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Abstract target sentences are parsed (Charniak et al., 2003;
Galley and Manning, 2009). Since training takes
In this short paper, an off-the-shelf maxi-  hoyrs or days, researchers are also more reluctant

mum entropy-based POS-tagger is used as  t experiment with new features, and it is very
a partial parser to improve the accuracy of  |iely that the features typically used in parsing
an extremely fast linear time dependency g suboptimal in, say, machine translation.

in multilingual unlabeled POS sequence  gisq easier to understand, which makes debugging,
parsing. cross-domain adaption or cross-language adapta-

tion a lot easier. Finally, state-of-the-art depen-
dency parsers may in fact be outperformed by sim-
The dependency parsing literature has grown in alpler systems on non-standard test languages with,
directions the past 10 years or so. Dependencgay, richer morphology or more flexible word or-
parsing is used in a wide variety of applications,der.
and many different parsing techniques have been Vine parsing is a parsing strategy that guaran-
proposed. tees fast parsing and smaller models, but the ac-
Two dependency parsers have become moreuracy of dependency-based vine parsers has been
popular than the rest, namely MSTParser (Mchon-competitive (Eisner and Smith, 2005; Dreyer
Donald et al., 2005) and MaltParser (Nivre etetal., 2006).
al., 2007). MSTParser is slightly more accu- This paper shows how the accuracy of
rate than MaltParser on most languages, especiallyependency-based vine parsers can be improved
when dependencies are long and non-projectivedy 1-5% across six very different languages with
but MaltParser is theoretically more efficient as ita very small cost in training time and practically
runs in linear time. Both are relatively slow in no cost in parsing time.
terms of training (hours, sometimes days), and rel- The main idea in our experiments is to use
atively big models are queried in parsing. a maximum entropy-based part-of-speech (POS)
MSTParser and MaltParser can be optimized fotagger to identify roots and tokens whose heads
speed in various waysput the many applications are immediately left or right of them. These are
of dependency parsers today may turn model siztasks that a tagger can solve. You simply read
into a serious problem. MSTParser typically takesoff a tagged text from the training, resp. test, sec-
about a minute to parse a small standard test suitéipn of a treebank and replace all tags of roots,
say 2-300 sentences; the stand-alone version of.tokens whose syntactic head is an artificial root
MaltParser may take 5-8 minutes. Such parsingnode, with a new tag ROOT. You then train on
times are problematic in, say, a machine translathe training section and apply your tagger on the
tion system where for each sentence pair multipléest section. The decisions made by the tagger

—Y— re then ntl har nstraint
!Recent work has optimized MaltParser considerably fora e then, subsequently, used as hard constraints by

speed. Goldberg and Elhadad (2008) speed up the MaltPars¥PUr parser. When the parser then tries to find root
by a factor of 30 by simplifying the decision function for the nodes, for instance, it is forced to use the roots as-

classifiers. Parsing is still considerably slower than weitin ; ; ; ;
vine parser, i.e. a test suite is parsed in about 15-20 sspondSIQned by the tagger. This strategy Is meanlngful

whereas our vine parser parses a test suite in less than twhthe tagger has better precision for roots than the
seconds. parser. If it has better recall than the parser, the
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parser may be forced to select roots only from thehe maximum entropy library in Zhang (2004) was
set of potential roots assigned by the tagger. In ouused to identify arcs to the root node and to tokens
experiments, only the first strategy was used (sincenmediately left or right of the dependent. This
the tagger’s precision was typically better than itswas done by first extracting a tagged text from
recall). each treebank with dependents of the root node as-
The dependency parser used in our experimentsigned a special tag ROOT. Similarly, tagged texts
is very simple. It is based on the Chu-Liu- were extracted in which dependents of their im-
Edmonds algorithm (Edmonds, 1967), which ismediate left, resp. right neighbors, were assigned a
also used in the MSTParser (McDonald et al.special tag. Our tagger was trained on the texts ex-
2005), but it is informed only by a simple MLE tracted from the training sections of the treebanks
training procedure and omits cycle contraction inand evaluated on the texts extracted from the test
parsing. This means that it produces cyclic graphssections. The number of gold standard, resp. pre-
In the context of poor training, insisting on acyclic dicted, ROOT/LEFT/RIGHT tags are presented in
output graphs often compromises accuracy>by Figure 1. Precision and f-score are also computed.
10%. On top of this parser, which is super fast butNote that since our parser uses information from
often does not even outperform a simple structurabur tagger as hard constraints, i.e. it disregards
baseline, hard and soft constraints on dependen@rcs to the root node or immediate neighboos
length are learned discriminatively. The speed opredicted by our tagger, precision is really what
the parser allows us to repeatedly parse a tuning important, not f-score. Or more precisely, preci-
section to optimize these constraints. In particularsion indicatesf our tagger is of any help to us, and
the tuning section (about 7500 tokens) is parsediscore tells us to what extent it may be of help.
a fixed number of times for each POS/CPOS tag
to find the optimal dependency length constraint® Results
when that tag is the tag of the head or dependenfpe results in Figure 2 show that using a maxi-
word. In general, this discriminative training pro- ,,um entropy-based POS tagger to identify roots
cedure takes about 10 minutes for an average-size(gzoo-l—)’ tokens with immediate left heads (LEFT)

treebank. The parser o_nIy produces unlabeled degng tokens with immediate (RIGHT) heads im-
pendency graphs and is still under developmenty gyes the accuracy of a baseline vine parser

While accuracy is below state-of-the-art resultS.ross the board for all languages measured in
our improved parser significantly outperforms a tarms of unlabeled attachment score (ULA), or de-
default version of the MaltParser that is restricted.raases are insignificant (Czech and Turkish). For
to POS tags only, on 5/6 languaggs < 0.05), g six languages, there is a combination of ROOT,
and it significantly outperforms the baseline vine| EFT and RIGHT that significantly outperforms
parser on all languages. the vine parser baseline. In 4/6 cases, absolute im-
2 Data provements are= 2%. The score for Dutch is im-
proved by> 4%. The extended vine parser is also
Our languages are chosen from different languagsignificantly better than the MaltParser restricted
families. Arabic is a Semitic language, Czech isto POS tags on 5/6 languages. MaltParser is prob-
Slavic, Dutch is Germanic, Italian is Romance,ably better than the vine parser wrt. Japanese be-
Japanese is Japonic-Ryukyuan, and Turkish isause average sentence length in this treebank is
Uralic. All treebanks, except Italian, were also very short (8.9); constraints on dependency length
used in the CONLL-X Shared Task (Buchholz anddo not really limit the search space.
Marsi, 2006). The Italian treebank is the law In spite of the fact that our parser only uses POS
section of the TUT Treebank used in the Evalitatags (except for the maximum entropy-based tag-
2007 Dependency Parsing Challenge (Bosco et alger which considers both words and tags), scores

2000). are now comparable to more mature dependency
_ parsers: ULA excl. punctuation for Arabic is
3 Experiments 70.74 for Vine+ROOT+LEFT+RIGHT which is

The Python/C++ implementation of the maximum better than six of the systems who participated in

entropy-based part-of-speech (POS) tagger firdf'® CONLL-X Shared Task and who had access to
described in Ratnaparkhi (1998) that comes wittfl! data in the treebank, i.e. tokens, lemmas, POS
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Arabic Gold Predicted Precision F-score
ROOT 443 394 89.09 83.87
LEFT 3035 3180 84.28 86.24
RIGHT | 313 196 82.14 63.26
Czech Gold Predicted Precision F-score
ROOT 737 649 85.36 79.94
LEFT 1485 1384 85.12 82.12
RIGHT | 1288 1177 87.51 83.57
Dutch Gold Predicted Precision F-score
ROOT 522 360 74.44 60.77
LEFT 1734 1595 87.02 83.39
RIGHT | 1300 1200 87.00 83.52
Italian Gold Predicted Precision F-score
ROOT 100 58 74.36 65.17
LEFT 1601 1640 90.30 91.39
RIGHT | 192 129 84.87 74.14
Japanese Gold Predicted Precision F-score
ROOT 939 984 85.06 87.05
LEFT 1398 1382 97.76 97.19
RIGHT | 2838 3016 92.27 95.08
Turkish | Gold Predicted Precision F-score
ROOT 694 685 85.55 84.99
LEFT 750 699 91.70 88.47
RIGHT | 3433 3416 84.19 83.98

Figure 1: Tag-specific evaluation of our tagger on the eidhtexts.

Arabic Czech Dutch Italian Japanese Turkish
MaltParser 66.22 67.78 65.03 75.48 89.13 68.94
Vine 67.99 66.70 65.98 7550 83.15 68.53
Vine+ROOT 68.68 66.65 66.21 78.06 83.82 68.45
Vine+ROOT+LEFT 69.68 68.14 68.05 77.14 84.64 68.37
Vine+RIGHT 68.50 67.38 68.18 78.55 84.17 69.87
Vine+ROOT+RIGHT 69.20 67.32 68.40 78.29 84.78 69.79
Vine+ROOT+LEFT+RIGHT| 70.28 68.70 70.06 77.26 85.45 69.74

Figure 2: Labeled attachment scores (LASs) for MaltParsetdd to POS tags, our baseline vine parser
(Vine) and our extensions of Vine. Best scores bold-faced.
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tags, features and dependency relations; not justhich may be used to hardwire dependency rela-
the POS tags as in our case. In particular, our retions into candidate weight matrices. POS taggers
sult is 2.28 better than Dreyer et al. (2006) whomay also be used to identify other dependency re-
also use soft and hard constraints on dependendgtions or more fine-grained features that can im-
lengths. They extend the parsing algorithm in Eisfprove the accuracy of dependency parsers.
ner and Smith (2005) to labelédbest parsing and
use a reranker to find the best parse according to
predefined global features. ULA excl. punctuationRmcen'mc‘:"S
for Turkish is 67.06 which is better than six of the Cristina Bosco, Vincenzo Lombardo, Daniela Vassallo,
(60.45) Italian. INLREC, pages 99-105, Athens, Greece.

The improvements come at an extremely lowSabine Buchholz and Erwin Marsi. 2006. CONLL-X
cost. The POS tagger S|mp|y stores its decisions shared task on multlllngual dependency parsing. In
in a very small table, typically 5-10 cells per sen- CONLL-X, pages 149-164, New York City, NY.
tence, that is queried in no time in parsing. ParsEugene Charniak, Kevin Knight, and Kenji Yamada.
ing a standard small test suite takes less than two 2003. Syntax-based language models for statistical
seconds, and the cost of the additional look-up is Machine translation. IMT Summit IX, New Or-

. . leans, Louisiana.
too small to be measured. The training time of the
maximum entropy-baged tagger is typ|ca||y a matMarkUS Drgyer, Dgwd A. Smlth, and .Noah A. Smlth.
ter of seconds or half a minute. Even running it on 2006& Vmg; parsing anoll.gm?l;(m risk rerz%nlszmgéor
speed and precision. 1@ -X, pages 201-205,

the 1249k Prague Dependency Treebank (Czech) eraw York Cl?ty, NY. ] pagd

is only a matter of minutes. _ _
J. Edmonds. 1967. Optimum branchingsournal

71:233-240.

Vine parsers are motivated by efficiency and fO-3ason Eisner and Noah A. Smith. 2005. Parsing with

bustness (Dreyer et al., 2006), which has become soft and hard constraints on dependency length. In
more and more important over the last few years, IWPT 05, pages 30-41, Vancouver, Canada.

but none (_)f the systems Introduqed in the IIter‘MicheI Galley and Cristopher Manning. 20089.
ature provide competitive results in terms of ac-  Quadratic time dependency parsing for machine
curacy. Our experiments show how dependency- translation. INACL’'09, Singapore, Singapore. To
based vine parsers can be significantly improved appear.

by usmg a mgximum entrgpy-based POS tag9&Yoav Goldberg and Michael Elhadad. 2008.
for initial partial parsing with almost no cost in  splitSVM: fast, space-efficient, non-heuristic, poly-
terms of training and parsing time. nomial kernel computation for NLP applications. In

Our choice of parser restricted us in a few re- ACL 08, Short Papers, pages 237-240, Columbus,

. hio.
spects. Most importantly, our results are below Ohio

state-of-the-art results, and it is not clear if theRyan McDonald, Fernando Pereira, Kiril Ribarov, and

strategy scales to more accurate parsers. The strat-92n Haji¢. 2005. Non-projective dependency pars-
f using a POS tadger to do partial parsing and ing using spanning tree algorithms. H’lrhTT-EMNLP .
€gy orusing 99 partial parsing 2005, pages 523-530, Vancouver, British Columbia.

subsequently forward high precision decisions to )

2 parser only works on graph-based or constraint!®BC® V2, SR TRl S0CCR it ond Deniz
based dependency parsers where previous deci-v, ot~ '2007. The CONLL 2007 shared task on
SIons can be hardWIl’ed Into Cand|date We|ght ma- dependency parsing. BEMNLP-CONLL’ 07' pages
trices by setting weights to 0. It would be difficult ~ 915-932, Prague, Czech Republic.

if at all possible to implement in history-based de'Adwait Ratnaparkhi. 1998 Maximum entropy mod-

pendency parsers such as MaltParser. Experiments gsfor natural language ambiguity resolution. Ph.D.
will be performed with the MSTParser soon. thesis, University of Pennsylvania.

Our parser also restricted us to considering UNfe Zhang.  2004. Maximum entropy mod-
labeled dependency graphs. A POS tagger, how- gjing toolkit for Python and C-++. Uni-
ever, can also be used to identify grammatical versity of Edinburgh. Available at home-
functions (subjects, objects, ...), for example, Pages.inf.ed.ac.uk/lzhangl0/maxesalkit.html.
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