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Abstract
We present a dialogue annotation scheme
for both spoken and written interaction,
and use it in a telephone transaction cor-
pus and an email corpus. We train classi-
fiers, comparing regular SVM and struc-
tured SVM against a heuristic baseline.
We provide a novel application of struc-
tured SVM to predicting relations between
instance pairs.

1 Introduction

We present an annotation scheme for verbal inter-
action which can be applied to corpora that vary
across many dimensions: modality of signal (oral,
textual), medium (e.g., email, voice alone, voice
over electronic channel), register (such as infor-
mal conversation versus formal legal interroga-
tion), number of participants, immediacy (online
versus offline), and so on.1 We test it by anno-
tating transcribed phone conversations and email
threads. We then use three algorithms, two of
which use machine learning (including a novel ap-
proach to using Structured SVM), to predict labels
and links (a generalization of adjacency pairs) on
unseen data. We conclude that we can indeed use
a common annotation scheme, and that the email
modality is easier to tag for dialogue acts, but that
it is harder in email to find the links.

2 Related Work

Annotation for dialogue acts (DAs), inspired by
Searle and Austin’s work on speech acts, arose
largely as a means to understand, evaluate and

1This research was supported in part by the National Sci-
ence Foundation under grants IIS-0745369 and IIS-0713548,
and by the Human Language Technology Center of Excel-
lence. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the sponsors.
We would like to thank three anonymous reviewers for their
thoughtful comments.

model human-human and human-machine com-
munication. The need for the enterprise derives
from the fact that the relationship between lexico-
grammatical form (including mood, e.g., interrog-
ative) and communicative actions cannot be enu-
merated; there are complex dependencies on the
linguistic and situational contexts of use. Many
DA schemes exist: they can be hierarchical or
flat (Popescu-Belis, 2008), can comprise a large
(Devillers et al., 2002; Hardy et al., 2003) or small
repertoire (Komatani et al., 2005), or can be ori-
ented towards human-human dialogue (Allen and
Core, 1997; Devillers et al., 2002; Thompson et
al., 1993; Traum and Heeman, 1996; Stolcke et
al., 2000) or multi-party interactions (Galley et al.,
2004), or human-computer interaction (Walker
and Passonneau, 2001; Hardy et al., 2003), in-
cluding multimodal ones (Thompson et al., 1993;
Kruijff-Korbayová et al., 2006).

A major focus of the cited work is on how to
recognize or generate speech acts for interactive
systems, or how to classify speech acts for dis-
tributional analyses. The focus can be on a spe-
cific type of speech act (e.g., grounding and re-
pairs (Traum and Heeman, 1996; Frampton and
Lemon, 2008)), or on more general comparisons,
such as the contrast between human-human and
human-computer dialogues (Doran et al., 2001).
While there is a large degree of overlap across
schemes, the set of DA types will differ due to dif-
ferences in the nature of the communicative goals;
thus information-seeking versus task-oriented di-
alogues differ in the set of speech acts and their
relative frequencies.

Our motivation in providing a new DA annota-
tion scheme is that our focus differs from much
of this prior work. We aim for a relatively ab-
stract annotation scheme in order to make compar-
isons across interactions of widely differing prop-
erties. Our initial focus is less on speech act types
and more on the patterns of local alternation be-
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tween an initiating speech act and a responding
one–the analog of adjacency pairs (Sacks et al.,
1974). The most closely related effort is (Gal-
ley et al., 2004), which aims to automatically
identify adjacency pairs in the ICSI Meeting cor-
pus, a large corpus of 75 meetings, using a small
tagset. Their maximum entropy ranking approach
achieved 90% accuracy on the 4-way classifica-
tion into agreement, disagreement, backchannel
and other. Using the switchboard corpus, (Stolcke
et al., 2000) achieved good dialogue act labeling
accuracy (71% on manual transcriptions) for a set
of 42 dialogue act types, and constructed proba-
bilistic models of dialogue act sequencing in order
to test the hypothesis that dialogue act sequence
information could boost speech recognition per-
formance.

There has been far less work on developing
manual and automatic dialogue act annotation
schemes for email. We summarize some salient
recent work. Carvalho and Cohen (2006) use word
n-grams (with extensive preprocssing) to classify
entire emails into a complex ontology of speech
acts. However, in their experiments, they con-
centrate on detecting only a subset of speech acts,
which is comparable in size to ours. Speech acts
are assigned for entire emails, but several speech
acts can be assigned to one email. Apparently,
they develop separate binary classifiers for each
speech act. Corston-Oliver et al. (2004) are in-
terested in identifying tasks in email. They label
each sentence in email with tags from a set which
describes the type of content of the sentence (de-
scribing a task, scheduling a meeting), but are less
interested in the interactive aspect of email com-
munication (creating an obligation to respond).

There has been some work which relates to find-
ing links, but limited to finding question-answer
pairs. Shrestha and McKeown (2004) first de-
tect questions using lexical and part-of-speech fea-
tures, and then find the paragraph that answers the
question. They use features related to the structure
of the email thread, as well as lexical features. As
do we, they find that classifying is easier than link-
ing.

Ding et al. (2008) argue that in order to do
well at finding answers to questions, one must
also find the context of the question, since it of-
ten contains the information needed to identify the
answer. They use a corpus of online discussion
forums, and use slip-CRFs and two-dimensional

CRFs, models related to those we use. We will
investigate their proposal to consider the question
context in future work.

While they do not use dialogue act tagging
to compare modalities, as we do, Murray and
Carenini (2008) compare spoken conversation
with email by comparing a common summariza-
tion architecture across both modalities. They get
similar performance, but the features differ.

Table 1: DFU speech act labels
Request-Information (R-I)
Request-Action (R-A)
Inform (Inf)
Commit (Comm)
Conventional (Conv)
Perform (Perf)
Backchannel (Bch) (+/- Grounding)
Other

3 Annotation Scheme

Figure 1: Example DFU illustrating the relation of
extent (segmentation) to speech act type

M1.2 I have completed the invoices for April,
May and June
M1.3 and we owe Pasadena each month for a to-
tal of $3,615,910.62.
M1.4 I am waiting to hear back from Patti on May
and June to make sure they are okay with her.
[Inform(1.2-1.4): status of Pasadena invoicing-
completed & pending approval – versus amount
due]
Sflink(1.2-1.4)
M2.1 That’s fine.
[Inform(2.1): acknowledgement of status of
Pasadena invoicing]
Blink(1.2-1.4)

The annotation scheme presented here consists
of Dialogue Function Units (DFUs), which are
intended to represent abstract units of interac-
tion. The last two authors developed the annota-
tion on three contrasting corpora: email threads,
telephone conversations, and court transcripts. It
builds on our previous work in intention-based
segmentation (Passonneau and Litman, 1997),
and on mixing a formal schema with natural lan-
guage descriptions (Nenkova et al., 2007). In this
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paper, we investigate the modalities of telephone
two-person conversation in a library setting, and
multi-party email in a workplace setting. Our ini-
tial focus is on the structure of turn-taking. By
using a relatively abstract annotation scheme, we
can compare and contrast this behavior across dif-
ferent types of interaction.

Our unit of annotation is the DFU. DFUs have
an extent, a dialogue act (DA) label along with
a description, and possibly one or more forward
and/or backward links. We explain each compo-
nent of the annotation in turn. We use the exam-
ple in Figure 1; the example is drawn from actual
messages, but has been modified to yield a more
succinct example.

The extent of a DFU roughly corresponds to that
portion of a turn (conversational turn; email mes-
sage; etc.) that corresponds to a coherent com-
municative intention. Because we do not address
automatic identification of the segmentation into
DFU units in this paper, we do not discuss how
annotators are instructed to identify extent.

As illustrated in Figure 1, the communicative
function of a DFU is captured by a speech act
type, and a natural language description. This is
somewhat analogous to the natural language de-
scriptions associated with Summary Content Units
(SCUs) in pyramid annotation (Nenkova et al.,
2007), or with the intention-based segmentation
of (Passonneau and Litman, 1997). The pur-
pose in all cases is to require annotators to artic-
ulate briefly but specifically the unifying intention
(Passonneau and Litman, 1997), semantic content
(Nenkova et al., 2007), or speech act. We use the
eight dialogue act types listed in the upper left of
Table 1. To accommodate discontinuous speech
acts, due to the interruptions that are common to
conversation, each speech act can have an oper-
ator affix such as “-Continue”. We have previ-
ously shown (Passonneau and Litman, 1997) that
intention-based segmentation can be done reliably
by multiple annotators. For twenty narratives each
segmented by the same seven annotators, using
Cochran’sQ (Cochran, 1950), we found the prob-
abilities associated with the null hypothesis that
the observed distributions could have arisen by
chance to be at or below p=0.1 ×10−6. Partition-
ingQ by number of annotators gave significant re-
sults for all values of A ranging over the number
of annotators apart from A = 2. We would expect
similar patterns of agreement on DFU segmen-

tation, but have not collected segmentation data
from multiple annotators on the two corpora pre-
sented here.

DFU Links, or simply Links, correspond to ad-
jacency pairs, but need not be adjacent. A forward
link (Flink) is the analog of a “first pair-part” of
an adjacency pair (Sacks et al., 1974), and is sim-
ilarly restricted to specific speech act types. All
Request-Information and Request-Action DFUs
are assigned Flinks. The responses to such re-
quests are assigned a backward link (Blink). In
principle, a response can be any of the speech act
types, thus it can be an answer to a question (In-
form), a rejection of a Request-Action or a com-
mitment to take the requested action (Commit),
a request for clarification (Request-Information),
and so on. In most but not all cases, requests are
responded to, thus most Flinks and Blinks come in
pairs. We refer to Flinks with no matching Blink
as dangling links. If an utterance can be inter-
preted as a response to a preceding DFU, it will
get a Blink even where the preceding DFU has no
Flink. The preceding DFU taken to be the “first
pair-part” of the Link will be assigned a secondary
forward link (Sflink). All links except dangling
links are annotated with the address of the DFU
from which they originate. Figure 1 illustrates an
email message (M2) containing a single sentence
(“That’s fine”) that is a response to a DFU in a
prior email (M1), where the prior email had no
Flink because it only contains Inform DAs; thus
M1 gets an Sflink.

4 Corpora

The Loqui corpus consists of 82 transcribed dia-
logues from a larger set of 175 dialogues that were
recorded at New York City’s Andrew Heiskell
Braille and Talking Book Library during the sum-
mer of 2005. All of the transcribed dialogues per-
tain to one or more book requests. Forty-eight
dialogues were annotated; the annotators worked
from a combination of the transcription and the au-
dio. Three annotators were trained together, anno-
tated up to a dozen dialogues independently, then
discussed, adjudicated and merged ten of them.
During this phase, the annotation guidelines were
refined and revised. One of the three annotators
subsequently annotated 38 additional dialogues.

We also annotated 122 email threads of the En-
ron email corpus, consisting of email messages
in the inboxes and outboxes of Enron corporation
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Table 2: Distributional Characteristics of Dialogue
Acts in Enron and Loqui

Loqui Enron
Words 21097 17924
DFUs 3845 1400

Speech Act Labels
Inform 1928 50% 853 61%
Request-Inf. 761 20% 149 11%
Request-Action 39 1% 37 3%
Commit 338 9% 3 0%
Conventional 254 7% 356 25%
Backchannel 507 13% 0 0
Other 18 0% 2 0%
Total 3845 100% 1400 100%

Links
Paired Links 1204 63% 193 28%
Flink/Blink 702 58% 83 43%
Sflink/Blink 502 42% 110 57%
Dangling Links 90 2% 97 7%
Mutliple Blinks 4 0% 4 0%

Links by Speech Act Labels
Inform 1003 83% 142 74%
Request-Inf. 170 14% 44 23%
Request-Action 1 0% 5 3%
Commit 13 1% 2 1%
Conventional 2 0% 0 0
Backchannel 15 1% 0 0

1204 100% 193 100%

employees. Most of the emails are concerned with
exchanging information, scheduling meetings, and
solving problems, but there are also purely social
emails. We used a version of the corpus with some
missing messages restored from other emails in
which they were quoted (Yeh and Harnly, 2006).
The annotator of the majority of the Loqui corpus
also annotated the Enron corpus. She received ad-
ditional training and guidance based on our experi-
ence with a pilot annotator who helped us develop
the initial guidelines.

Table 2 illustrates differences between the two
corpora. The DFUs in the Loqui data are much
shorter, with 5.5 words on average compared with
12.8 words in Enron. The distribution of DFU la-
bels shows a similarly high proportion of Inform
acts, comprising 50% of all Loqui DFUs and 61%
of all Enron DFUs. Otherwise, the distributions
are quite distinct. The Loqui interactions are all
two party telephone dialogues where the callers

(library patrons) tend to have limited goals (re-
questing books). The Enron threads consist of
two or more parties, and exhibit a much broader
range of communicative goals. In the Loqui data,
backchannels are relatively frequent (13%) but do
not occur in the email corpus for obvious reasons.
There are some Commits (9%), typically reflect-
ing cases where the librarian indicates she will
send requested items to the caller by mail, or place
them on reserve. There are no Commits in the
Enron data. Neither corpus has many Request-
Actions; the Loqui corpus has many more requests
for information, which includes requests made by
the librarian, e.g., for the patrons’ identifying in-
formation, or by the caller.

The most striking differences between the two
corpora pertain to the distribution of DFU Links.
In Loqui, 63% of the DFUs are the first pair-part
or the second pair-part of a Link compared with
28% in Enron. In Loqui, the majority of Links
are initiated by overt requests (58% of Links are
Flink/Blink pairs), whereas in Enron, the major-
ity of Links involve SFlinks (57%). There are
relatively few dangling Links in either dataset,
with more than three times as many in Enron (7%
versus 2% in Loqui). Most of the DFU types
in the second pair-part of Links are Informs and
Request-Information, with a different proportion
in each dataset. In Loqui, 83% of DFUs that are
second pair-part of a Link are Informs compared
with 74% in Enron; correspondingly, only 14% of
DFUs in Links are Request-Information in Loqui
versus 23% in Enron.

5 Dialogue Act Tagging and Link
Prediction

There are two machine learning tasks in our prob-
lem. The first is Dialogue Act (DA) Tagging, in
which we assign DAs to every Dialogue Func-
tional Unit (DFU). The second is Link predic-
tion, in which we predict if two DFUs form a link
pair. In this paper, we assume that the DFUs are
given. We propose three systems to tackle the
problem. The first system is a non-strawman Base-
line Heuristics system, which uses the structural
characteristics of dialogue. The second is Regu-
lar SVM. The third is Structured SVM. Structured
SVM is a discriminative method that can predict
complex structured output. Recently, discrimi-
native Probabilistic Graphical Models have been
widely applied in structural problems (Getoor and
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Taskar, 2007) such as link prediction. However,
Structured SVM (Taskar et al., 2003; Tsochan-
taridis et al., 2005) is also a compelling method
which has the potential to handle the interdepen-
dence between labeling and sequencing, due to its
ability to handle dependencies among features and
prediction results within the structure. sequence
labeling (Tsochantaridis et al., 2005). We have
adapted Structured SVM to our problem, provided
a novel method for link prediction, and shown that
it is superior in some aspects to Regular SVM.

5.1 Features

We have two sets of features. DFU features are as-
sociated with a particular DFU, and link features
describe the relationship between two DFUs. DFU
features are used in both tasks. Link features are
only used in link prediction. The feature vector of
a link contains two sets of DFU features and the
link features that are defined over the two DFUs.
Table 3 gives the features we used, which are al-
most identical for both corpora, so we could com-
pare the performance.

Because a lot of Flinks are questions, we
chose some features that are tailored to Question-
Answer detection, such as presence of a question
mark. Dialogue fillers and acceptance words af-
fect the accuracy of Part-Of-Speech tagging. On
the other hand, they are helpful indicators of dis-
fluency or confirmation. So we hand-picked a list
of filler and acceptance words, removed them from
the sentence, and added features counting their oc-
currences.

5.2 Baseline Heuristics

Dialogue Act Tagging We use the most frequent
DA as the heuristic for prediction. In both Enron
and Loqui, this DA is Inform.

Link Prediction In link prediction, the heuris-
tics for Enron and Loqui corpora are different due
to structural differences. In Loqui, whenever we
see a DFU with a Forward Link (DA is Request-
Information or Request-Action), we predict that
the target of the link is the first following DFU that
is available and acceptable. “Available” means
that the second DFU has not been assigned a Back-
ward Link yet. “Acceptable” means that the sec-
ond DFU has a DA that is very frequent in a Back-
ward Link and it is of a different speaker to the
first DFU. We enforce similar constraints in Enron
corpus for link prediction, except that the second

Table 3: DFU features (E: Enron, L: Loqui)

Structural for DA prediction
E,L First three POS
E,L Relative Position in the Dialogue
E Existence of Question Mark
E,L Does the first POS start with “w” or “v”
E,L Length of the DFU
E Head, body, tail of the Message
E,L Dialogue Act (Only used in link prediction)
Lexical for DA prediction
E,L Bag of Words
E,L Number of Content Words
L Number of Filler Words, as “uh”, “hmm”
E,L Number of Acceptance Words, as “yes”
Structural for Link prediction
E,L The distance between two DFUs
Lexical for Link prediction
E,L Overlapping number of content words

DFU not only has to be from a different author,
but also has to be in a message which is a direct
descendant in the reply chain of the message that
contains the first DFU. The baseline link predic-
tion algorithm uses the DAs as predicted by the
Regular SVM. If we used the baseline DA predic-
tion, the result would be too low to make a valid
comparison against other systems in terms of link
prediction because all DAs would be identical.

5.3 Regular SVM

We have used the Yamcha support vector machine
package (chasen.org/∼taku/software/yamcha/).
The advantage of Yamcha is that it extends the
traditional SVM by enabling using dynamically
generated features such as preceding labels.

Dialogue Act Tagging We use the feature vector
of the current DFU as well as the predicted DA of
the preceding DFU as features to predict the DA
of the current DFU.

Link Prediction First, in order to limit search
space, we specify a certain window size to produce
a space S of DFU pairs under consideration. For
a particular DFU, we look at all succeeding DFUs
and check if these two DFUs satisfy the follow-
ing constraint: in Loqui, they must be of different
speakers; in Email, one must be another’s ancestor
and they must be of different authors. We consider
all valid pairs starting from the current DFU until
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the number of considered valid pairs reaches the
window size. Then we proceed to the next DFU
and collect more DFU pairs into our consideration
space.

Second, we train a link binary classifier with all
DFU pairs in this consideration space along with a
binary classification correct/not correct as training
data. This classifier takes the feature vectors of the
two DFUs as well as the link features such as the
distance between these two DFUs as features.

Third, we apply a greedy algorithm to gener-
ate links in the test data with the binary classifier.
The algorithm firstly uses the classifier to generate
scores for all DFU pairs in the consideration space
of the test data, then it scans the dialogue sequen-
tially, checks all preceding DFUs that are allowed
to link to the current DFU (i.e., the DFU pair is in
the consideration space), and assigns correspond-
ing links to the most likely DFU pair. We impose a
restriction that there can be at most one Flink, one
Sflink and one Blink for any given DFU.

5.4 Structured SVM

A Structured SVM is able to predict com-
plex output instead of simply a binary result
as in a regular SVM. There are several vari-
ants. We have followed the margin-rescaling ap-
proach (Tsochantaridis et al., 2005), and im-
plemented our systems using SVMpython, which
is a python interface to the SVMstruct package
(svmlight.joachims.org/svm struct.html). Gener-
ally, Structured SVM learns a discriminant func-
tion F : X×Y → R, which estimates a score of
how likely the output y is given the input x. Cru-
cially, y can be a complex structure. Section A in
the appendix; here, we summarize the main intu-
itions.
Dialogue Act Tagging The input x is a sequence
of DFUs, and y is the corresponding sequence of
DAs to predict. Compared to Regular SVM, in-
stead of predicting yt one at a time, Structured
SVM optimizes the sequence as a whole and pre-
dicts all labels simultaneously. Due to the similar-
ity to HMM, the maximization problem is solved
by the Viterbi algorithm (Tsochantaridis et al.,
2005).

Link Prediction The input now contains the DFU
sequence, a link consideration space, as well as
a label sequence, which we get from the previ-
ous stage. The output structure chooses among
the possible links in the link consideration space,

such that there is at most one Flink/SFlink or Blink
for any given DFU, and that there are no crossing
links. (Note that all the constraints are only en-
forced in training and prediction; in testing, we
compare results against the complete manual an-
notations which do not follow these constraints.)
Then the maximization problem can be solved by a
straightforward dynamic programming algorithm.

Table 4: Result of DA prediction
Baseline Regular Struct

Loqui 50.14% 68.30% 70.26%
Enron 60.93% 88.34% 88.71%

Note: Structured SVM parameters for Loqui are C =
300, α = 1; Structured SVM parameters for Enron
are C = 1000, α = 1.

6 Experiments

We have three hypotheses for our experiments:

Hypothesis 1 Link prediction is harder than Dia-
logue Act prediction.
Hypothesis 2 Enron is harder than Loqui.
Hypothesis 3 Structured SVM is better than Reg-
ular SVM, and Baseline is the worst.

We have applied the algorithm described in Sec-
tion 5 to both the Enron and Loqui corpora. The
data set is annotated with DFUs; we focus on the
DA labels and Links. As discussed before, every
system is a pipeline that would preprocess the data
into separate DFUs, predict the Dialogue Acts,
and then feed the Dialogue Acts into the link pre-
diction algorithm. The size of the data set is shown
in Table 2. We do five-fold cross-validation.

Table 4 shows the accuracy of three systems on
Enron and Loqui. Structured SVM has a clear lead
to Regular SVM in Loqui; but the advantage is less
clear in Enron. Tables 6 and 7 give detailed results
of DA prediction.We do not show DAs that do not
exist in the corpora, or that were not predicted by
the algorithms. Both Regular SVM and Structured
SVM performed consistently for the two corpora.

Table 5 gives Link prediction results. Note that
when we compute the combined result for both
types of links, we are only concerned with the
Link position. The seperate results for Flink/Blink
and Sflink/Blink require us to identify the types of
links first, so here we not only compare the posi-
tion of predicted links against the gold, but also
require predicted DAs to indicate the link type
(e.g., the DA of the first DFU must be Request-
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Table 5: Link Prediction for Enron and Loqui
Baseline Regular Struct

Enron R P F R P F R P R
Paired Links 16.66% 40% 23.52% 18.75% 55.38% 28.01% 31.25% 39.47% 34.88%
Flink/Blink 32.53% 33.75% 33.13% 26.50% 61.11% 36.97% 34.93% 47.54% 40.27%
Sflink/Blink 0.0% 0.0% 0.0% 11.92% 44.82% 18.83% 22.93% 27.47% 25.00%

Loqui
Paired Links 30% 56.15% 39.11% 43.59% 60.60% 50.71% 44.15% 56.02% 49.38%
Flink/Blink 43.30% 46.47% 44.83% 40.58% 57.73% 47.66% 43.55% 60.04% 50.48%
Sflink/Blink 0.0% 0.0% 0.0% 21.76% 29.36% 25.00% 22.88% 26.24% 24.45%

Note: Structured SVM parameters for Enron are C = 2000, β = 2., for Loqui C = 1000, β = 4.

Information or Request-Action to qualify as a
Flink/Blink).

Table 6: Recall/Precision/F-measure of DA pre-
diction for Loqui (in %)

Regular Struct
P R F P R F

R-A 50.0 51.7 50.9 43.3 43.3 43.3
R-I 51.3 61.1 55.8 52.3 71.2 60.3
Inf 73.9 73.0 73.5 76.9 74.1 75.5
Bch 65.3 51.7 57.7 65.1 53.6 58.8
Com 5.6 33.3 9.5 5.6 33.3 9.5
Conv 81.2 84.0 82.6 83.7 83.3 83.5

Table 7: Recall/Precision/F-measure of DA pre-
diction for Enron (in %)

Regular Struct
R P F R P F

R-A 27.8 55.6 37.0 25.0 75.0 37.5
R-I 77.9 82.3 80.0 77.2 83.3 80.1
Inf 92.5 90.6 91.5 92.1 91.2 91.7

Conv 90.5 87.3 88.9 93.4 85.6 89.3

7 Discussion

Hypothesis 1 The result of DA prediction is dras-
tically better than link prediction. There are usu-
ally indicators of DA types such as “thank you” for
Conventional, so learning algorithms could easily
capture them. But in link prediction, we frequently
need to handle deep semantic inference and some-
times useful information exists in the surrounding
context rather than the DFU itself. Both of these
scenarios imply that in order to predict links or re-
lationships better, we need more sophisticated fea-
tures.

Hypothesis 2 This hypothesis turns out to be half-
correct. The DA prediction accuracy for Enron
is better than that of Loqui. The higher percent-
age of Inform and less diversity of DAs in Enron
(See Appendix for statistics) may be part of the
reason. Another possible explanation is that as a
set of spoken dialogue data, Loqui is inherently
more difficult to process than written form, since
some common tasks such Part-Of-Speech tagging
have lower accuracy for spoken data. On the other
hand, the result of link prediction did confirm our
hypothesis. The first reason is that there are far
fewer links in Enron than in Loqui, so we have less
training data. The tree structure of the reply chain
in the email threads also makes prediction more
difficult. And the link distance is longer, because
in email, people can respond to a very early mes-
sage, while in a phone conversation, people tend
to respond to immediate requests.
Hypothesis 3 Both SVM models perform better
than the baseline. Generally, Structured SVM per-
forms better than Regular SVM, especially in link
prediction for Enron. This confirms the advan-
tage of using Structured SVM for output involv-
ing inter-dependencies. The only exception is the
Sflink prediction in Loqui, which in turn affects
the overall accuracy of link prediction.
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A Appendix: Structured SVM

This section provides mathematical background
for Secton 5.4. The hypothesis function is given
by:

f(x,w) = argmaxy∈YF (x,y : w)

And in addition, we assume F to be linear to a
joint feature map Ψ(x,y).

F (x,y : w) = 〈w,Ψ(x,y)〉
We also define a loss function ∆(y,y) which de-
fines the deviation of the predicted output y to the
correct output.

As a result, given a sequence of training
examples,(x1,y1) · · · (xn,yn) ∈ X × Y, the
function we need to optimize becomes:

minw,ξ
1
2 ‖w‖

2 + C
n

∑n
i=1 ξi

s.t. ∀i∀y ∈ Y\y(i) : 〈w, δΨi(y)〉 >
∆(y(i),y)− ξi where,

〈w, δΨi(y)〉 =
〈
w,Ψ(x(i),y(i))−Ψ(x(i),y)

〉
w is optimized towards maximizing the margin
between the true structured output y and any
other suboptimal configurations for all training in-
stances.

A cutting plane optimization algorithm is im-
plemented in SVMstruct. However, for any prob-
lem, we need to implement the feature map
Ψ(x,y), the loss function ∆(y,y), and a maxi-
mization problem which enables the cutting plane
optimization, i.e.

y = argmaxy∈Y∆(y(i),y)− 〈w, δψi(y)〉
Only certain feature maps that would make

solving this maximization effectively, usually by
dynamic programming, could be handled this way.

For Dialogue Act Tagging, let x =(
x1,x2 . . .xT

)
be the sequence of DFUs,

and y =
(
y1,y2 . . .yT

)
the corresponding se-

quence of dialogue acts. φ(xt) represents the DFU
features and φ(xt) ∈ RD. yt ∈ L = {l1, . . . , lK}
where L contains the set of available DAs. The
feature map is (Tsochantaridis et al., 2005):

Ψ(x,y) =

( ∑T
t=1 φ(xt)⊗Λ(yt)

Λ(yt−1)⊗Λ(yt)

)
where Λ(yt) = [λ(l1,y), . . . , λ(lk,y)] and λ is
an indicator function that returns 1 if two parame-
ters are equal. ⊗-operator is defined as:

RD ×RK → RD·K , (a⊗ b)i+(j−1)D ≡ ai · bj

In analogy to an HMM, the lower part in
Ψ(x,y) encodes the histogram of adjacent DA
transitions in y ; the upper part encodes the DA
emissions from a specific label to one dimension
in the DFU feature vector. Hence, the total num-
ber of dimensions in Ψ(x,y) is K2 + DK. As
a result, F (x,y : w) = 〈w,Ψ(x,y)〉 gives a
global score based on all transitions and emissions
in the sequence, which captures the dependecies
among nearby labels and mimics the behaviour of
an HMM. Figure 2 gives an example of how to
compute the feature map.

The loss function is the sum of all zero-one
losses across the sequence, i.e.

∆(y,y) = α
∑T
t=1 λ(yt,yt)

α denotes a cost assigned to every DA loss.
For Link Prediction, the input contains the

DFU sequence x, a link consideration space
s = {(i, j) :,DFU i and j is being considered},
as well as label sequence y which we get from
the previous stage. ϕ(xi,xj) is the link feature
defined over two DFUs. Let the dimension of
link feature be B. The output structure u ={
u1,u2 . . .uT

}
specifies the link plan. ut denotes

that there is a link from DFU t − ut to t with the
exception that ut being zero denotes there is no
link pointing to t. The setup of u constraints that
there can be at most one Flink/SFlink or Blink for
any given DFU. In addition u is also subject to the
constraint that all specified links must be in the
link consideration space.

The discriminant function becomes F : X ×
Y×S×U→ R. Similar to structured DA predic-
tion, the discriminant function should give a global
evaluation as to how likely is the link plan spec-
ified by U with respect to all the input vectors.
Our solution is to decompose the score, and cor-
respondingly, the feature representation into two
components, link emission and no-link emission;
the details can be found in Figure 3 in the appendix
and an example is in Figure 2.

Similarly, we could define the loss function as
the sum of all zero-one losses across the sequence
, i.e.

∆(u,u) = β
∑T
t=1 λ(ut,ut)

β denotes a cost assigned to every Link loss.
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Figure 2: A full example of feature map for Structured SVM

x1 = “are you you sure”
x2 = “sure”

y1 = “Req-Info”
y2 = “Inform”

u1 = 0
u2 = 1

φ(x1) = (1, 2, 1)
φ(x2) = (0, 0, 1)

ϕ(x1,x2) = (1, 1)

Ψda =



0
0
0
1

0
0
1

1
2
1



Inform to Inform
Inform to Req-Info
Req-Info to Inform
Req-Info to Inform

Inform with “are”
Inform with “you”
Inform with “sure”

Req-Info with “are”
Req-Info with “you”
Req-Info with “sure”

Ψlink =



1
2
1
0
1

0
0
1
1
0

1
1

1
2
1
0
1



1st link pair-part with“are”
1st link pair-part with“you”
1st link pair-part with“sure”
1st link pair-part with Inform
1st link pair-part with Req-Info

2nd link pair-part with“are”
2nd link pair-part with“you”
2nd link pair-part with“sure”
2nd link pair-part with Inform
2nd link pair-part with Req-Info

distance of link
overlap of link

No-Link with“are”
No-Link with“you”
No-Link with“sure”
No-Link with Inform
No-Link with Req-Info

Note: In this example, φ(xt) extracts the bag-of-words features from xt. “are”,“you”,“sure” are the 1st, 2nd
and 3rd DFU feature respectively. ϕ(xi,xj) extracts the distance and number of the overlap content, which are
the link features, from the 1st and 2nd pair-part in a DFU link pair. There is a link from DFU 1 to DFU 2 as
specified by j − uj = i, but there is no link pointing to DFU 1.

Figure 3: The feature map of link prediction for
the structured SVM

ΨL =

∑T−1
i=1

∑T
j=i+1 φ(xi)λ(i, j − uj)∑T−1

i=1

∑T
j=i+1 Λ(yi)λ(i, j − uj)∑T−1

i=1

∑T
j=i+1 φ(xj)λ(i, j − uj)∑T−1

i=1

∑T
j=i+1 Λ(yj)λ(i, j − uj)∑T−1

i=1

∑T
j=i+1 ϕ(xi,xj)λ(i, j − uj)


ΨNL =

( ∑T
i=1 φ(xi)λ(0,ui)∑T
i=1 Λ(yi)λ(0,ui)

)

Ψ(x,y, s,u) =

(
ΨL

ΨNL

)
Note: ΨL and ΨNL correspond to the link and no-
link emissions in the feature map Ψ(x,y, s,u) re-
spectively as shown in the equations. The total di-
mension of the feature map is 3D + 3K +B.
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