HPSG Supertagging: A Sequence Labeling View

Yao-zhong Zhang |

Takuya Matsuzaki

Jun’ichi Tsujii'*

T Department of Computer Science, University of Tokyo
T School of Computer Science, University of Manchester
§National Centre for Text Mining, UK
{vaozhong.zhang, matuzaki, tsujii}@is.s.u-tokyo.ac.ijp

Abstract

Supertagging is a widely used speed-up
technique for deep parsing. In another
aspect, supertagging has been exploited
in other NLP tasks than parsing for
utilizing the rich syntactic information
given by the supertags. However, the
performance of supertagger is still a
bottleneck for such applications. In this
paper, we investigated the relationship
between supertagging and parsing, not
just to speed up the deep parser; We
started from a sequence labeling view
of HPSG supertagging, examining how
well a supertagger can do when separated
from parsing. Comparison of two types
of supertagging model, point-wise model
and sequential model, showed that the
former model works competitively well
despite its simplicity, which indicates
the true dependency among supertag
assignments is far more complex than the
crude first-order approximation made in
the sequential model. We then analyzed
the limitation of separated supertagging
by using a CFG-filter. The results showed
that big gains could be acquired by resort-
ing to a light-weight parser.

1 Introduction

Supertagging is an important part of lexicalized
grammar parsing. A high performance supertag-
ger greatly reduces the load of a parser and ac-
celerates its speed. A supertag represents a lin-
guistic word category, which encodes syntactic be-
havior of the word. The concept of supertagging
was first proposed for lexicalized tree adjoining
grammar (LTAG) (Bangalore and Joshi, 1999) and
then extended to other lexicalized grammars, such

210

as combinatory categorial grammar (CCG) (Clark,
2002) and Head-driven phrase structure grammar
(HPSG) (Ninomiya et al., 2006). Recently, syn-
tactic information in supertags has been exploited
for NLP tasks besides parsing, such as NP chunk-
ing (Shen and Joshi, 2003), semantic role label-
ing (Chen and Rambow, 2003) and machine trans-
lation (Hassan et al., 2007). Supertagging serves
there as an implicit and convenient way to incor-
porate rich syntactic information in those tasks.
Improving the performance of supertagging can
thus benefit these two aspects: as a preproces-
sor for deep parsing and as an independent, al-
ternative technique for “almost” parsing. How-
ever, supertags are derived from a grammar and
thus have a strong connection to parsing. To fur-
ther improve the supertagging accuracy, the rela-
tion between supertagging and parsing is crucial.
With this motivation, we investigate how well a se-
quence labeling model can do when it is separated
from a parser, and to what extent the ignorance of
long distance dependencies in the sequence label-
ing formulation affects the supertagging results.
Specifically, we evaluated two different types
of supertagging model, point-wise model and se-
quential model, for HPSG supertagging. CFG-
filter was then used to empirically evaluate the
effect of long distance dependencies in supertag-
ging. The point-wise model achieved competitive
result of 92.53% accuracy on WSJ-HPSG tree-
bank with fast training speed, while the sequen-
tial model augmented with supertag edge features
did not give much further improvement over the
point-wise model. Big gains acquired by using
CFG-filter indicates that further improvement may
be achieved by resorting to a light-weight parser.

2 HPSG Supertags

HPSG (Pollard and Sag, 1994) is a kind of lexi-
calized grammar. In HPSG, many lexical entries
are used to express word-specific characteristics,

Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 210-213,
Paris, October 2009. (©)2009 Association for Computational Linguistics

while only small amount of rule schemas are used
to describe general constructions. A supertag in
HPSG corresponds to a template of lexical entry.
For example, one possible supertag for “big” is
“[<ADJP>]N_Ixm”, which indicates that the syn-
tactic category of “big” is adjective and it modi-
fies a noun to its right. The number of supertags
is generally much larger than the number of labels
used in other sequence labeling tasks; Comparing
to 45 POS tags used in PennTreebank, the HPSG
grammar used in our experiments includes 2,308
supertags. Because of this, it is often very hard or
even impossible to apply computationary demand-
ing methods to HPSG supertagging.

3 Perceptron and Bayes Point Machine

Perceptron is an efficient online discriminative
training method. We used perceptron with weight-
averaging (Collins, 2002) as the basis of our su-
pertagging model. We also use perceptron-based
Bayes point machine (BPM) (Herbrich et al.,
2001) in some of the experiments. In short, a BPM
is an average of a number of averaged perceptrons’
weights. We use average of 10 averaged percep-
trons, each of which is trained on a different ran-
dom permutation of the training data.

3.1 Formulation

Here we follow the definition of Collins’ per-
ceptron to learn a mapping from the input space
(w,p) € W x P to the supertag space s € S. We
use function GEN(w,p) to indicate all candidates
given input (w, p). Feature function f maps a train-
ing sample (w, p, s) € W x P x S to a point in the
feature space R%. To get feature weights o € R?
of feature function, we used the averaged percep-
tron training method described in (Collins, 2002),
and the average of its 10 different runs (i.e., BPM).
For decoding, given an input (w,p) and a vector
of feature weights o, we want to find an output s
which satisfies:

F(va) =

argmax - f(w,p,s)

scGEN(w, p)

For the input (w,p), we treat it in two fash-
ions: one is (w,p) representing a single word
and a POS tag. Another is (w,p) representing
whole word and POS tags sequence. We call them
point-wise model and sequential model respec-
tively. Viterbi algorithm is used for decoding in
sequential model.

211

template type \ template
Word Wi, Wi—1,Wit1,
wi_l&wi, wi&wH_l
POS Dis Di—15 Pi—25 Pi+1»
Pi+2> Pi—1&pi, pi—2&pi—1,
Pi—1&pit1, pi&epiv1, pit1&piva
Word-POS pi—1&w;, p;&w;, piv1&w;
Supertag’ Si—1,Si—2&si_1
Substructure {ssi1,...,88; N} x Word

{ssi1,..., ssi N} x POS

{ssi1,...,s8i N} x Word-POS

{331‘—1,17 cey Ssi—l,N}X
{SSZ‘J, ceey S.S,’Z'J\[}Jr

Table 1: Feature templates for point-wise model
and sequential model. Templates with | are only
used by sequential model. ss; ; represents j-th
substructure of supertag at ¢. For briefness, s; is
omitted for each template. “x” means set-product.
e.g., {ab}x{AB}={a&A,a&B.,b&A b&B}

3.2 Features

Feature templates are listed in Table 1. To make
the results comparable with previous work, we
adopt the same feature templates as Matsuzaki et.
al. (2007). For sequential model, supertag con-
texts are added to the features. Because of the
large number of supertags, those supertag edge
features could be very sparse. To alleviate this
sparseness, we extracted sub-structures from the
lexical template of each supertag, and use them for
making generalized node/edge features as shown
in Table 1. The sub-structures we used include
subcategorization frames (e.g., subject=NP, ob-
ject=NP_PP), direction and category of modifiee
phrase (e.g., mod_left=VP), voice and tense of a
verb (e.g., passive_past).

3.3 CFG-filter

Long distance dependencies are also encoded in
supertags. For example, when a transitive verb
gets assigned a supertag that specifies it has a PP-
object, in most cases a preposition to its right must
be assigned an argument (not adjunct) supertag,
and vice versa. Such kind of long distance context
information might be important for supertag dis-
ambiguation, but is not easy to incorporate into a
sequence labeling model separated from a parser.
To examine the limitation of supertagging sep-
arated from a parser, we used CFG-filter as an ap-

Model Name | Acc%
PW-AP 92.29
SEQ-AP 92.53
PW-AP+CFG | 93.57
SEQ-AP+CFG | 93.68

Table 2: Averaged 10-cross validation of averaged
perceptron on Section 02-21.

proximation of an HPSG parser. We firstly cre-
ated a CFG that approximates the original HPSG
grammar, using the iterative method by Kiefer
and Krieger (2000). Given the supertags as pre-
terminals, the approximating CFG was then used
for finding a maximally scored sequence of su-
pertags which satisfies most of the grammatical
constraints in the original HPSG grammar (Mat-
suzaki et al., 2007). By comparing the supertag-
ging results before and after CFG-filtering, we can
quantify how many errors are caused by ignorance
of the long-range dependencies in supertagger.

4 Experiments and Analysis

We conducted experiments on WSJ-HPSG tree-
bank corpus (Miyao, 2006), which was semi-
automatically converted from the WSJ portion of
PennTreebank. The number of training iterations
was set to 5 for all models. Gold-standard POS
tags are used as input. The performance is evalu-
ated by accuracy' and speed of supertagging on an
AMD Opteron 2.4GHz server.

Table 2 shows the averaged results of 10-
fold cross-validation of averaged perceptron (AP)
models® on section 02-21. We can see the dif-
ference between point-wise AP model and se-
quential AP model is small (0.24%). It becomes
even smaller after CFG-filtering (0.11%). Table
3 shows the supertagging accuracy on section 22
based on BPM. Although not statistically signif-
icantly different from previous ME model (Mat-
suzaki et al., 2007), point-wise model (PW-BPM)
achieved competitive result 92.53% with faster
training. In addition, 0.27% and 0.29% gains were
brought by using BPM from PW-AP (92.26%) and
PW-SEQ (92.54%) with P-values less than 0.05.

The improvement by using sequential mod-
els (PW-AP—SEQ-AP: 0.24%, PW-BPM—SEQ-
BPM: 0.3%, statistically significantly different),

“UNK” supertags are ignored in evaluation as previous.

2For time limitation, cross validation for BPM was not
conducted.

212

Model Name Acc% | Training/
Testing Time *
ME (Matsuzaki 07°) 9245 | ~3h/12s
PW-BPM 92.53 | 285s/10s
SEQ-BPM 92.83 | 1721s/13s
PW-BPM+SUB 92.68 | 1275s/25s
SEQ-BPM+SUB 92.99 | 9468s/107s
PW-BPM+CFG 93.60 | 285s/78s
SEQ-BPM+CFG 93.70 | 1721s/195s
PW-BPM+SUB+CFG | 93.72 | 1275s/170s
SEQ-BPM+SUB+CFG | 93.88 | 9468s/1011s

Table 3: Supertagging accuracy and training&
testing speed on section 22. (1) Test time was cal-
culated on totally 1648 sentences.

compared to point-wise models, were not so large,
but the training time was around 6 times longer.
We think the reason is twofold. First, as previous
research showed, POS sequence is very informa-
tive in supertagging (Clark, 2004). A large amount
of local syntactic information can be captured in
POS tags of surrounding words, although a few
long-range dependencies are of course not. Sec-
ond, the number of supertags is large and the su-
pertag edge features used in sequential model are
inevitably suffered from data sparseness. To alle-
viate this, we extracted sub-structure from lexical
templates (i.e., lexical items corresponding to su-
pertags) to augment the supertag edge features, but
only got 0.16% improvement (SEQ-BPM+SUB).
Furthermore, we also got 0.15% gains with P-
value less than 0.05 by incorporating the sub-
structure features into point-wise model (PW-
BPM+SUB). We hence conclude that the contri-
bution of the first-order edge features is not large
in sequence modeling for HPSG supertagging.

As we explained in Section 3.3, sequence label-
ing models have inherent limitation in the ability
to capture long distance dependencies between su-
pertags. This kind of ambiguity could be easier to
solve in a parser. To examine this, we added CFG-
filter which works as an approximation of a full
HPSG parser, after the sequence labeling model.
As expected, there came big gains of 1.26% (from
PW-AP to PW-AP+CFG) and 1.15% (from PW-
BPM to PW-BPM+CFG). Even for the sequen-
tial model we also got 1.15% (from SEQ-AP to
SEQ-AP+CFG) and 0.87% (from SEQ-BPM to
SEQ-BPM+CFG) respectively. All these models
were statistically significantly different from orig-

inal ones.

We also gave error analysis on test results.
Comparing SEQ-AP with SEQ-AP+CFG, one of
the most frequent types of “correct supertag” by
the CFG-filter was for word “and”, wherein a su-
pertag for NP-coordination (“NP and NP”) was
corrected to one for VP-coordination (“VP and
VP” or “S and S”). It means the disambiguation
between the two coordination type is difficult for
supertaggers, presumably because they looks very
similar with a limited length of context since the
sequence of the NP-object of left conjunct, “and”,
the NP subject of right conjunct looks very similar
to a NP coordination. The different assignments
by SEQ-AP+CFG from SEQ-AP include 725 right
corrections, while it changes 298 correct predic-
tions by SEQ-AP to wrong assignments. One pos-
sible reason for some of “wrong correction” is re-
lated to the approximation of grammar. But this
gives clue that for supertagging task: just using
sequence labeling models is limited, and we can
resort to use some light-weight parser to handle
long distance dependencies.

Although some of the ambiguous supertags
could be left for deep parsing, like multi-tagging
technique (Clark, 2004), we also consider the
tasks where supertags can be used while conduct-
ing deep parsing is too computationally costly. Al-
ternatively, focusing on supertagging, we could
treat it as a sequence labeling task, while a conse-
quent light-weight parser is a disambiguator with
long distance constraint.

5 Conclusions

In this paper, through treating HPSG supertag-
ging in a sequence labeling way, we examined
the relationship between supertagging and parsing
from an angle. In experiment, even for sequential
models, CFG-filter gave much larger improvement
than one gained by switching from a point-wise
model to a sequential model. The accuracy im-
provement given by the CFG-filter suggests that
we could gain further improvement by combining
a supertagger with a light-weight parser.

Acknowledgments

Thanks to the anonymous reviewers for valuable
comments. The first author was partially sup-
ported by University of Tokyo Fellowship (UT-
Fellowship). This work was partially supported
by Grant-in-Aid for Specially Promoted Research

213

and Special Coordination Funds for Promoting
Science and Technology (MEXT, Japan).

References

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing. Com-
putational Linguistics, 25:237-265.

John Chen and Owen Rambow. 2003. Use of deep
linguistic features for the recognition and labeling
of semantic arguments. In Proceedings of EMNLP-
2003, pages 41-48.

Stephen Clark. 2002. Supertagging for combinatory
categorial grammar. In Proceedings of the 6th In-
ternational Workshop on Tree Adjoining Grammars
and Related Frameworks (TAG+ 6), pages 19-24.

Stephen Clark. 2004. The importance of supertagging
for wide-coverage ccg parsing. In Proceedings of
COLING-04, pages 282-288.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. pages 1-8.

Hany Hassan, Mary Hearne, and Andy Way. 2007. Su-
pertagged phrase-based statistical machine transla-
tion. In Proceedings of ACL 2007, pages 288-295.

Ralf Herbrich, Thore Graepel, and Colin Campbell.
2001. Bayes point machines. Journal of Machine
Learning Research, 1:245-279.

Bernd Kiefer and Hans-Ulrich Krieger. 2000. A
context-free approximation of head-driven phrase
structure grammar. In Proceedings of IWPT-2000,
pages 135-146.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsu-
jii. 2007. Efficient hpsg parsing with supertagging
and cfg-filtering. In Proceedings of IJCAI-07, pages
1671-1676.

Yusuke Miyao. 2006. From Linguistic Theory to Syn-
tactic Analysis: Corpus-Oriented Grammar Devel-
opment and Feature Forest Model. Ph.D. Disserta-
tion, The University of Tokyo.

Takashi Ninomiya, Yoshimasa Tsuruoka, Takuya Mat-
suzaki, and Yusuke Miyao. 2006. Extremely lex-
icalized models for accurate and fast hpsg parsing.
In Proceedings of EMNLP-2006, pages 155-163.

Carl Pollard and Ivan A. Sag. 1994. Head-driven
Phrase Structure Grammar. University of Chicago /
CSLI.

Libin Shen and Aravind K. Joshi. 2003. A snow based
supertagger with application to np chunking. In Pro-
ceedings of ACL 2003, pages 505-512.

