
Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 254–265,
Paris, October 2009. c©2009 Association for Computational Linguistics

Parsing Directed Acyclic Graphs
with Range Concatenation Grammars

Pierre Boullier and Benôıt Sagot
Alpage, INRIA Paris-Rocquencourt & Université Paris 7

Domaine de Voluceau — Rocquencourt, BP 105 — 78153 Le ChesnayCedex, France
{Pierre.Boullier,Benoit.Sagot}@inria.fr

Abstract

Range Concatenation Grammars (RCGs)
are a syntactic formalism which possesses
many attractive properties. It is more pow-
erful than Linear Context-Free Rewriting
Systems, though this power is not reached
to the detriment of efficiency since its sen-
tences can always be parsed in polynomial
time. If the input, instead of a string, is a
Directed Acyclic Graph (DAG), onlysim-
ple RCGs can still be parsed in polyno-
mial time. For non-linear RCGs, this poly-
nomial parsing time cannot be guaranteed
anymore. In this paper, we show how the
standard parsing algorithm can be adapted
for parsing DAGs with RCGs, both in the
linear (simple) and in the non-linear case.

1 Introduction

The Range Concatenation Grammar (RCG)
formalism has been introduced by Boullier ten
years ago. A complete definition can be
found in (Boullier, 2004), together with some
of its formal properties and a parsing algorithm
(qualified here of standard) which runs in
polynomial time. In this paper we shall only
consider the positive version of RCGs which
will be abbreviated as PRCG.1 PRCGs are
very attractive since they are more powerful
than the Linear Context-Free Rewriting Systems
(LCFRSs) by (Vijay-Shanker et al., 1987). In fact
LCFRSs are equivalent to simple PRCGs which
are a subclass of PRCGs. Many Mildly Context-
Sensitive (MCS) formalisms, including Tree
Adjoining Grammars (TAGs) and various kinds
of Multi-Component TAGs, have already been

1Negative RCGs do not add formal power since both
versions exactly cover the classPTIME of languages
recognizable in deterministic polynomial time (see (Boullier,
2004) for an indirect proof and (Bertsch and Nederhof, 2001)
for a direct proof).

translated into their simple PRCG counterpart in
order to get an efficient parser for free (see for
example (Barthélemy et al., 2001)).

However, in many Natural Language Process-
ing applications, the most suitable input for a
parser is not a sequence of words (forms, ter-
minal symbols), but a more complex representa-
tion, usually defined as a Direct Acyclic Graph
(DAG), which correspond to finite regular lan-
guages, for taking into account various kinds of
ambiguities. Such ambiguities may come, among
others, from the output of speech recognition sys-
tems, from lexical ambiguities (and in particular
from tokenization ambiguities), or from a non-
deterministic spelling correction module.

Yet, it has been shown by (Bertsch and
Nederhof, 2001) that parsing of regular languages
(and therefore of DAGs) using simple PRCGs is
polynomial. In the same paper, it is also proven
that parsing of finite regular languages (the DAG
case) using arbitrary RCGs is NP-complete.

This papers aims at showing how these
complexity results can be made concrete in a
parser, by extending a standard RCG parsing
algorithm so as to handle input DAGs. We
will first recall both some basic definitions and
their notations. Afterwards we will see, with a
slight modification of the notion of ranges, how
it is possible to use the standard PRCG parsing
algorithm to get in polynomial time a parse forest
with a DAG as input.2 However, the resulting
parse forest is valid only for simple PRCGs. In
the non-linear case, and consistently with the
complexity results mentioned above, we show that
the resulting parse forest needs further processing
for filtering out inconsistent parses, which may
need an exponential time. The proposed filtering
algorithm allows for parsing DAGs in practice
with any PRCG, including non-linear ones.

2The notion of parse forest is reminiscent of the work
of (Lang, 1994).

254

2 Basic notions and notations

2.1 Positive Range Concatenation Grammars

A positive range concatenation grammar(PRCG)
G = (N,T, V, P, S) is a 5-tuple in which:

• T and V are disjoint alphabets ofterminal
symbolsandvariable symbolsrespectively.

• N is a non-empty finite set ofpredicatesof
fixed arity (also calledfan-out). We write
k = arity(A) if the arity of the predicateA is
k. A predicateA with its argumentsis noted
A(~α) with a vector notation such that|~α| = k
and~α[j] is its jth argument. An argument is a
string in(V ∪ T)∗.

• S is a distinguished predicate called thestart
predicate(or axiom) of arity 1.

• P is a finite set ofclauses. A clause c
is a rewriting rule of the formA0(~α0) →
A1(~α1) . . . Ar(~αr) where r, r ≥ 0 is its
rank, A0(~α0) is its left-hand sideor LHS,
andA1(~α1) . . . Ar(~αr) its right-hand sideor
RHS. By definitionc[i] = Ai(~αi), 0 ≤ i ≤ r
whereAi is a predicate and~αi its arguments;
we notec[i][j] its jth argument;c[i][j] is of
the formX1 . . . Xnij (the Xk ’s are terminal
or variable symbols), whilec[i][j][k], 0 ≤
k ≤ nij is apositionwithin c[i][j].

For a given clausec, and one of its predicates
c[i] a subargumentis defined as a substring of an
argumentc[i][j] of the predicatec[i]. It is denoted
by a pair of positions(c[i][j][k], c[i][j][k′]), with
k ≤ k′.

Let w = a1 . . . an be an input string inT ∗,
each occurrence of a substringal+1 . . . au is a pair
of positions(w[l], w[u]) s.t. 0 ≤ l ≤ u ≤ n
called arange and noted〈l..u〉w or 〈l..u〉 when
w is implicit. In the range〈l..u〉, l is its lower
bound while u is its upper bound. If l = u,
the range〈l..u〉 is an empty range, it spans an
empty substring. Ifρ1 = 〈l1..u1〉, . . . and
ρm = 〈lm..um〉 are ranges, theconcatenationof
ρ1, . . . ,ρm notedρ1 . . . ρm is the rangeρ = 〈l..u〉
if and only if we haveui = li+1, 1 ≤ i < m,
l = l1 andu = um.

If c = A0(~α0) → A1(~α1) . . . Ar(~αr) is a
clause, each of its sub-
arguments(c[i][j][k], c[i][j][k′]) may take a range
ρ = 〈l..u〉 as value: we say that it isinstantiated

by ρ. However, the instantiation of a subargument
is subjected to the following constraints.

• If the subargument is the empty string (i.e.,
k = k′), ρ is an empty range.

• If the subargument is a terminal symbol (i.e.,
k + 1 = k′ and Xk′ ∈ T), ρ is such that
l + 1 = u andau = Xk′ . Note that several
occurrences of the same terminal symbol
may be instantiated by different ranges.

• If the subargument is a variable symbol
(i.e., k + 1 = k′ and Xk′ ∈ V),
any occurrence(c[i′][j′][m], c[i′][j′][m′]) of
Xk′ is instantiated byρ. Thus, each
occurrence of the same variable symbol must
be instantiated by the same range.

• If the subargument is the stringXk+1 . . . Xk′ ,
ρ is its instantiation if and only if we have
ρ = ρk+1 . . . ρk′ in which ρk+1, . . . , ρk′ are
respectively the instantiations ofXk+1, . . . ,
Xk′ .

If in c we replace each argument by its
instantiation, we get aninstantiated clausenoted
A0(~ρ0) → A1(~ρ1) . . . Ar(~ρr) in which each
Ai(~ρi) is aninstantiated predicate.

A binary relation calledderiveand noted⇒
G,w

is

defined on strings of instantiated predicates. IfΓ1

and Γ2 are strings of instantiated predicates, we
have

Γ1 A0(~ρ0) Γ2 ⇒
G,w

Γ1 A1(~ρ1) . . . Am(~ρm) Γ2

if and only if A0(~ρ0) → A1(~ρ1) . . . Am(~ρm) is an
instantiated clause.

The (string) languageof a PRCGG is the

set L(G) = {w | S(〈0..|w|〉w) +⇒
G,w

ε}. In

other words, an input stringw ∈ T ∗, |w| =
n is a sentenceof G if and only there exists a
complete derivationwhich starts fromS(〈0..n〉)
(the instantiation of the start predicate on the
whole input text) and leads to the empty string
(of instantiated predicates). Theparse forestof w
is the CFG whose axiom isS(〈0..n〉) and whose
productions are the instantiated clauses used in all
complete derivations.3

We say that the arity of a PRCG isk, and we
call it ak-PRCG, if and only ifk is the maximum

3Note that this parse forest has no terminal symbols (its
language is the empty string).

255

arity of its predicates (k = maxA∈N arity(A)).
We say that ak-PRCG issimple, we have a simple
k-PRCG, if and only if each of its clause is

• non-combinatorial: the arguments of its RHS
predicates are single variables;

• non-erasing: each variable which occur in
its LHS (resp. RHS) also occurs in its RHS
(resp. LHS);

• linear: there are no variables which occur
more than once in its LHS and in its RHS.

The subclass of simple PRCGs is of importance
since it is MCS and is the one equivalent to
LCFRSs.

2.2 Finite Automata

A non-deterministic finite automaton(NFA) is
the 5-tupleA = (Q,Σ, δ, q0, F) where Q is a
non empty finite set ofstates, Σ is a finite set
of terminal symbols, δ is the ternarytransition
relation δ = {(qi, t, qj)|qi, qj ∈ Q∧ t ∈ Σ∪{ε}},
q0 is a distinguished element ofQ called theinitial
stateandF is a subset ofQ whose elements are
calledfinal states. The size ofA, noted|A|, is its
number of states (|A| = |Q|).

We define the ternary relationδ∗ onQ×Σ∗×Q
as the smallest set s.t.δ∗ = {(q, ε, q) | q ∈ Q} ∪
{(q1, xt, q3) | (q1, x, q2) ∈ δ∗ ∧ (q2, t, q3) ∈ δ}. If
(q, x, q′) ∈ δ∗, we say thatx is apath betweenq
andq′. If q = q0 andq′ ∈ F , x is acomplete path.

The languageL(A) defined(generated, recog-
nized, accepted) by the NFAA is the set of all its
complete paths.

We say that a NFA isemptyif and only if its
language is empty. Two NFAs areequivalentif
and only if they define the same language. A
NFA is ε-free if and only if its transition relation
does not contain a transition of the form(q1, ε, q2).
Every NFA can be transformed into an equivalent
ε-free NFA (this classical result and those recalled
below can be found, e.g., in (Hopcroft and Ullman,
1979)).

As usual, a NFA is drawn with the following
conventions: a transition(q1, t, q2) is an arrow
labelled t from state q1 to stateq2 which are
printed with a surrounded circle. Final states are
doubly circled while the initial state has a single
unconnected, unlabelled input arrow.

A deterministic finite automaton(DFA) is a
NFA in which the transition relationδ is a

transition function, δ : Q × Σ → Q. In
other words, there are noε-transitions and if
(q1, t, q2) ∈ δ, t 6= ε and ∄(q1, t, q

′
2) ∈ δ with

q′2 6= q2. Each NFA can be transformed by
the subset constructioninto an equivalent DFA.
Moreover, each DFA can be transformed by a
minimization algorithminto an equivalent DFA
which isminimal(i.e., there is no other equivalent
DFA with fewer states).

2.3 Directed acyclic graphs

Formally, a directed acyclic graph (DAG)D =
(Q,Σ, δ, q0, F) is an NFA for which there exists
a strict order relation< on Q such that(p, t, q) ∈
δ ⇒ p < q. Without loss of generality we may
assume that< is a total order.

Of course, as NFAs, DAGs can be transformed
into equivalent deterministic or minimal DAGs.

3 DAGs and PRCGs

A DAG D is recognized(accepted) by a PRCG
G if and only if L(D) ∩ L(G) 6= ∅. A trivial
way to solve this recognition (or parsing) problem
is to extract the complete paths ofL(D) (which
are in finite number) one by one and to parse
each such string with a standard PRCG parser, the
(complete) parse forest forD being the union of
each individual forest.4 However since DAGs may
define an exponential number of strings w.r.t. its
own size,5 the previous operation would take an
exponential time in the size ofD, and the parse
forest would also have an exponential size.

The purpose of this paper is to show that
it is possible to directly parse a DAG (without
any unfolding) by sharing identical computations.
This sharing may lead to a polynomial parse time
for an exponential number of sentences, but, in
some cases, the parse time remains exponential.

3.1 DAGs and Ranges

In many NLP applications the source text cannot
be considered as a sequence of terminal symbols,
but rather as a finite set of finite strings. As

4These forests do not share any production (instantiated
clause) since ranges in a particular forest are all related
to the corresponding source stringw (i.e., are all of the
form 〈i..j〉w). To be more precise the union operation on
individual forests must be completed in adding productions
which connect the new (super) axiom (sayS′) with each root
and which are, for eachw of the formS′ → S(〈0..|w|〉w).

5For example the language(a|b)n, n > 0 which contains
2n strings can be defined by a minimal DAG whose size is
n + 1.

256

mentioned in th introduction, this non-unique
string could be used to encode not-yet-solved
ambiguities in the input. DAGs are a convenient
way to represent these finite sets of strings by
factorizing their common parts (thanks to the
minimization algorithm).

In order to use DAGs as inputs for PRCG
parsing we will perform two generalizations.

The first one follows. Letw = t1 . . . tn be a
string in some alphabetΣ and letQ = {qi | 0 ≤
i ≤ n} be a set ofn + 1 boundswith a total order
relation<, we haveq0 < q1 < . . . < qn. The
sequenceπ = q0t1q1t2q2 . . . tnqn ∈ Q×(Σ×Q)n

is called abounded stringwhichspellsw. A range
is a pair of bounds(qi, qj) with qi < qj noted
〈pi..pj〉π and any triple of the form(qi−1tiqi)
is called a transition. All the notions around
PRCGs defined in Section 2.1 easily generalize
from strings to bounded strings. It is also the case
for the standard parsing algorithm of (Boullier,
2004).

Now the next step is to move from bounded
strings to DAGs. LetD = (Q,Σ, δ, q0, F) be a
DAG. A string x ∈ Σ∗ s.t. we have(q1, x, q2) ∈
δ∗ is called apathbetweenq1 andq2 and a string
π = qt1q1 . . . tpqp ∈ Q × (Σ ∪ {ε} × Q)∗ is a
bounded pathand we say thatπ spellst1t2 . . . tp.
A path x from q0 to f ∈ F is a complete path
and a bounded path of the formq0t1 . . . tnf with
f ∈ F is a complete bounded path. In the
context of a DAGD, a range is a pair of states
(qi, qj) with qi < qj noted 〈qi..qj〉D. A range
〈qi..qj〉D is valid if and only if there exists a
path from qi to qj in D. Of course, any range
〈p..q〉D defines its associated sub-DAGD〈p..q〉 =
(Q〈p..q〉,Σ〈p..q〉, δ〈p..q〉, p, {q}) as follows. Its
transition relation isδ〈p..q〉 = {(r, t, s) | (r, t, s) ∈
δ ∧ (p, x′, r), (s, x′′, q) ∈ δ∗}. If δ〈p..q〉 = ∅
(i.e., there is no path betweenp andq), D〈p..q〉 is
the empty DAG, otherwiseQ〈p..q〉 (resp. Σ〈p..q〉)
are the states (resp. terminal symbols) of the
transitions ofδ〈p..q〉. With this new definition of
ranges, the notions of instantiation and derivation
easily generalize from bounded strings to DAGs.

The language of a PRCGG for a DAG

D is defined by
•
L (G,D) =

⋃
f∈F {x |

S(〈q0..f〉D) +⇒
G,D

ε}. Let x ∈ L(D), it is not very

difficult to show that ifx ∈ L(G) then we have

x ∈
•
L (G,D). However, the converse is not true

(see Example 1), a sentence ofL(D)∩
•
L (G,D)

may not be inL(G). To put it differently, if we
use the standard RCG parser, with the ranges of
a DAG, we produce the shared parse-forest for

the language
•
L (G,D) which is a superset of

L(D) ∩ L(G).

However, if G is a simple PRCG, we have

the equalityL(G) =
⋃

D is a DAG
•
L (G,D).

Note that the subclass of simple PRCGs is of
importance since it is MCS and it is the one
equivalent to LCFRSs. The informal reason of
the equality is the following. If an instantiated
predicate Ai(~ρi) succeeds in some RHS, this
means that each of its ranges~ρi[j] = 〈k..l〉D has
been recognized as being a component ofAi, more
precisely their exists a path fromk to l in D which
is a component ofAi. The range〈k..l〉D selects
in D a setδ〈k..l〉D of transitions (the transitions
used in the bounded paths fromk to l). Because
of the linearity ofG, there is no other range in that
RHS which selects a transition inδ〈k..l〉D . Thus
the bounded paths selected by all the ranges of that
RHS are disjoints. In other words, any occurrence
of a valid instantiated range〈i..j〉D selects a set of
paths which is a subset ofL(D〈i..j〉).

Now, if we consider a non-linear PRCG, in
some of its clauses, there is a variable, sayX,
which has several occurrences in its RHS (if we
consider a top-down non-linearity). Now assume
that for some input DAGD, an instantiation of
that clause is a component of some complete
derivation. Let〈p..q〉D be the instantiation ofX
in that instantiated clause. The fact that a predicate
in whichX occurs succeeds means that there exist
paths fromp to q in D〈p..q〉. The same thing stands
for all the other occurrences ofX but nothing
force these paths to be identical or not.

Example 1.

Let us take an example which will be used
throughout the paper. It is a non-linear 1-PRCG
which defines the languageanbncn, n ≥ 0 as
the intersection of the two languagesa∗bncn and
anbnc∗. Each of these languages is respectively
defined by the predicatesa∗bncn andanbnc∗; the
start predicate isanbncn.

257

1

2

3

4

a b

b c

Figure 1: Input DAG associated withab|bc.

anbncn(X) → a∗bncn(X) anbnc∗(X)

a∗bncn(aX) → a∗bncn(X)
a∗bncn(X) → bncn(X)
bncn(bXc) → bncn(X)
bncn(ε) → ε

anbnc∗(Xc) → anbnc∗(X)
anbnc∗(X) → anbn(X)
anbn(aXb) → anbn(X)
anbn(ε) → ε

If we use this PRCG to parse the DAG of
Figure 1 which defines the language{ab, bc},
we (erroneously) get the non-empty parse for-
est of Figure 2 though neitherab nor bc is in
anbncn.6 It is not difficult to see that the problem
comes from the non-linear instantiated variable
X〈1..4〉 in the start node, and more precisely from
the actual (wrong) meaning of the three differ-
ent occurrences ofX〈1..4〉 in anbncn(X〈1..4〉) →
a∗bncn(X〈1..4〉) anbnc∗(X〈1..4〉). The first occur-
rence in its RHS says that there exists a path in
the input DAG from state1 to state4 which is an
a∗bncn. The second occurrence says that there
exists a path from state1 to state4 which is an
anbnc∗. While the LHS occurrence (wrongly) says
that there exists a path from state1 to state4 which
is ananbncn. However, if the twoX〈1..4〉’s in the
RHS had selected common paths (this is not pos-
sible here) between1 and4, a valid interpretation
could have been proposed.

With this example, we see that the difficulty of
DAG parsing only arises with non-linear PRCGs.

If we consider linear PRCGs, the sub-class of
the PRCGs which is equivalent to LCFRSs, the

6In this forest oval nodes denote different instantiated
predicates, while its associated instantiated clauses are
presented as its daughter(s) and are denoted by square nodes.
The LHS of each instantiated clause shows the instantiation
of its LHS symbols. The RHS is the corresponding sequence
of instantiated predicates. The number of daughters of each
square node is the number of its RHS instantiated predicates.

standard algorithm works perfectly well with input
DAGs, since a valid instantiation of an argument
of a predicate in a clause by some range〈p..q〉
means that there exists (at least) one path between
p andq which is recognized.

The paper will now concentrate on non-linear
PRCGs, and will present a new valid parsing
algorithm and study its complexities (in space and
time).

In order to simplify the presentation we
introduce this algorithm as a post-processing pass
which will work on the shared parse-forest output
by the (slightly modified) standard algorithm
which accepts DAGs as input.

3.2 Parsing DAGs with non-linear PRCGs

The standard parsing algorithm of (Boullier, 2004)
working on a stringw can be sketched as follows.
It uses a single memoized boolean function
predicate(A, ~ρ) whereA is a predicate and~ρ is a
vector of ranges whose dimension isarity(A). The
initial call to that function has the formpredicate
(S, 〈0..|w|〉). Its purpose is, for eachA0-clause, to
instantiate each of its symbols in a consistant way.
For example if we assume that theith argument of
the LHS of the currentA0-clause isα′

iXaY α′′
i and

that theith component of~ρ0 is the range〈pi..qi〉 an
instantiation ofX, a anY by the ranges〈pX ..qX〉,
〈pa..qa〉 and 〈pY ..qY 〉 is such that we havepi ≤
pX ≤ qX = pa < qa = pa + 1 = pY ≤ qY ≤ qi

andw = w′aw′′ with |w′| = pa. Since the PRCG
is non bottom-up erasing, the instantiation of all
the LHS symbols implies that all the arguments
of the RHS predicatesAi are also instantiated and
gathered into the vector of ranges~ρi. Now, for
eachi (1 ≤ i ≤ |RHS|), we can callpredicate
(Ai, ~ρi). If all these calls succeed, the instantiated
clause can be stored as a component of the shared
parse forest.7

In the case of a DAGD = (Q,Σ, δ, q0, F) as
input, there are two slight modifications, the ini-
tial call is changed by the conjunctive callpred-
icate(S, 〈q0..f1〉) ∨ . . .∨ predicate(S, 〈q0..f|F |〉)
with fi ∈ F 8 and the terminal symbola can be in-
stantiated by the range〈pa..qa〉D only if (pa, a, qa)

7Note that such an instantiated clause could be
unreachable from the (future) instantiated start symbol which
will be the axiom of the shared forest considered as a CFG.

8Technically, each of these calls produces a forest. These
individual forests may share subparts but their roots are all
different. In order to have a true forest, we introduce a
new root, thesuper-rootwhose daughters are the individual
forests.

258

anbncn
〈1..4〉

anbncn(X〈1..4〉) → a∗bncn
〈1..4〉 anbnc∗〈1..4〉

a∗bncn
〈1..4〉

a∗bncn(X〈1..4〉) → bncn
〈1..4〉

anbnc∗〈1..4〉

anbnc∗(X〈1..4〉) → anbn
〈1..4〉

bncn
〈1..4〉

bncn(b〈1..3〉 X〈3..3〉 c〈3..4〉) → bncn
〈3..3〉

anbn
〈1..4〉

anbn(a〈1..2〉 X〈2..2〉 b〈2..4〉) → anbn
〈2..2〉

bncn
〈3..3〉

bncn(ε〈3..3〉) → ε

anbn
〈2..2〉

anbn(ε〈2..2〉) → ε

Figure 2: Parse forest for the input DAGab|bc.

is a transition inδ. The variable symbolX can
be instantiated by the range〈pX ..qX〉D only if
〈pX ..qX〉D is valid.

3.3 Forest Filtering

We assume here that for a given PRCGG we
have built the parse forest of an input DAGD as
explained above and that each instantiated clause
of that forest contains the range〈pX ..qX〉D of
each of its instantiated symbolsX. We have seen
in Example 1 that this parse forest is valid ifG is
linear but may well be unvalid ifG is non-linear.
In that latter case, this happens because the range
〈pX ..qX〉D of each instantiation of the non-linear
variableX selects the whole sub-DAGD〈pX ..qX〉
while each instantiation should only select a sub-
language ofL(D〈pX ..qX〉). For each occurrence of
X in the LHS or RHS of a non-linear clause, its
sub-languages could of course be different from
the others. In fact, we are interested in their
intersections: If their intersections are non empty,
this is the language which will be associated with
〈pX ..qX〉D, otherwise, if their intersections are
empty, then the instantiation of the considered
clause fails and must thus be removed from the
forest. Of course, we will consider that the
language (a finite number of strings) associated
with each occurrence of each instantiated symbol
is represented by a DAG.

The idea of the forest filtering algorithm
is to first compute the DAGs associated with
each argument of each instantiated predicate
during a bottom-up walk. These DAGs are
calleddecorations. This processing will perform
DAG compositions (including intersections, as
suggested above), and will erase clauses in which
empty intersections occur. If the DAG associated
with the single argument of the super-root is
empty, then parsing failed.

Otherwise, a top-down walk is launched
(see below), which may also erase non-valid
instantiated clauses. If necessary, the algorithm
is completed by a classical CFG algorithm which
erase non productive and unreachable symbols
leaving areducedgrammar/forest.

In order to simplify our presentation we will
assume that the PRCGs are non-combinatorial
and bottom-up non-erasing. However, we
can note that the following algorithm can be
generalized in order to handle combinatorial
PRCGs and in particular with overlapping
arguments.9 Moreover, we will assume that the
forest is non cyclic (or equivalently that all cycles
have previously been removed).10

9For example the non-linear combinatorial clause
A(XY Z) → B(XY) B(Y Z) has overlapping arguments.

10By a classical algorithm from the CFG technology.

259

3.3.1 The Bottom-Up Walk

For this principle algorithm, we assume that for
each instantiated clause in the forest, a DAG
will be associated with each occurrence of each
instantiated symbol. More precisely, for a given
instantiatedA0-clause, the DAGs associated with
the RHS symbol occurrences are composed (see
below) to build up DAGs which will be associated
with each argument of its LHS predicate. For each
LHS argument, this composition is directed by the
sequence of symbols in the argument itself.

The forest is walked bottom-up starting from its
leaves. The constraint being that an instantiated
clause is visited if and only if all its RHS
instantiated predicates have already all been
visited (computed). This constraint can be
satisfied for any non-cyclic forest.

To be more precise, consider an instantiation
cρ = A0(~ρ0) → A1(~ρ1) . . . Ap(~ρp) of the clause
c = A0(~α0) → A1(~α1) . . . Am(~αm), we perform
the following sequence:

1. If the clause is not top-down linear (i.e.,
there exist multiple occurrences of the same
variables in its RHS arguments), for such
variable X let the range〈pX ..qX〉 be its
instantiation (by definition, all occurrences
are instantiated by the same range), we
perform the intersection of the DAGs
associated with each instantiated predicate
argumentX. If one intersection results in
an empty DAG, the instantiated clause is
removed from the forest. Otherwise, we
perform the following steps.

2. If a RHS variableY is linear, it occurs once in
thejth argument of predicateAi. We perform
a brand new copy of the DAG associated with
thejth argument of the instantiation ofAi.

3. At that moment, all instantiated variables
which occur incρ are associated with a DAG.
For each occurrence of a terminal symbolt
in the LHS arguments we associate a (new)
DAG whose only transition is(p, t, q) where
p andq are brand new states with, of course,
p < q.

4. Here, all symbols (terminals or variables) are
associated with disjoints DAGs. For each
LHS argument ~α0[i] = Xi

1 . . . Xi
j . . . Xi

pi
,

we associate a new DAG which is the

concatenation of the DAGs associated with
the symbolsXi

1, . . . ,Xi
j , . . . andXi

pi
.

5. Here each LHS argument ofcρ is associated
with a non empty DAG, we then report
the individual contribution ofcρ into the
(already computed) DAGs associated with
the arguments of its LHSA0(~ρ0). The DAG
associated with theith argument ofA0(~ρ0) is
the union (or a copy if it is the first time) of its
previous DAG value with the DAG associated
with theith argument of the LHS ofcρ.

This bottom-up walk ends on the super-root with a
final decoration sayR. In fact, during this bottom-
up walk, we have computed the intersection of the
languages defined by the input DAG and by the
PRCG (i.e., we haveL(R) = L(D) ∩ L(G)).

Example 2.

1 2 3 4
a

b

b c

b

Figure 3: Input DAG associated withabc|ab|bc.

With the PRCG of Example 1 and the input
DAG of Figure 3, we get the parse forest of
Figure 4 whose transitions are decorated by the
DAGs computed by the bottom-up algorithm.11

The crucial point to note here is the intersection
which
is performed between{abc, bc} and {abc, ab} on

anbncn(X〈1..4〉) → a∗bncn
〈1..4〉 anbnc∗〈1..4〉 . The

non-empty set{abc} is the final result assigned to
the instantiated start symbol. Since this result is
non empty, it shows that the input DAGD is rec-
ognized byG. More precisely, this shows that the
sub-language ofD which is recognized byG is
{abc}.

However, as shown in the previous example, the
(undecorated) parse forest is not the forest built
for the DAGL(D) ∩ L(G) since it may contain
non-valid parts (e.g., the transitions labelled{bc}
or {ab} in our example). In order to get the

11For readability reasons these DAGs are represented by
their languages (i.e., set of strings). Bottom-up transitions
from instantiated clauses to instantiated predicates reflects
the computations performed by that instantiated clause
while bottom-up transitions from instantiated predicatesto
instantiated clauses are the union of the DAGs entering that
instantiated predicate.

260

anbncn
〈1..4〉

anbncn(X〈1..4〉) → a∗bncn
〈1..4〉 anbnc∗〈1..4〉

a∗bncn
〈1..4〉

a∗bncn(X〈1..4〉) → bncn
〈1..4〉

a∗bncn(a〈1..2〉 X〈2..4〉) → a∗bncn
〈2..4〉

anbnc∗〈1..4〉

anbnc∗(X〈1..4〉) → anbn
〈1..4〉

anbnc∗(X〈1..3〉 c〈3..4〉) → anbnc∗〈1..3〉

bncn
〈1..4〉

bncn(b〈2..3〉 X〈3..3〉 c〈3..4〉) → bncn
〈3..3〉

a∗bncn
〈2..4〉

a∗bncn(X〈2..4〉) → bncn
〈2..4〉

anbn
〈1..4〉

anbn(a〈1..2〉 X〈2..2〉 b〈2..4〉) → anbn
〈2..2〉

anbnc∗〈1..3〉

anbnc∗(X〈1..3〉) → anbn
〈1..3〉

bncn
〈3..3〉

bncn(ε〈3..3〉) → ε

bncn
〈2..4〉

bncn(b〈2..3〉 X〈3..3〉 c〈3..4〉) → bncn
〈3..3〉

anbn
〈2..2〉

anbn(ε〈2..2〉) → ε

anbn
〈1..3〉

anbn(a〈1..2〉 X〈2..2〉 b〈2..3〉) → anbn
〈2..2〉

{abc}

{abc, bc} {abc, ab}

{bc}

{abc}

{ab}

{abc}

{bc} {abc} {ab} {abc}

{bc} {bc} {ab} {ab}

{ε}

{bc}

{ε}

{ab}

{ε}

{bc}

{ε}

{ab}

{ε} {ε}

Figure 4: Bottom-up decorated parse forest for the input DAGabc|ab|bc.

261

right forest (i.e., to get a PRCG parser — not
a recognizer — which accepts a DAG as input)
we need to perform another walk on the previous
decorated forest.

3.3.2 The Top-Down Walk

The idea of the top-down walk on the parse
forest decorated by the bottom-up walk is to
(re)compute all the previous decorations starting
from the bottom-up decoration associated with
the instantiated start predicate. It is to be noted
that (the language defined by) each top-down
decoration is a subset of its bottom-up counterpart.
However, when a top-down decoration becomes
empty, the corresponding subtree must be erased
from the forest. If the bottom-up walk succeeds,
we are sure that the top-down walk will not
result in an empty forest. Moreover, if we
perform a new bottom-up walk on this reduced
forest, the new bottom-up decorations will denote
the same language as their top-down decorations
counterpart.

The forest is walked top-down starting from
the super-root. The constraint being that an
instantiatedA(~ρ)-clause is visited if and only if all
the occurrences ofA(~ρ) occurring in the RHS of
instantiated clauses have all already been visited.
This constraint can be satisfied for any non-cyclic
forest.

Initially, we assume that each argument of each
instantiated predicate has an empty decoration,
except for the argument of the super-root which is
decorated by the DAGR computed by the bottom-
up pass.

Now, assume that a top-down decoration has
been (fully) computed for each argument of
the instantiated predicateA0(~ρ0). For each
instantiated clause of the formcρ = A0(~ρ0) →
A1(~ρ1) . . . Ai(~ρi) . . . Am(~ρm), we perform the
following sequence:12

1. We perform the intersection of the top-down
decoration of each argument ofA0(~ρ0) with
the decoration computed by the bottom-up
pass for the same argument of the LHS
predicate ofcρ. If the result is empty,cρ is
erased from the forest.

2. For each LHS argument, the previous results
are dispatched over the symbols of this

12The decoration of each argument ofAi(~ρi) is either
initially empty or has already been partially computed.

argument.13 Thus, each instantiated LHS
symbol occurrence is decorated by its own
DAG. If the considered clause has several
occurrences of the same variable in the LHS
arguments (i.e., is bottom-up non-linear),
we perform the intersection of these DAGs
in order to leave a single decoration per
instantiated variable. If an intersection results
in an empty DAG, the current clause is erased
from the forest.

3. The LHS instantiated variable decorations
are propagated to the RHS arguments. This
propagation may result in DAG concatena-
tions when a RHS argument is made up of
several variables (i.e., is combinatorial).

4. At last, we associate to each argument
of Ai(~ρi) a new decoration which is
computed as the union of its previous top-
down decoration with the decoration just
computed.

Example 3. When we apply the previous al-
gorithm to the bottom-up parse forest of Exam-
ple 2, we get the top-down parse forest of Fig-
ure 5. In this parse forest, erased parts are
laid out in light gray. The more noticable points
w.r.t. the bottom-up forest are the decorations be-

tween anbncn(X〈1..4〉) → a∗bncn
〈1..4〉 anbnc∗〈1..4〉

and its RHS predicates a∗bncn
〈1..4〉 and

anbnc∗〈1..4〉 which are changed both to{abc}

instead of{abc, bc} and {abc, ab}. These two
changes induce the indicated erasings.

13Assume that~ρ0[k] = 〈p..q〉D, that the decoration DAG
associated with thekth argument ofA0(~ρ0) is D′

〈p..q〉 =

(Q′
〈p..q〉, Σ〈p..q〉, δ

′
〈p..q〉, p

′, F ′
〈p..q〉) (we haveL(D′

〈p..q〉) ⊆
L(D〈p..q〉)) and that~α0[k] = α1

kXα2
k and that〈i..j〉D is the

instantiation of the symbolX in cρ. Our goal is to extract
from D′

〈p..q〉 the decoration DAGD′
〈i..j〉 associated with

that instantiated occurrence ofX. This computation can be
helped if we maintain, associated with each decoration DAG
a function, sayd, which maps each state of the decoration
DAG to a set of states (bounds) of the input DAGD. If, as we
have assumed,D is minimal, each set of states is a singleton,
we can writed(p′) = p, d(f ′) = q for all f ′ ∈ F ′

〈p..q〉
and more generallyd(i′) ∈ Q if i′ ∈ Q′. Let I ′ = {i′ |
i′ ∈ Q′

〈p..q〉 ∧ d(i′) = i} andJ ′ = {j′ | j′ ∈ Q′
〈p..q〉 ∧

d(j′) = j}. The decoration DAGD′
〈i..j〉 is such that

L(D′
〈i..j〉) =

S
i′∈I′,j′∈J′{x | x is a path fromi′ to j′}.

Of course, together with the construction ofD′
〈i..j〉, its

associated functiond must also be built.

262

anbncn
〈1..4〉

anbncn(X〈1..4〉) → a∗bncn
〈1..4〉 anbnc∗〈1..4〉

a∗bncn
〈1..4〉

a∗bncn(X〈1..4〉) → bncn
〈1..4〉

a∗bncn(a〈1..2〉 X〈2..4〉) → a∗bncn
〈2..4〉

anbnc∗〈1..4〉

anbnc∗(X〈1..4〉) → anbn
〈1..4〉

anbnc∗(X〈1..3〉 c〈3..4〉) → anbnc∗〈1..3〉

bncn
〈1..4〉

bncn(b〈2..3〉 X〈3..3〉 c〈3..4〉) → bncn
〈3..3〉

a∗bncn
〈2..4〉

a∗bncn(X〈2..4〉) → bncn
〈2..4〉

anbn
〈1..4〉

anbn(a〈1..2〉 X〈2..2〉 b〈2..4〉) → anbn
〈2..2〉

anbnc∗〈1..3〉

anbnc∗(X〈1..3〉) → anbn
〈1..3〉

bncn
〈3..3〉

bncn(ε〈3..3〉) → ε

bncn
〈2..4〉

bncn(b〈2..3〉 X〈3..3〉 c〈3..4〉) → bncn
〈3..3〉

anbn
〈2..2〉

anbn(ε〈2..2〉) → ε

anbn
〈1..3〉

anbn(a〈1..2〉 X〈2..2〉 b〈2..3〉) → anbn
〈2..2〉

{abc}

{abc} {abc}

∅

{abc}

∅

{abc}

∅ {abc} ∅ {abc}

∅ {bc} ∅ {ab}

∅

{bc}

∅

{ab}

{ε}

{bc}

{ε}

{ab}

{ε} {ε}

Figure 5: Top-down decorated parse forest for the input DAGabc|ab|bc.

263

3.4 Time and Space Complexities

In this Section we study the time and size
complexities of the forest filtering algorithm.

Let us consider the sub-DAGD〈p..q〉 of the
minimal input DAG D and consider any (finite)
regular languageL ⊆ L(D〈p..q〉), and letDL be
the minimal DAG s.t.L(DL) = L. We show, on
an example, that|DL|may be an exponential w.r.t.
|D〈p..q〉|.

Consider, for a givenh > 0, the language
(a|b)h. We know that this language can be
represented by the minimal DAG withh+1 states
of Figure 6.

Assume that h = 2k and consider the
sub-language L2k of (a|b)2k (nested well-
parenthesized strings) which is defined by

1. L2 = {aa, bb} ;

2. k > 1, L2k = {axa, bxb | x ∈ L2k−2},

It is not difficult to see that the DAG in Figure 7
definesL2k and is minimal, but its size2k+2 − 2
is an exponential in the size2k + 1 of the minimal
DAG for the language(a|b)2k.

This results shows that, there exist cases in
which some minimal DAGsD′ that define sub-
languages of minimal DAGsD may have a
exponential size (i.e.,|D′| = O(2|D|). In other
words, when, during the bottom-up or top-down
walk, we compute union of DAGs, we may fall
on these pathologic DAGs that will induce a
combinatorial explosion in both time and space.

3.5 Implementation Issues

Of course, many improvements may be brought
to the previous principle algorithms in practical
implementations. Let us cite two of them. First it
is possible to restrict the number of DAG copies:
a DAG copy is not useful if it is the last reference
to that DAG.

We shall here devel the second point on a little
more: if an argument of a predicate is never
used in ant non-linearity, it is only a waste of
time to compute its decoration. We say thatAk,
the kth argument of the predicateA is a non-
linear predicate argumentif there exists a clause
c in which A occurs in the RHS and whose
kth argument has at least one common variable
another argumentBh of some predicateB of
the RHS (if B = A, then of coursek and h
must be different). It is clear thatBh is then

non-linear as well. It is not difficult to see that
decorations needs only to be computed if they are
associated with a non-linear predicate argument. It
is possible to compute those non-linear predicate
arguments statically (when building the parser)
when the PRCG is defined within a single module.
However, if the PRCG is given in several modules,
this full static computation is no longer possible.
The non-linear predicate arguments must thus
be identified at parse time, when the whole
grammar is available. This rather trivial algorithm
will not be described here, but it should be
noted that it is worth doing since in practice it
prevents decoration computations which can take
an exponential time.

4 Conclusion

In this paper we have shown how PRCGs can
handle DAGs as an input. If we consider the linear
PRCG, the one equivalent to LCFRS, the parsing
time remains polynomial. Moreover, input DAGs
necessitate only rather cosmetic modifications in
the standard parser.

In the non-linear case, the standard parser may
produce illegal parses in its output shared parse
forest. It may even produce a (non-empty) shared
parse forest though no sentences of the input DAG
are in the language defined by our non-linear
PRCG. We have proposed a method which uses
the (slightly modified) standard parser but prunes,
within extra passes, its output forest and leaves all
and only valid parses. During these extra bottom-
up and top-down walks, this pruning involves
the computation of finite languages by means of
concatenation, union and intersection operations.
The sentences of these finite languages are always
substrings of the words of the input DAGD.
We choose to represent these intermediate finite
languages by DAGs instead of sets of strings
because the size of a DAG is, at worst, of the same
order as the size of a set of strings but it could, in
some cases, be exponentially smaller.

However, the time taken by this extra pruning
pass cannot be guaranteed to be polynomial,
as expected from previously known complexity
results (Bertsch and Nederhof, 2001). We have
shown an example in which pruning takes an
exponential time and space in the size ofD. The
deep reason comes from the fact that ifL is a
finite (regular) language defined by some minimal
DAG D, there are cases where a sub-language of

264

0 1 2 h− 1 h

a

b

a

b

a

b

Figure 6: Input DAG associated with the language(a|b)h, h > 0.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

.

.

.

.

.

.

.

.

.

.

.

.

2k+2 − 4

2k+2 − 3

2k+2 − 2

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

Figure 7: DAG associated with the language of nested well-parenthesized strings of length2k.

L may require to be defined by a DAG whose size
is an exponential in the size ofD. Of course this
combinatorial explosion is not a fatality, and we
may wonder whether, in the particular case of NLP
it will practically occur?

References

Franois Barthélemy, Pierre Boullier, Philippe De-
schamp, and́Eric de la Clergerie. 2001. Guided
parsing of range concatenation languages. InPro-
ceedings of the 39th Annual Meeting of the Associ-
ation for Comput. Linguist. (ACL’01), pages 42–49,
University of Toulouse, France.

Eberhard Bertsch and Mark-Jan Nederhof. 2001. On
the complexity of some extensions of rcg parsing. In
Proceedings of IWPT’01, Beijing, China.

Pierre Boullier, 2004. New Developments in Pars-
ing Technology, volume 23 of Text, Speech and
Language Technology, chapter Range Concatena-
tion Grammars, pages 269–289. Kluwer Academic
Publishers, H. Bunt, J. Carroll, and G. Satta edition.

Jeffrey D. Hopcroft and John E. Ullman. 1979.
Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, Mass.

Bernard Lang. 1994. Recognition can be harder than
parsing. Computational Intelligence, 10(4):486–
494.

K. Vijay-Shanker, David Weir, and Aravind K.
Joshi. 1987. Characterizing structural descriptions
produced by various grammatical formalisms. In
Proceedings of the 25th Meeting of the Association
for Comput. Linguist. (ACL’87), pages 104–111,
Stanford University, CA.

265

