
Interactive pedagogical programs based on constraint grammar

Lene Antonsen
University of Tromsø

Norway
lene.antonsen

@uit.no

Saara Huhmarniemi
University of Tromsø

Norway
saara.huhmarniemi

@helsinki.fi

Trond Trosterud
University of Tromsø

Norway
trond.trosterud

@uit.no

Abstract
This article presents a set of interactive
parser-based CALL programs for North
Sámi. The programs are based on a finite
state morphological analyser and a con-
straint grammar parser which is used for
syntactic analysis and navigating in the di-
alogues. The analysers provide effective
and reliable handling of a wide variety of
user input. In addition, relaxation of the
grammatical analysis of the user input en-
ables locating grammatical errors and re-
acting to the errors with appropriate feed-
back messages.

1 Introduction

This paper describes the implementation a set of
CALL (Computer Assisted Language Learning)
programs for learners of North Sámi (a Uralic lan-
guage), based on a finite state transducer (fst) and
constraint grammar (CG) technology.

The pedagogical programs are available on a
web-based learning platform OAHPA!, accessi-
ble at http:\\oahpa.uit.no. There are six
programs altogether: A word quiz (Leksa), a nu-
meral quiz (Numra), basic morphological exer-
cises (Morfa-S), morphological exercises in a sen-
tential frame (Morfa-C), a question-answer (QA)
drill (Vasta), and a dialogue program (Sahka).

The OAHPA! platform is implemented in
Django, a Python-based web development frame-
work, combined with a Mysql database.

In section 2 we describe the initial linguistic re-
sources and the pedagogical motivation behind the
programs. Section 3 presents the pedagogical lex-
icon and the morphological analyser. The fourth
section presents the parser-based CALL programs
and shows how the CG-parser was utilised for er-
ror detection and navigation in the programs ac-
cepting free sentence input. Section 5 contains an
evaluation of the programs.

2 Background

2.1 Basic grammatical analysis

The pedagogical programs in OAHPA! are based
upon three pre-existing language technology re-
sources developed at the University of Tromsø: a
morphological analyser/generator, a CG parser for
North Sámi and a number word generator com-
piled with the Xerox compiler xfst.

The morphological analyser/generator is imple-
mented with fst and compiled with the Xerox
compilers twolc and lexc (Beesley and Karttunen,
2003). Sámi languages have large morphologi-
cal paradigms for each lexeme – verbs and ad-
jectives have more than 100 inflected forms. In
addition, some of the paradigm members have
a very low text frequency. Due to the limited
amount of electronically available text resources,
an fst analyser was used, rather than e.g. an
HMM tagger (Trosterud, 2007). The lexicon con-
tains 97.500 lemmata – almost half of them proper
nouns. We made two different variants of the anal-
yser/generator: one tolerant, with morphological
patterns based upon actual usage, and the other
one normative, adhering to the written standard.

The morphological disambiguator is imple-
mented in the CG-framework (Karlsson et. al,
1995). The CG-framework is based upon man-
ually written rule sets and a syntactic analyser
which selects the correct analysis in case of
homonymy and adds grammatical function and
dependency relations to the analysis. We used
vislcg3 for the compilation of CG rules. Vislcg3 is
a new, improved version of the open source com-
piler vislcg (visl, 2008). The CG-framework is
presented in section 4.1.

2.2 Previous accounts on parser-based CALL

Even if many interactive parser-based CALL pro-
grams are described in the literature, see (Gam-
per and Knapp, 2002; Heift and Schulze, 2007),

Kristiina Jokinen and Eckhard Bick (Eds.)
NODALIDA 2009 Conference Proceedings, pp. 10–17

very few of them are available for actual use on-
line and most systems have remained at a proto-
type level. One of very few exceptions is e-tutor, a
program for teaching German to foreigners (Heift,
2001; Heift and Nicholson, 2001), at http://
e-tutor.org. e-tutor gives very good feed-
back to student’s errors, but the possible input is
restricted to small, fixed vocabularies, and there
is no dialogue. The grammar formalism used is
Head-driven Phrase Structure Grammar (HPSG).

Vislcg3 is used in the VISL-suite of games
for teaching grammatical analysis on the Internet
http://visl.sdu.dk. Most of the games in
VISL are based on pre-analysed sentences, but one
of the programs accepts free user input in some of
the 7 supported languages. The input is analysed
or changed into grammar exercises (Bick, 2005).

2.3 The pedagogical motivation

The main goal of the development of OAHPA!
was to develop a language tutoring system go-
ing beyond simple multiple-choice questions or
string matching algorithms, with free-form dia-
logues and sophisticated error analysis. Immedi-
ate error feedback and advice about morphology
and grammar were seen as important requirements
for the program.

In addition, the programs were designed to be
flexible so that the student could choose exactly
which aspect of the language and on which level
of difficulty she would like to train. To better in-
tegrate the tools to the instruction, the vocabulary
was designed so that it may be restricted to partic-
ular textbooks. Finally, the programs were made
freely accessible via Internet.

Due to its complex morphology, Sámi lan-
guages demand a lot of practising before the stu-
dent reaches a level of fluency required for every-
day conversation. Since Sámi is a minority lan-
guage, learners often do not have enough opportu-
nities to practise the language in a natural setting.
Our programs give a practical supplement to the
instruction given at school or university. In ad-
dition, the dialogue program consists of everyday
topics, with underlying pedagogical goals such as
practicing verb inflection, choice of correct case
form or vocabulary learning.

The student may choose between two main
North Sámi dialects. Especially when training
morphology, it is important that the forms that are
presented for the user, are the same that the ones

used in the language society or taught during in-
struction. Still, the program accepts any correct
orthographic word form provided by the student.

North Sámi is used in three countries, and there-
fore the programs have several metalanguages
(Norwegian, Finnish, North Sámi, English). We
are also considering extending the programs to
other Sámi languages.

3 Pedagogical lexicon

3.1 The structure of the lexicon

All the OAHPA! programs share a set of common
resources: a pedagogical lexicon and a morpho-
logical generator that is used for generating the
different word forms that appear in the programs.
The dialectal variation is taken into account in the
lexicon as well as in the morphology. In addition,
the morphological properties of words are used
when making a detailed feedback on morphologi-
cal errors.

The pedagogical lexicon forms a collection of
words that are considered relevant for the learn-
ers of North Sámi in schools and universities. The
words occur in different forms in the tasks. The
pedagogical lexicon contains additional informa-
tion about the lemmata, such as Norwegian and
Finnish translation, semantic class, dialect and in-
formation about the inflection. The words in the
pedagogical lexicon were collected from the key
textbooks for North Sámi and the source infor-
mation is included in the lexicon entry. In addi-
tion, homonymy in both base form and inflection
is dealt with using ids for lexicon entries instead
of lemmata. The lexicon consists of 1538 nouns,
500 verbs and 194 adjectives, in addition to a small
lexicon for closed parts of speech. Figure 1 shows
an example of an entry in the noun lexicon.

The word forms that are used in the program
are pre-generated with a transducer that con-
tains of the full North Sámi vocabulary, the in-
flectional and derivational morphology, and the
non-segmental morphological processes (conso-
nant gradation, diphthong simplification, etc.).
Similar transducer is used in live analysis of user
input in the programs Vasta and Sahka, which are
described in section 4.

The contents of the pedagogical lexicon as well
as full paradigms for each lexicon entry are stored
in the Mysql database. The database allows effec-
tive processing of queries and multiple simultane-
ous users. In addition, generating the word forms

Interactive Pedagogical Programs Based on Constraint Grammar

11

Figure 1: An entry in the pedagogical lexicon.

and storing them to the database provides better
control over the inflected word forms and e.g. dif-
ferent dialectal forms. The handling of dialectal
variation is described in the next section.

3.2 Handling the dialectical variation
When generating sentences or providing the cor-
rect answers for the user, we wanted to control the
selection of word forms to allow only normative
forms in the correct dialect. On the other hand,
the live analyser used for the analysis of the user
input should be tolerant and accept all correct vari-
ants of the same grammatical word. Therefore we
compiled different analysers/generators for differ-
ent purposes: one normative but variation-tolerant
transducer for analysing the input, and two strict
ones for different dialects for sentence generation.

The variation between the main dialects
Kárášjohka and Guovdageaidnu was in the source
code (lexc) marked in one of the following ways:

(a) NOT-KJ (not generated for KJ-dialect)

(b) NOT-GG (not generated for GG-dialect)

We also marked entries in the pedagogical
lexicon-files as in Figure 1. This system can eas-
ily be expanded with more dialects. Figure 2 con-
tains an example of how the dialectal information
is handled in the morphological analyser.

3.3 Feedback on morphological errors
The inflectional information of words contained in
pedagogical lexicon is used for generating feed-

Figure 2: Handling of dialectal variation in the
morphological analyser.

back to the student. If the user does not inflect the
lemma correctly, she can ask for hints about the in-
flection, and try once more, instead of getting the
correct answer straight away.

The feedback messages are determined by the
combination of morphological features in the lex-
icon and the inflection task at hand. Consider a
part of the feedback specification in the Figure
3. It specifies the morphological rule that there
is a vowel change in illative singular for bisyllabic
nouns that end with the vowel i. The correspond-
ing feedback message instructs the user to remem-
ber the vowel change.

Figure 3: The features in the lexicon are used to
determine the correct feedback message, in this
case the message is ”Vowel change i > á”.

The feedback may consist of several parts so
that the user also receives information about e.g.
stem class. All the feedback messages that match
the feature definition in the given task, are col-
lected and given to the user in a specified order.

4 CG-parser in live analysis programs
Vasta and Sahka

4.1 Syntactic analyses of the student’s answer

We have chosen not to use multiple-choice, but
rather let the student formulate her own answer.
To a certain question one may give many kinds
of acceptable answers. In Sámi one may change
word order, and also add many kinds of particles.

We use vislcg3 for analysing the student’s an-
swer. The reason for choosing CG as parser plat-
form was that only CG is robust enough for han-
dling unconstrained input, and at the same time ac-
curate enough to identify errors. The program con-

Lene Antonsen, Saara Huhmarniemi and Trond Trosterud

12

tains manually written, context dependent rules,
mainly used for selecting the correct analysis in
case of homonymy. Each rule adds, removes, se-
lects or replaces a tag or a set of grammatical
tags in a given sentential context. Context con-
ditions may be linked to any tag or tag set of any
word anywhere in the sentence, either locally (in a
fixed subdomain of the context) or globally (in the
whole context). Context conditions in the same
rule may be linked, i.e. conditioned upon each
other, negated or blocked by interfering words
or tags. Vislcg3 is documented at (visl, 2008).
Grammars for Danish and Norwegian based on
CG achieve very good F-scores (Bick, 2003).

The question and the answer are merged, and
given to the analyser as one text string. We use
a ruleset file which disambiguates the student’s
input only to a certain extent, because there will
probably be grammatical and orthographic errors.
The last part of the file consists of rules for giving
feedback to the student’s grammatical errors, and
rules for navigating to the correct next question of
in the dialogue, due to the student’s answer. How
to generate feedback or navigation instructions is
explained in section 4.2 and 4.6.

Analysis:

morpho-
logical

analysis
(sme-norm.fst)

post
processing
lookup2cg

disambiguating,
error detection,
interpretation
ped-sme.cg3

grammar
feedback

navigation
instruction

machine
question

user’s
answer

Figure 4: An overview of the analysis process.

The question mark is exchanged for a special
symbol (”qst” QDL), cf. figure 5. Instead of a
sentence delimiter, we want to be able to refer to
the question and the answer separately in the rules.

4.2 Tutorial feedback

Tutorial feedback is feedback about grammar er-
rors (CG prefix &grm), and in Figure 6 we see
a rule for assigning a tag if the student has not
used accusative, when the question requires it. If
the interrogative pronoun is in accusative, we ex-
pect an accusative in the answer. The rule assigns
a &grm-missing-Acc tag to the interrogative pro-
noun if there is no accusative or negation verb in
the answer.

Figure 5: Between analysis and disambiguation.

Figure 6: Rule assigning missing Acc -tag.

Figure 7 shows how the vislcg3 file has disam-
biguated and added the error tag to the input which
is the analysis from Figure 5. The tag generates
feedback to the student. The object is in Nom in-
stead of Acc, and the grammar adds the error tag.

The most difficult problem for the grammati-
cal analysis are the student’s misspellings. A mis-
spelling may be left unrecognized in the analysis
or it can produce another word form for the same
lemma, or from some other lemma.

When the word form is not recognized during
the analysis, the feedback message to the student
points to the unrecognized word form asking the
student to check the spelling. To the extent that
misspellings are the most common type of errors,
the current feedback does not provide enough in-

Interactive Pedagogical Programs Based on Constraint Grammar

13

Figure 7: QA with missing Acc -tag added be-
cause the object girji is in Nom (What did you read
yesterday? Yesterday I read an old book-SgNom).

structions for the student to improve the spelling.
However, in order to give better feedback to cer-
tain misspellings, we have added e.g. place names
with small initial letter to the fst, together with an
error tag, so that the student gets a precise feed-
back. We will implement more that kind of rules
and consider usage of a spell checker to help the
student to find the correct word form.

For misspellings that produce another word
form of the same lemma, we have written rules
that are based on the grammatical context. The
real problem emerges when the spelling error
gives rise to an unintended lemma. Then the chal-
lenge is to give a feedback according to what the
student thinks she has written. In this case, feed-
back has to be tailored using the knowledge about
the student’s interlanguage. We have created sets
for typical unintended lemmata. Combined with
contextual rules we can then give the user a good
feedback due to the misspelling instead of the un-
intended lemma.

E.g. if the student uses the Sg2 form of the main
verb after the negative verb, instead of the correct
ConNeg form, then the erroneous form can be a
ConNeg form of a derivated verb, and the normal
feedback will be: ”You should answer with the
same verb as in the question.” The student will not
understand this, because she thinks that the word

form in the answer is an instance of the same verb.
The solution was to generate all these forms of the
verbs in the questions, make a set of them, and
make a rule for in the right context, give the feed-
back: ”The negative form is not correct.”

4.3 The open QA drill – Vasta
In between the ”natural” dialogues, mimicking
real life dialogues, and the pure grammar training
session, inquiring paradigm forms, we have made
a question-answer drill. The drill has two question
types: Yes/no questions and wh-questions.

There are two motives for making this program
type. First, our tailored dialogues run the risk
of getting quickly consumed. With a QA drill
we may generate an indefinite number of ques-
tions. Second, the students need to automate the
question-answer routine – answer with the correct
verb, inflect the finite verb correctly and choose
the correct case form.

The questions are generated, and then the ques-
tion and answer are analysed together, and the stu-
dent gets feedback, as described in 4.1. The ques-
tion matrices are marked with level, so there is a
level option. Only one question is presented at a
time. The student can answer what she wants, but
she has to use a full sentence (containing a finite
verb), and use the same verb as in the question.
There are 111 matrix questions.

4.4 Sentence generator
One of the main goals of the programs in OAHPA!
is to practice language in natural settings with vari-
ation in the tasks. In order to provide variation in
programs that involve sentential context we imple-
mented a sentence generator. The sentence gener-
ator is used in the morphology in sentential context
program (Morfa-C), and for generating questions
to the QA drill (Vasta). Figure 8 contains an exam-
ple of sentence matrix that is used in the sentence
generator.

The question matrix contains two types of el-
ements: constants and grammatical units. The
constants such as go and ikte in the Figure 8
are present in each generated sentence as such,
whereas grammatical units allow more variation.
Both the inflection and the content of the gram-
matical units may vary from question to question,
and from program to program. E.g. in the question
in Figure 8 the MAINV is fixed to past tense, but
the person and number inflection may vary freely.
In addition, certain elements such as the sentence

Lene Antonsen, Saara Huhmarniemi and Trond Trosterud

14

Figure 8: Example showing question generation
(MAINV question-particle SUBJ yesterday).

subject (SUBJ) have default inflection in nomina-
tive, but the default inflection may be overridden.
The selection of words for the sentence is con-
strained by semantic sets. Semantic sets are also
used as an option in the word quiz (Leksa).

The sentence generator handles agreement e.g.
between subject and the main verb. The agree-
ment may be explicitly marked between any two
elements, which indicates that the two elements
share the same number and person inflection.

In addition to generating questions, the sentence
generator is used for generating answer templates.
In this case, the sentence generator takes into
account the agreement inside a sentence, but also
the content and agreement between the question
and the answer. For example, the person and
number inflection in the answer is restricted by
the question. We chose not to accept an inclusive
interpretation of the pronouns in Pl1 and Du1,
because we wanted the student to exercise also
2. person verb inflection. Table 1 shows how
the question Person-Number (QPN) Sg1 requires
answer Person-Number (APN) Sg2, and so on.
Pl1 as an answer to Pl1 is thus not accepted by the
system.

Table 1: Provided question-answer agreement.

QPN APN QPN APN QPN APN
Sg1 Sg2 Du1 Du2 Pl1 Pl2
Sg2 Sg1 Du2 Du1 Pl2 Pl1
Sg3 Sg3 Du3 Du3 Pl3 Pl3

4.5 The dialogue program – Sahka

The idea behind the dialogue program is that the
student may exercise North Sámi in a natural set-

ting, and at the same time receive feedback about
errors. Each dialogue is based on a scenario, such
as meeting a person for the first time or going to
a grocery store. In addition, each scenario has a
set of underlying pedagogical goals. E.g. in the
Grocery-dialogue the student is telling what kind
of food she wants to buy and the underlying peda-
gogical goal is to exercise inflecting objects in ac-
cusative.

Each dialogue consists of branches to different
topics. The program asks questions, comments on
the student’s answers and starts a new topic ac-
cording to the answer. The dialogue forms a con-
tinuum and contains only accepted answers. The
feedback concerning grammatical errors is given
on a separate window and the user is allowed to
correct the answer until it is accepted.

A topic starts with an opening utterance which
is either a question or a comment followed by a
question. Thus, the user expected to provide an-
swers to the questions throughout the dialogue.
The dialogue proceeds to an appropriate utterance
inside the current topic. In the end of the topic,
there is always a closing comment after which the
dialogue proceeds to next topic. Both the next ut-
terance and the next topic may be selected based
on the information in the user’s answer. For exam-
ple, if the question is about having a car, a positive
answer will navigate to a branch with a follow-
up questions. In the next section, we describe the
navigation inside the dialogue in more detail.

The dialogue system itself is quite simple. Only
the program can make initiatives, and all the utter-
ances from the program are ready-made, address-
ing topics that the program is able to handle. In
other words, the sentence generation mechanism
used in Vasta is not utilised in the dialogue pro-
gram. Developing the program to the direction of
free dialogue, where also the student is able to take
initiatives, requires among other things an anal-
yser which maps semantic roles to the student’s
input and a semantically enriched lexicon.

4.6 Navigating in the Sahka dialogue

Navigating inside the dialogue is implemented in
CG-rules. The user input is tagged during analy-
sis with information on whether the answer is in-
terpreted as affirmative or negative. In addition, a
special tag indicates whether the sentence contains
some information that should be stored for the fol-
lowing questions or utterances. The program is

Interactive Pedagogical Programs Based on Constraint Grammar

15

thus able to store simple information such as the
student’s name, place where she lives and for ex-
ample the type of her car and use this information
in tailored utterances.

Every utterance contains one or more links to
other utterances. The link is selected according to
the tag assigned to the question-answer pair, e.g.
&dia-neg for a negative answer, &dia-pos for a
positive answer, or &dia-target for a certain word,
e.g. target=”hivsset”, like in Figure 9. In Figure
10 we see how the &dia-target tag is mapped to
the noun in illative. The question is ”In which
room do we put the TV?” One of the alternatives
for the navigation is due to the target tag being
assigned to the lemma hivsset (”WC“). The
answer will be ”That is not a good idea. Make a
new try.”

Figure 9: Rule for navigating according to answer.

Figure 10 shows a general rule, not connected to
any particular question, for adding a target-tag to
the NP-head in illative after a question with the in-
terrogate guhte + a noun in illative (= ”to which”).

Figure 10: Case tag adding triggered by question.

Every question has its own unique id, which is
used in navigating between questions. In addition,
the CG-rules may be tailored for specific ques-
tions. An answer from the student about her age
will induce a tag (Figure 11), which functions as
a link when moving to the next dialogue branch.
Figure 12 gives an example of how to navigate to
the next question or branch, with help of the tag.
The question introducing the choice is ”How old
are you?”

5 Evaluation

At the time of writing, the programs have been
in public use for approximately two months. All
user input the word quiz Leksa, the numeral quiz
Numra, the bare morphological task Morfa-S and

Figure 11: Rules for giving age-tag to the input.

Figure 12: Navigating to the next question or
branch, with help of a tag.

the contextual morphology task Morfa-C has been
logged from the very beginning. Unfortunately
the programs Vasta and Sahka, have been logged
for a couple of days only. The log contains
32475 queries (679 queries/day for the 4 programs
logged the whole period), of these, approximately
600, or under 2%, were nonsense answers.

Table 2: Answers to the programs (Vasta and
Sahka were logged at the end of the period only).

Program Correct Wrong Total %
Morfa-S 6920 6323 13243 52.3
Leksa 5659 4248 9907 57.1
Numra 3086 2512 5598 55.1
Morfa-C 1349 1613 2962 45.5
Sahka 322 322 644 50.0
Vasta 19 102 121 15.7
Total 17355 15120 32475 53,44

As can be seen from Table 2, slightly more than
half of the queries resulted in correct answers.
When confronted with an error feedback, the user
is offered grammatical help, and thereafter she has
the possibility to give a new answer to the same
query. An investigation of 1500 queries to Morfa-
C showed that 444, or 30%, were such repeated
answers. Even though we have no log info of the
use of the morphological feedback (section 3.3),
our impression from classroom experience is that
the users are actively using the feedback system.
This indicates that what we are witnessing is a
truly interactive process, where users err in half

Lene Antonsen, Saara Huhmarniemi and Trond Trosterud

16

of the queries, and then follow up with a new try,
possibly after having read the morphological ad-
vice from the program.

The error log for Sahka shows that one fourth of
the errors are due to orthographical errors (Table
3). Most of the ”no finite verb” errors are elliptical
answers, and these are not accepted, for pedagogi-
cal reasons. The remaining cases are errors where
the misspelled verb is an existing word. Also for
the other grammatical errors verb errors are domi-
nating. The main goal of the program was to train
verb forms in a dialogue, and the error log shows
that the program is able to capture such errors.

The logs may not only be used for evaluating
the programs, but also for monitoring the learn-
ing process as such. To take just one example,
the Morfa logs give the error rate for each and
every morphosyntactic property and stem type,
thereby giving valuable information as to which
parts of the verbal paradigm are the most problem-
atic ones.

Table 3: Error types for Sahka, ordered after type.

Error type # Error type #
no finite verb 85 wr. case for V-arg 22
orth. error 83 wr. case after Num 10
wrong S-V agr 46 wrong tense 9
no infinite V 30 no postposition 6
wrong V choice 24 wrong word 7

6 Conclusion

By using a sloppy version of the syntactical anal-
yser for North Sámi, combined with a set of error-
detection rules, we have been able to build a flex-
ible CALL resource. The programs are modular,
and the modules may be improved by adding more
materials – words, tasks, dialogues, levels, words
from textbooks. The CG parser framework was
originally chosen as parser framework for Sámi
due to its extraordinary results for free-text pars-
ing. The present project has shown that CG is
well fit for making pedagogical dialogue systems
as well.

The program suite is something quite new
among pedagogical programs for Sámi, and in-
deed its dialogue and open QA-programs are quite
rare within the field of parser-based CALL. The
QA and the dialogue program are tolerant towards
variation in student answer (not only string match-

ing), and the random generation of tasks more or
less in all of the programs allows the student to use
them over and over again.

Acknowledgments

Thanks to the faculty of Humanities at the Univer-
sity of Tromsø, and the Sámi Parliament in Nor-
way, for funding the project.

References
Kenneth R. Beesley and Lauri Karttunen. 2003. Finite

State Morphology. CSLI publications in Computa-
tional Linguistics. USA.

Eckhard Bick. 2003. PaNoLa: Integrating Con-
straint Grammar and CALL applications for Nordic
languages. Holmboe, Henrik (ed.): Nordic Lan-
guage Technology, Årbog for Nordisk Sprogteknol-
ogisk Forskningsprogram 2000-2004. 183–190,
København: Museum Tusculanums Forlag.

Eckhard Bick. 2005. Live use of Corpus data and
Corpus annotation tools in CALL: Some new devel-
opments in VISL. Holmboe, Henrik (ed.): Nordic
Language Technology, Årbog for Nordisk Sprogtek-
nologisk Forskningsprogram 2000-2004, 171–185.
København: Museum Tusculanums Forlag.

Johann Gampfer and Judith Knapp. 2001. A review of
intelligent CALL systems. Computer Assisted Lan-
guage Learning 15(4):329–342.

Trude Heift. 2001. Intelligent Language Tutoring Sys-
tems for Grammar Practice. Zeitschrift fur Interkul-
turellen Fremdsprachenunterricht [Online] 6(2).

Trude Heift and Devlan Nicholson. 2001. Web Deliv-
ery of Adaptive and Interactive Language Tutoring.
International Journal of Artificial Intelligence in Ed-
ucation 12(4):310–325.

Trude Heift and Mathias Schulze. 2007. Errors and
intelligence in computer-assisted language learn-
ing: parsers and pedagogues. Routledge studies in
computer-assisted language learning 2. New York :
Routledge.

Fred Karlsson and Atro Voutilainen and Juha Heikkilä
and Arto Anttila. 1995. Constraint grammar:
a language-independent system for parsing unre-
stricted text. Mouton de Gruyter.

Trond Trosterud. 2007. Language technology for
endangered languages: Sámi as a case study.
http://giellatekno.uit.no/background/rvik.pdf Uni-
versity of Tromsø, Norway.

VISL-group. 2008. Constraint Grammar.
http://beta.visl.sdu.dk/constraint grammar.html
University of Southern Denmark.

Interactive Pedagogical Programs Based on Constraint Grammar

17 ISSN 1736-6305 Vol. 4
http://hdl.handle.net/10062/9206

