOSition and higher-order co-occurrences increase
this parameter. The effect of this adjustment carihe performance when computing semantic relat-
be seen in table 5. As the number of feature word§9ness, but they do not help in computing seman-

decreases, the correlation with both gold standardd Similarity. This conclusion is confirmed by the
increases, peaking gt — 10,000. For f lower last p?.l’t of experlmen't 3 (section 4.'4), Where'we
than 1,000, the performance of semantic similar- €0mPined DISCO1 with SVD, leading to a sig-
ity drops sharply, whereas semantic relatednesiificant performance increase for the rglatgdrless
seems to suffer relatively less from such a dramati@°!d standard, but to a decrease for all six similar-
decrease of the number of features. Note that folly Mmeasures. _

the optimal setting of this parameter the perfor-1N€ Poor performance of PMI-IR in the sec-
mance for semantic relatedness is now even bett@nd experiment can be explained by the type of
than with the much bigger corpus from the previ-co-occurrence it is based on. While DISCO1
ous experiments (0.41 as compared to 0.39 in tablE°MPares words based on their collocation sets,
2). The same holds for the correlation with the se{n€reby finding words that are used similarly,

mantic similarity gold standard (0.46 vs. 0.43 cof PMI-IR’s similarities are collocations. Therefore
table 3). " it rather produces very loose word similarities, i.e.

The frequency cutoff af = 10,000 lead to *http://tedlab.mit.edu/ dr/SVDLIBC/
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finkel353 || jen | Ich | lin | path| res | wup
DISCO1-10K 0.41 0.62 | 0.52 | 0.50 | 0.52 | 0.46 | 0.47
DISCO1-10K-SVD 0.55 0.46| 0.37| 0.41| 0.39| 0.38| 0.35

Table 6: Performance of DISCOL1 after frequency cutoff at 10000 with and without singular value
decomposition (SVD)

words that are topically similar. window position triples should be rather seen as a
Experiment 3 (section 4.4) suggests that measuresyntactic context and not as a bag-of-words con-
of relatedness highly profit from more input data.text. Yet we believe that for languages with a less
This is confirmed by the finding of experiment strict word order than English (like for example
1 that PMI-IR outperforms LSA, despite the fact Czech) syntactic dependency triples will outper-
that both methods use co-occurrence in a shofform our window position triples.
piece of text as context. While LSA addition- Another interesting finding of experiment 3 re-
ally employs SVD, there is nothing in PMI-IR that sulted from the application of a frequency fil-
would explain its strong performance except theter. We found that limiting the size of the co-
huge size of the corpus it is based on (the web). occurrence matrix to the 10,000 most frequent fea-
Experiment 3 also confirms that the recording ofture words yielded the highest performance for
the position within the context window has an both semantic similarity and relatedness.
enormous positive effect on computing semantic
similarity, while the effect on semantic relatedness6 Conclusion
is less significant. This could be expected from

In the present paper we have reported on several

the discussion of the relevant literature in section . . . . .
o o L experiments regarding the influence of dimension
1, where distributional similarity is explicitly de-

. . r ion techni r i nd choi f
fined by the use of a strict context that pays atten-edUCtIo techniques, corpus size, and choice o

tion to syntactic features like word order. Our ex_context on the semantic properties of the resulting
. . L »word spaces.
periments indicate that any method which “blurs
. ... For future work we propose to carry out
the context (bag-of-words window, lemmatization, L . .
. ... application-centered evaluations in order to con-
SVD) decreases the quality of semantic similar-. . o
) . . .. firm the practical relevance of the similarity—
ity. Instead, a “naked” approach based on indi- o o
... relatedness distinction put forth in this paper.
rect co-occurences should be chosen. This findin : ;
N . . ISCO is freely available for research pur-
is in line with (Peirsman et al., 2007) who state i :
) ) . . . poses athttp://www.linguatools.de/
that “severely reducing the dimensionality of the',.
) disco_en.html
word vectors leads to a retrieval of more loosely
related words.” One should presume that conse-
quently a syntactic context would score best, SinCg ofer ences
this is the strictest imaginable context. There- danitsk d . uati
fore. it i ; rorising that th f Minipar A- Budanitsky and G. Hirst. 2096. Evaugtlng
dqde’ I ISI a:n sup .ISI g that the USEO I2I(§J(?4 WordNet-based Measures of Lexical Semantic Re-
1d not lea _to an improvement. (Rapp, ) latednessComputational Linguistics32(1).
seems sceptical about the advantages of syntac-
tic dependency triples over simple window ap-P. Cimiano, A. Hotho, and S. Staab. 2005. Learning
proaches and assumes that the employment of a oncept Hierarchies from Text Corpora using For-
. . mal Concept AnalysisJournal of Artificial Intelli-
part-of-speech tagger will result in the same per- gence Researcl24:305-339.
formance as the use of a parser. This hypothesis
is confirmed by our results. (Grefenstette, 1996)-. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin,
and recently (Pado and Lapata, 2007) and (Peirs- Z- Solan, G. Wolfman, and E. Ruppin. 2001. Plac-

. : ing search in context: the concept revisited. In
man et al., 2007) compared syntactic and window WWW '01: Proceedings of the 10th international

based approaches, and found that syntactic con- conference on World Wide Welpages 406-414,
texts performed superior. However, they used bag- New York, NY, USA. ACM.

of-words windows without taking into account the

position inside the window. We propose that ourM' Geffet and I. Dagan. 2005. The distributional in-

clusion hypotheses and lexical entailment.Pioc.
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