
Proceedings of SIGDIAL 2009: the 10th Annual Meeting of the Special Interest Group in Discourse and Dialogue, pages 272–275,
Queen Mary University of London, September 2009. c©2009 Association for Computational Linguistics

k-Nearest Neighbor Monte-Carlo Control Algorithm
for POMDP-based Dialogue Systems

F. Lefèvre∗, M. Gašić, F. Jurčı́ček, S. Keizer, F. Mairesse, B. Thomson, K. Yu and S. Young
Spoken Dialogue Systems Group

Cambridge University Engineering Department
Trumpington Street, Cambridge CB2 1PZ, UK

{frfl2, mg436, fj228, sk561, farm2, brmt2, ky219, sjy}@eng.cam.ac.uk

Abstract
In real-world applications, modelling di-
alogue as a POMDP requires the use of
a summary space for the dialogue state
representation to ensure tractability. Sub-
optimal estimation of the value func-
tion governing the selection of system re-
sponses can then be obtained using a grid-
based approach on the belief space. In
this work, the Monte-Carlo control tech-
nique is extended so as to reduce training
over-fitting and to improve robustness to
semantic noise in the user input. This tech-
nique uses a database of belief vector pro-
totypes to choose the optimal system ac-
tion. A locally weighted k-nearest neigh-
bor scheme is introduced to smooth the de-
cision process by interpolating the value
function, resulting in higher user simula-
tion performance.

1 Introduction

In the last decade dialogue modelling as a Partially
Observable Markov Decision Process (POMDP)
has been proposed as a convenient way to improve
spoken dialogue systems (SDS) trainability, nat-
uralness and robustness to input errors (Young et
al., 2009). The POMDP framework models dia-
logue flow as a sequence of unobserved dialogue
states following stochastic moves, and provides a
principled way to model uncertainty.

However, to deal with uncertainty, POMDPs
maintain distributions over all possible states. But
then training an optimal policy is an NP hard
problem and thus not tractable for any non-trivial
application. In recent works this issue is ad-
dressed by mapping the dialog state representation

∗Fabrice Lefèvre is currently on leave from the Univer-
sity of Avignon, France.

space (the master space) into a smaller summary
space (Williams and Young, 2007). Even though
optimal policies remain out of reach, sub-optimal
solutions can be found by means of grid-based al-
gorithms.

Within the Hidden Information State (HIS)
framework (Young et al., 2009), policies are rep-
resented by a set of grid points in the summary be-
lief space. Beliefs in master space are first mapped
into summary space and then mapped into a sum-
mary action via the dialogue policy. The resulting
summary action is then mapped back into master
space and output to the user.

Methods which support interpolation between
points are generally required to scale well to large
state spaces (Pineau et al., 2003). In the current
version of the HIS framework, the policy chooses
the system action by associating each new belief
point with the single, closest, grid point. In the
present work, a k-nearest neighbour extension is
evaluated in which the policy decision is based on
a locally weighted regression over a subset of rep-
resentative grid points. This method thus lies be-
tween a strictly grid-based and a point-based value
iteration approach as it interpolates the value func-
tion around the queried belief point. It thus re-
duces the policy’s dependency on the belief grid
point selection and increases robustness to input
noise.

The next section gives an overview of the
CUED HIS POMDP dialogue system which we
extended for our experiments. In Section 3, the
grid-based approach to policy optimisation is in-
troduced followed by a presentation of the k-
nn Monte-Carlo policy optimization in Section 4,
along with an evaluation on a simulated user.

272

2 The CUED Spoken Dialogue System

2.1 System Architecture

The CUED HIS-based dialogue system pipelines
five modules: the ATK speech recogniser, an
SVM-based semantic tuple classifier, a POMDP
dialogue manager, a natural language generator,
and an HMM-based speech synthesiser. During
an interaction with the system, the user’s speech
is first decoded by the recogniser and an N-best
list of hypotheses is sent to the semantic classifier.
In turn the semantic classifier outputs an N-best
list of user dialogue acts. A dialogue act is a se-
mantic representation of the user action headed by
the user intention (such as inform, request,
etc) followed by a list of items (slot-value pairs
such as type=hotel, area=east etc). The
N-best list of dialogue acts is used by the dialogue
manager to update the dialogue state. Based on
the state hypotheses and the policy, a machine ac-
tion is determined, again in the form of a dialogue
act. The natural language generator translates the
machine action into a sentence, finally converted
into speech by the HMM synthesiser. The dia-
logue system is currently developed for a tourist
information domain (Towninfo). It is worth not-
ing that the dialogue manager does not contain any
domain-specific knowledge.

2.2 HIS Dialogue Manager

The unobserved dialogue state of the HIS dialogue
manager consists of the user goal, the dialogue his-
tory and the user action. The user goal is repre-
sented by a partition which is a tree structure built
according to the domain ontology. The nodes in
the partition consist mainly of slots and values.
When querying the venue database using the par-
tition, a set of matching entities can be produced.
The dialogue history consists of the grounding
states of the nodes in the partition, generated us-
ing a finite state automaton and the previous user
and system action. A hypothesis in the HIS ap-
proach is then a triple combining a partition, a user
action and the respective set of grounding states.
The distribution over all hypotheses is maintained
throughout the dialogue (belief state monitoring).
Considering the ontology size for any real-world
problem, the so-defined state space is too large for
any POMDP learning algorithm. Hence to obtain a
tractable policy, the state/action space needs to be
reduced to a smaller scale summary space. The set
of possible machine dialogue acts is also reduced
in summary space. This is mainly achieved by re-

Master Space

Grnd
UInfo...

affirm(...)

Uinfo
UInfo...

inform(...)

...
b(1) h

status
p

status
last
uact

b(2)

Summary Space

Compatible
with hyp 1?

Yes

Policy

No

Try next

Add items
from hyp 1

Sort

Figure 1: Master-summary Space Mapping.

moving all act items and leaving only a reduced set
of dialogue act types. When mapping back into
master space, the necessary items (i.e. slot-value
pairs) are inferred by inspecting the most likely
dialogue state hypotheses.

The optimal policy is obtained using reinforce-
ment learning in interaction with an agenda based
simulated user (Schatzmann et al., 2007). At the
end of each dialogue a reward is given to the sys-
tem: +20 for a successful completion and -1 for
each turn. A grid-based optimisation is used to ob-
tain the optimal policy (see next section). At each
turn the belief is mapped to a summary point from
which a summary action can be determined. The
summary action is then mapped back to a master
action by adding the relevant information.

3 Grid-based Policy Optimisation

In a POMDP, the optimal exact value function can
be found iteratively from the terminal state in a
process called value iteration. At each iteration
t, policy vectors are generated for all possible ac-
tion/observation pairs and their corresponding val-
ues are computed in terms of the policy vectors
at step t − 1. However, exact optimisation is
not tractable in practice, but approximate solutions
can still provide useful policies. Representing a
POMDP policy by a grid of representative belief
points yields an MDP optimisation problem for
which many tractable solutions exist, such as the
Monte Carlo Control algorithm (Sutton and Barto,
1998) used here.

In the current HIS system, each summary belief
point is a vector consisting of the probabilities of
the top two hypotheses in master space, two dis-
crete status variables summarising the state of the

273

Algorithm 1 Policy training with k-nn Monte
Carlo
1: LetQ(b̂, âm) = expected reward on taking action âm from belief point b̂
2: LetN(b̂, âm) = number of times action âm is taken from belief point b̂
3: Let B be a set of grid-points in belief space, {b̂} any subset of it
4: Let πknn : b̂→ âm; ∀b̂ ∈ B be a policy

5: repeat
6: t← 0
7: âm,0 ← initial greet action

8: b = b0 [= all states in single partition]

Generate dialogue using ε-greedy policy
9: repeat
10: t← t + 1

11: Get user turn au,t and update belief state b

12: b̂t ← SummaryState(b)
13: {b̂k}knn ← k-Nearest(b̂t,B)

14: âm,t ←
{

RandomAction with probability ε
πknn(b̂t) otherwise

15: record 〈b̂t, {b̂k}knn, âm,t〉, T ← t

16: until dialogue terminates with rewardR from user simulator

Scan dialogue and update B, Q and N
17: for t = T downto 1 do
18: if ∃b̂i ∈ B, |b̂t − b̂i| < δ then ← update nearest pt in B
19: for all b̂k in {b̂k}knn do
20: w ← Φ(b̂t, b̂k) ←Φ weighting function

21: Q(b̂k, âm,t)←
Q(b̂k,âm,t)∗N(b̂k,âm,t)+R∗w

N(b̂k,âm,t)+w

22: N(b̂k, âm,t)← N(b̂k, âm,t) + w

23: end for
24: else ← create new grid point
25: add b̂t to B
26: Q(b̂t, âm,t)← R,N(b̂t, âm,t)← 1

27: end if
28: R← γR ← discount the reward
29: end for
30: until converged

top hypothesis and its associated partition, and the
type of the last user act.

In order to use such a policy, a simple distance
metric in belief space is used to find the closest
grid point to a given arbitrary belief state:

|b̂i − b̂j | =
2∑

d=1

αd ·
√

(b̂i(d)− b̂j(d))2

+
5∑

d=3

αd · (1− δ(b̂i(d), b̂j(d)))(1)

where the α’s are weights, d ranges over the 2 con-
tinuous and 3 discrete components of b̂ and δ(x, y)
is 1 iff x = y and 0 otherwise.

Associated with each belief point is a function
Q(b̂, âm) which records the expected reward of
taking summary action âm when in belief state b̂.
Q is estimated by repeatedly executing dialogues
and recording the sequence of belief point-action
pairs 〈b̂t, âm,t〉. At the end of each dialogue, each
Q(b̂t, âm,t) estimate is updated with the actual dis-
counted reward. Dialogues are conducted using
the current policy π but to allow exploration of un-
visited regions of the state-action space, a random
action is selected with probability ε.

Once theQ values have been estimated, the pol-

icy is found by setting

π(b̂) = argmax
âm

Q(b̂, âm), ∀b̂ ∈ B (2)

Belief points are generated on demand during the
policy optimisation process. Starting from a sin-
gle belief point, every time a belief point is en-
countered which is sufficiently far from any ex-
isting point in the policy grid, it is added to the
grid as a new point. The inventory of grid points
is thus growing over time until a predefined maxi-
mum number of stored belief vectors is reached.

The training schedule adopted in this work is
comparable to the one presented in (Young et al.,
2009). Training starts in a noise free environment
using a small number of grid points and it con-
tinues until the performance of the policy asymp-
totes. The resulting policy is then taken as an ini-
tial policy for the next stage in which the noise
level is increased, the set of grid points is ex-
panded and the number of iterations is increased.
In practice a total of 750 to 1000 grid points have
been found to be sufficient and the total number of
simulated dialogues needed for training is around
100,000.

4 k-nn Monte-Carlo Policy Optimization

In this work, we use the k nearest neighbor method
to obtain a better estimate of the value function,
represented by the belief points’ Q values. The al-
gorithm maintains a set of sample vectors b̂ along
with their Q value vector Q(b̂, a). When a new
belief state b̂′ is encountered, its Q values are ob-
tained by looking up its k-nearest neighbours in
the database, then averaging their Q-values.

To obtain good estimates for the value func-
tion interpolation, local weights are used based
on the belief point distance. A Kullback-Leibler
(KL) divergence (relative entropy) could be used
as a distance function between the belief points.
However, while the KL-divergence between two
continuous distributions is well defined, this is
not the case for sample sets. In accordance with
the locally weighted learning theory (Atkeson et
al., 1997), a simple weighting scheme based on a
nearly Euclidean distance (eq. 1) is used to inter-
polate the policy over a set of points:

πknn(b̂) = argmax
âm

∑
{b̂k}knn

Q(b̂k, âm)× Φ(b̂k, b̂)

In our experiments, we set the weighting co-
efficients with the kernel function Φ(b̂1, b̂2) =
e−|b̂1−b̂2|2 .

274

Since it can be impossible to construct a full
system act from the best summary act, a back-off
strategy is used: an N -best list of summary acts,
ranked by their Q values, is scrolled through un-
til a feasible summary act is found. The resulting
overall process of mapping between master and
summary space and back is illustrated in Figure 1.
The complete k-nn version policy optimisation al-
gorithm is described in Algorithm 1.

The user simulator results for semantic error
rates ranging from 0 to 50% with a 5% step are
shown in Figure 2 for k ∈ {1, 3, 5, 7}, averaged
over 3000 dialogues. The results demonstrate that
the k-nn policies outperform the baseline 1-nn pol-
icy, especially on high noise levels. While our
initial expectations are met, increasing k above 3
does not improve performances. This is likely to
be due to the small size of the summary space as
well as the use of discrete dimensions. However
enlarging the summary space and the sample set is
conceivable with k-nn time-efficient optimisations
(as in (Lefèvre, 2003)).

5 Conclusion

In this paper, an extension to a grid-based pol-
icy optimisation technique has been presented and
evaluated within the CUED HIS-based dialogue
system. The Monte-Carlo control policy optimi-
sation algorithm is complemented with a k-nearest
neighbour technique to ensure a better generaliza-
tion of the trained policy along with an increased
robustness to noise in the user input. Preliminary
results from an evaluation with a simulated user
confirm that the k-nn policies outperform the 1-nn
baseline on high noise, both in terms of successful
dialogue completion and accumulated reward.

Acknowledgements

This research was partly funded by the UK EP-
SRC under grant agreement EP/F013930/1 and
by the EU FP7 Programme under grant agree-
ment 216594 (CLASSIC project: www.classic-
project.org).

References

C Atkeson, A Moore, and S Schaal. 1997. Locally
weighted learning. AI Review, 11:11–73, April.

F Lefèvre. 2003. Non-parametric probability estima-
tion for HMM-based automatic speech recognition.
Computer Speech & Language, 17(2-3):113 – 136.

 78

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 0 10 20 30 40 50

Su
cc

es
sf

ul
 C

om
pl

et
io

n
R

at
e

Semantic Error Rate

1-nn
3-nn
5-nn
7-nn

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0 10 20 30 40 50

A
ve

ra
ge

 R
ew

ar
d

Semantic Error Rate

1-nn
3-nn
5-nn
7-nn

Figure 2: Comparison of the percentage of suc-
cessful simulated dialogues and the average re-
ward between the k-nn strategies on different error
rates.

J Pineau, G Gordon, and S Thrun. 2003. Point-based
value iteration: An anytime algorithm for POMDPs.
In Proc IJCAI, pages pp1025–1032, Mexico.

J Schatzmann, B Thomson, K Weilhammer, H Ye, and
SJ Young. 2007. Agenda-Based User Simulation
for Bootstrapping a POMDP Dialogue System. In
HLT/NAACL, Rochester, NY.

RS Sutton and AG Barto. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press, Cambridge, Mass.

JD Williams and SJ Young. 2007. Scaling POMDPs
for Spoken Dialog Management. IEEE Audio,
Speech and Language Processing, 15(7):2116–
2129.

SJ Young, M Gašić, S Keizer, F Mairesse, J Schatz-
mann, B Thomson, and K Yu. 2009. The hid-
den information state model: A practical frame-
work for POMDP-based spoken dialogue manage-
ment. Computer Speech & Language, In Press, Un-
corrected Proof.

275

