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Abstract

Most cellular telephones use numeric key-
pads, where texting is supported by dic-
tionaries and frequency models. Given a
key sequence, the entry system recognizes
the matching words and proposes a rank-
ordered list of candidates. The ranking
quality is instrumental to an effective en-
try.

This paper describes a new method to en-
hance entry that combines syntax and lan-
guage models. We first investigate com-
ponents to improve the ranking step: lan-
guage models and semantic relatedness.
We then introduce a novel syntactic model
to capture the word context, optimize
ranking, and then reduce the number of
keystrokes per character (KSPC) needed
to write a text. We finally combine this
model with the other components and we
discuss the results.

We show that our syntax-based model
reaches an error reduction in KSPC of
12.4% on a Swedish corpus over a base-
line using word frequencies. We also show
that bigrams are superior to all the other
models. However, bigrams have a mem-
ory footprint that is unfit for most devices.
Nonetheless, bigrams can be further im-
proved by the addition of syntactic mod-
els with an error reduction that reaches
29.4%.

1 Introduction

The 12-key input is the most common keypad lay-
out on cellular telephones. It divides the alpha-
bet into eight lists of characters and each list is
mapped onto one key as shown in Figure 1. Since
three or four characters are assigned to a key, a
single key press is ambiguous.

Figure 1: Standard 12-button keypad layout (ISO
9995-8).

1.1 Multi-tap

Multi-tap is an elementary method to disam-
biguate input for a 12-button keypad. Each charac-
ter on a key is assigned an index that corresponds
to its visual position, e.g. ‘A’, 1, ‘B’, 2, and ‘C’,
3 and each consecutive stroke – tap – on the same
key increments the index. When the user wants
to type a letter, s/he presses the corresponding key
until the desired index is reached. The user then
presses another key or waits a predefined time to
verify that the correct letter is selected. The key
sequence 8-4-4-3-3, for example, leads to the word
the.

Multi-tap is easy to implement and no dictio-
nary is needed. At the same time, it is slow and
tedious for the user, notably when two consecutive
characters are placed on the same key.

1.2 Single Tap with Predictive Text

Single tap with predictive text requires only one
key press to enter a character. Given a keystroke
sequence, the system proposes words using a dic-
tionary or language modeling techniques.

Dictionary-based techniques search the words
matching the key sequence in a list that is stored
by the system (Haestrup, 2001). While some
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keystroke sequences produce a unique word, oth-
ers are ambiguous and the system returns a list
with all the candidates. The key sequence 8-4-3,
for example, corresponds to at least three possi-
ble words: the, tie, and vie. The list of candidates
is then sorted according to certain criteria, such
as the word or character frequencies. If the word
does not exist in the dictionary, the user has to fall
back to multi-tap to enter it. The T91 commercial
product is an example of a dictionary-based sys-
tem (Grover et al., 1998).

LetterWise (MacKenzie et al., 2001) is a tech-
nique that uses letter trigrams and their frequen-
cies to predict the next character. For example,
pressing the key 3 after the letter bigram ‘th’ will
select ‘e’, because the trigram ‘the’ is far more fre-
quent than ‘thd’ or ‘thf’ in English. When the sys-
tem proposes a wrong letter, the user can access
the next most likely one by pressing a next-key.
LetterWise does not need a dictionary and has a
KSPC of 1.1500 (MacKenzie, 2002).

1.3 Modeling the Context

Language modeling can extend the context from
letter sequences to word n-grams. In this case, the
system is not restricted to the disambiguation or
the prediction of the typed characters. It can com-
plete words and even predict phrases. HMS (Has-
selgren et al., 2003) is an example of this that uses
word bigrams in Swedish. It reports a KSPC
ranging from 0.8807 to 1.0108, depending on the
type of text. eZiText2 is a commercial example of
a word and phrase completion system. However,
having a large lexicon of bigrams still exceeds the
memory capacity of many mobile devices.

Some systems use a combination of syntac-
tic and semantic information to model the con-
text. Gong et al. (2008) is a recent example that
uses word frequencies, a part-of-speech language
model, and a semantic relatedness metric. The
part-of-speech language model acts as a lexical
n-gram language model, but occupies much less
memory since the vocabulary is restricted to the
part-of-speech tagset. The semantic relatedness,
modified from Li and Hirst (2005), is defined as
the conditional probability of two stems appearing
in the same context (the same sentence):

1www.t9.com
2www.zicorp.com/ezitext.htm

SemR(w1|w2) =
C(stem(w1), stem(w2))

C(w2)
.

The three components are combined linearly
and their coefficients are adjusted using a devel-
opment set. Setting 1 as the limit of the KSPC
figure, Gong et al. (2008) reported an error reduc-
tion over the word frequency baseline of 4.6% for
the semantic model, 12.6% for the part-of-speech
language model, and 15.8% for the combination
of both.

1.4 Syntax in Predictive Text

Beyond part-of-speech language modeling, there
are few examples of systems using syntax in pre-
dictive text entry. Matiasek et al. (2002) describes
a predictive text environment aimed at disabled
persons, which originally relied on language mod-
els. Gustavii and Pettersson (2003) added a syn-
tactic component to it based on grammar rules.
The rules corresponded to common grammatical
errors and were used to rerank the list of candidate
words. The evaluation results were disappointing
and the syntactic component was not added be-
cause of the large overhead it introduced (Mati-
asek, 2006).

In the same vein, Sundarkantham and Shalinie
(2007) used grammar rules to discard infeasible
grammatical constructions. The authors evaluated
their system by giving it an incomplete sentence
and seeing how often the system correctly guessed
the next word (Shannon, 1951). They achieved
better results than previously reported, although
their system has not been used in the context of
predictive text entry for mobile devices.

2 Predictive Text Entry Using Syntax

We propose a new technique that makes use of
a syntactic component to model the word context
and improve the KSPC figure. It builds on Gong
et al. (2008)’s system and combines a dependency
grammar model with word frequencies, a part-of-
speech language model, and the semantic related-
ness defined in Sect. 1.3. As far as we are aware,
no predictive text entry system has yet used a data-
driven syntactic model of the context.

We used Swedish as our target language all
over our experiments, but the results we obtained
should be replicable in any other language.
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2.1 Reranking Candidate Words
The system consists of two components. The first
one disambiguates the typed characters using a
dictionary and produces a list of candidate words.
The second component reranks the candidate list.
Although the techniques we describe could be ap-
plied to word completion, we set aside this aspect
in this paper.

More formally, we frame text input as a se-
quence of keystrokes, ksi = ksi1 . . . ks

i
n, to en-

ter a desired word, wi. The words matching
the key sequence in the system dictionary form
an ordered set of alternatives, match(ksi) =
{cw0, . . . , cwm}, where it takes k extra keystrokes
to reach candidate cwk. Using our example
in Sect. 1.2, a lexical ordering would yield
match(8 − 4 − 3) = {the, tie, vie}, where two
extra keystrokes are needed to reach vie.

We assign each candidate word w member of
match(ksi) a score

Score(w|Context) =
∑

s∈S
λs · s(w|Context),

to rerank (sort) the prediction list, where s is a
scoring function from a set S, λs, the weight of
s, and Score(w|Context), the total score of w in
the current context.

In this framework, optimizing predictive text
entry is the task of finding the scoring functions,
s, and the weights, λs, so that they minimize k on
average.

As scoring functions, we considered lexical lan-
guage models in the form of unigrams and bi-
grams, sLM1 and sLM2, a part-of-speech model
using sequences of part-of-speech tags of a length
of up to five tags, sPOS , and a semantic affin-
ity, sSemA, derived from the semantic relatedness.
In addition, we introduce a syntactic component
in the form of a data-driven dependency syntax,
sDepSyn so that the complete scoring set consists
of

S = {sLM1, sLM2, sSemA, sPOS , sDepSyn}.

2.2 Language and Part-of-Speech Models
The language model score is the probability of a
candidate word w, knowing the sequence entered
so far, w1, . . . , wi:

P (w|w1, w2, . . . , wi).

We approximate it using unigrams, sLM1(w) =
P (w), or bigrams, sLM2(w) = P (w|wi) that we

derive from a corpus using the maximum like-
lihood estimate. To cope with sparse data, we
used a deleted interpolation so that sLM2(w) =
β1P (w|wi)+β2P (w), where we adjusted the val-
ues of β1 and β2 on a development corpus.

In practice, it is impossible to maintain a large
list of bigrams on cellular telephones as it would
exceed the available memory of most devices. In
our experiments, the sLM2 score serves as an indi-
cator of an upper-limit performance, while sLM1

serves as a baseline, as it is used in commercial
dictionary-based products.

Part-of-speech models offer an interesting alter-
native to lexical models as the number of parts
of speech does not exceed 100 tags in most lan-
guages. The possible number of bigrams is then at
most 10,000 and much less in practice. We defined
the part-of-speech model score, sPOS as

P (t|t1, t2, . . . , ti),

where ti is the part of speech of wi and t, the part
of speech of the candidate word w. We used a
5-gram approximation of this probability with a
simple back-off model:

sPOS =





P (t|ti−3, . . . , ti) if C(ti−3, ..., ti) 6= 0
P (t|ti−2, . . . , ti) if C(ti−2, ..., ti) 6= 0
...
P (t), otherwise

We used the Granska tagger (Carlberger and
Kann, 1999) to carry out the part-of-speech anno-
tation of the word sequence.

3 Semantic Affinity

Because of their arbitrary length, language mod-
els miss possible relations between words that are
semantically connected in a sentence but within
a distance greater than one, two, or three words
apart, the practical length of most n-grams mod-
els. Li and Hirst (2005) introduced the semantic
relatedness between two words to measure such
relations within a sentence. They defined it as

SemR(wi, wj) =
C(wi, wj)
C(wi)C(wj)

,

where C(wi, wj) is the number of times the words
wi and wj co-occur in a sentence in the corpus,
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and C(wi) is the count of word wi in the corpus.
The relation is symmetrical, i.e.

C(wi, wj) = C(wj , wi).

The estimated semantic affinity of a word w is
defined as:

SemA(w|H) =
∑

wj∈H
SemR(w,wj),

where H is the context of the word w. In our case,
H consists of words to the left of the current word.

Gong et al. (2008) used a similar model in a pre-
dictive text application with a slight modification
to the SemR function:

SemR(wi, wj) =
C(stem(wi), stem(wj))

C(stem(wj))
,

where the stem(w) function removes suffixes
from words. We refined this model further and we
replaced the stemming function with a real lemma-
tization.

4 Dependency Parsing

Dependency syntax (Tesnière, 1966) has attracted
a considerable interest in the recent years, spurred
by the availability of data-driven parsers as well
as annotated data in multiple languages includ-
ing Arabic, Chinese, Czech, English, German,
Japanese, Portuguese, or Spanish (Buchholz and
Marsi, 2006; Nivre et al., 2007). We used this
syntactic formalism because of its availability in
many languages.

4.1 Parser Implementation
There are two main classes of data-driven de-
pendency parsers: graph-based (McDonald and
Pereira, 2006) and transition-based (Nivre, 2003).
We selected Nivre’s parser because of its imple-
mentation simplicity, small memory footprint, and
linear time complexity. Parsing is always achieved
in at most 2n− 1 actions, where n is the length of
the sentence. Both types of parser can be com-
bined, see Zhang and Clark (2008) for a discus-
sion.

Nivre’s parser is an extension to the shift–
reduce algorithm that creates a projective and
acyclic graph. It uses a stack, a list of input words,
and builds a set of arcs representing the graph of
dependencies. The parser uses two operations in
addition to shift and reduce, left-arc and right-arc:

• Shift pushes the next input word onto the
stack.

• Reduce pops the top of the stack with the
condition that the corresponding word has a
head.

• LeftArc adds an arc from the next input
word to the top of the stack and pops it.

• RightArc adds an arc from the top of the
stack to the next input word and pushes the
input word on the stack.

Table 1 shows the start and final parser states as
well as the four transitions and their conditions
and Algorithm 1 describes the parsing algorithm.

4.2 Features

At each step of the parsing procedure, the parser
turns to a guide to decide on which transition
to apply among the set {LeftArc, RightArc,
Shift, Reduce}. We implemented this guide
as a four-class classifier that uses features it ex-
tracts from the parser state. The features consist
of words and their parts of speech in the stack, in
the queue, and in the partial graph resulting from
what has been parsed so far. The classifier is based
on a linear logistic regression function that evalu-
ates the transition probabilities from the features
and predicts the next one.

In the learning phase, we extracted a data set
of feature vectors using the gold-standard parsing
procedure (Algorithm 2) that we applied to Tal-
banken corpus of Swedish text (Einarsson, 1976;
Nilsson et al., 2005). Each vector being labeled
with one of the four possible transitions. We
trained the classifiers using the LIBLINEAR im-
plementation (Fan et al., 2008) of logistic regres-
sion.

However, classes are not always separable us-
ing linear classifiers. We combined single features
as pairs or triples. This emulates to some extent
quadratic kernels used in support vector machines,
while preserving the speed of the linear models.
Table 2 shows the complete feature set to predict
the transitions. A feature is defined by

• A source: S for stack and Q for the queue;

• An offset: 0 for the top of the stack and first
in the queue; 1 and 2 for levels down in the
stack or to the right in the queue;
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Name Action Condition
Initialization 〈nil,W, ∅〉
Termination 〈S, nil, A〉
LeftArc 〈n|S, n′|Q,A〉 → 〈S, n′|Q,A ∪ {〈n′, n〉}〉 ¬∃n′′, 〈n, n′′〉 ∈ A
RightArc 〈n|S, n′|Q,A〉 → 〈n′|n|S,Q,A ∪ 〈n, n′〉〉 ¬∃n′′, 〈n′, n′′〉 ∈ A
Reduce 〈n|S,Q,A〉 → 〈S,Q,A〉 ∃n′, 〈n, n′〉 ∈ A
Shift 〈S, n|Q,A〉 → 〈n|S,Q,A〉

Table 1: Parser transitions. W is the original input sentence, A is the dependency graph, S is the stack,
andQ is the queue. The triplet 〈S,Q,A〉 represents the parser state. n, n′, and n′′ are lexical tokens. The
pair 〈n′, n〉 represents an arc from the head n′ to the dependent n.

• Possible applications of the function head,H ,
leftmost child, LC, or righmost child, RC;

• The value: word, w, or POS tag, t, at the
specified position.

Queue Q0w
Q1w
Q0t
Q1t
Q0tQ0w
Q0tQ1t
Q1wQ1t
Q0tQ1tQ2t
Q0wQ1tQ2t

Stack S0t
S0w
S0tS0w
S0tS1t

Stack/Queue S0wQ0w
Q0tS0t
Q1tS0t
Q0tS1t
Q1tS1t
S0tQ0tQ1t
S0tQ0wQ0t

Partial Graph S0HtS0tQ0t
Q0LCtS0tQ0t
Q0LCtS0tQ0w
S0RCtS0tQ0t
S0RCtS0tQ0w

Table 2: Feature model for predicting parser ac-
tions with combined features.

4.3 Calculating Graph Probabilities

Nivre (2006) showed that every terminating tran-
sition sequence Am1 = (a1, ..., am) applied to

a sentence Wn
1 = (w1, ..., wn) defines exactly

one parse tree G. We approximated the prob-
ability P (G|Wn

1 ) of a dependency graph G as
P (Am1 |Wn

1 ) and we estimated the probability of
G as the product of the transition probabilities, so
that

PParse(G|Wn
1 ) = P (Am1 |Wn

1 )
=

∏m
k=1 P (ak|Ak−1

1 ,W
φ(k−1)
1 ),

where ak is member of the set {LeftArc,
RightArc, Shift, Reduce} and φ(k) corre-
sponds to the index of the current word at tran-
sition k.

We finally approximated the term
Ak−1

1 ,W
φ(k−1)
1 to the feature set and com-

puted probability estimates using the logistic
regression output.

4.4 Beam Search

We extended Nivre’s parser with a beam search to
mitigate error propagation that occurs with a de-
terministic parser (Johansson and Nugues, 2006).
We maintained N parser states in parallel and we
applied all the possible transitions to each state.
We scored each transition action and we ranked
the states with the product of the action’s proba-
bilities leading to this state. Algorithm 3 outlines
beam search with a diameter of N .

An alternative to training parser transitions us-
ing local features is to use an online learning al-
gorithm (Johansson and Nugues, 2007; Zhang and
Clark, 2008). The classifiers are then computed
over the graph that has already been built instead
of considering the probability of a single transi-
tion.
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4.5 Evaluation

We evaluated our dependency parser separately
from the rest of the application and Table 3 shows
the results. We optimized our parameter selection
for the unlabeled attachment score (UAS). This
explains the relatively high difference with the la-
beled attachment score (LAS): about –8.6.

Table 3 also shows the highest scores ob-
tained on the same Talbanken corpus of Swedish
text (Einarsson, 1976; Nilsson et al., 2005) in
the CoNLL-X evaluation (Buchholz and Marsi,
2006): 89.58 for unlabeled attachments (Corston-
Oliver and Aue, 2006) and 84.58 for labeled at-
tachments (Nivre et al., 2006). CoNLL-X systems
were optimized for the LAS category.

The figures we reached were about 1.10% be-
low those reported in CONLL-X for the UAS cat-
egory. However our results are not directly compa-
rable as the parsers or the classifiers in CONLL-X
have either a higher complexity or are more time-
consuming. We chose linear classifiers over kernel
machines as it was essential to our application to
run on mobile devices with limited resources in
both CPU power and memory size.

This paper CONLL-X
Beam width LAS UAS LAS UAS

1 79.45 88.05 84.58 89.54
2 79.76 88.41
4 79.75 88.40
8 79.77 88.41

16 79.78 88.42
32 79.77 88.41
64 79.79 88.44

Table 3: Parse results on the Swedish Talbanken
corpus obtained for this paper as well as the best
reported results in CONLL-X on the same corpus
(Buchholz and Marsi, 2006).

5 Dependencies to Predict the Next Word

We built a syntactic score to measure the grammat-
ical relevance of a candidate word w in the current
context, that is the word sequence so farw1, ..., wi.
We defined it as the weighted sum of three terms:
the score of the partial graph resulting from the
analysis of the words to the left of the candidate
word and the scores of the link from w to its head,
h(w), using their lexical forms and their parts of
speech:

sDepSyn(w) = λ1PParse(G(w)|w1, ..., wi, w)+
λ2PLink(w, h(w))+
λ3PLink(POS(w), POS(h(w))),

where G(w) is the partial graph representing the
word sequence w1, ..., wi, w. The PLink terms are
intended to give an extra-weight to the probabil-
ity of an association between the predicted word
and a possible head to the left of it. They hint at
the strength of the ties between w and the words
before it.

We used the transition probabilities described in
Sect. 4.3 to compute the score of the partial graph,
yielding

PParse(G(w)|w1, ..., wi, w) =
j∏

k=1

P (ak),

where a1, ..., aj is the sequence of transition ac-
tions producing G(w) and P (ak), the probability
output of transition k given by the logistic regres-
sion engine.

The last two terms PLink(w, h(w)) and
PLink(POS(w), POS(h(w))) are computed
from counts in the training corpus using maxi-
mum likelihood estimates:

PLink(w, h(w)) =
C(Link(w, h(w)) + 1∑

wl∈PW C(Link(wl, h(wl)))
+ |PW |

and

PLink(POS(w), POS(h(w))) =
C(Link(POS(w), POS(h(w)))) + 1∑
wl∈PW C(Link(POS(wl), h(POS(wl))))

+|PW |,

where PW = match(ksi), is the set of predicted
words for the current key sequence.

If the current word w has not been assigned a
head yet, we default h(w) to the root of the graph
and POS(h(w)) to the ROOT value.

6 Experiments and Results

6.1 Experimental Setup
Figure 2 shows an overview of the three stages
to produce and evaluate our models: training,
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tuning, and testing. Ideally, we would have
trained the classifiers on a corpus matching a
text entry application. However, as there is no
large available SMS corpus in Swedish, we used
the Stockholm-Umeå corpus (SUC) (Ejerhed and
Källgren, 1997). SUC is balanced and the largest
available POS-tagged corpus in Swedish with
more than 1 million words.

We parsed the corpus and we divided it ran-
domly into a training set (80%), a development set
(10%), and a test set (10%). The training set was
used to gather statistics on word n-grams, POS
n-grams, collocations, lemma frequencies, depen-
dent/head relations. We discarded hapaxes: rela-
tions and sequences occurring only once. We used
lemmas instead of stems in the semantic related-
ness score, SemR, because stemming is less ap-
propriate in Swedish than in English.

We used the development set to find optimal
weights for the scoring functions, resulting in the
lowest KSPC. We ran an exhaustive search using
all possible linear combinations with increments
of 0.1, except for two functions, where this was
too coarse. We used 0.01 then.

We applied the resulting linear combinations of
scoring functions to the test set. We first compared
the frequency-based disambiguation acting as a
baseline to linear combinations involving or not
involving syntax, but always excluding bigrams.
Table 4 shows the most significant combinations.
We then compared a set of other combinations
with the bigram model. They are shown in Ta-
ble 6.

6.2 Metrics

We redefined the KSPC metric of MacKenzie
(2002), since the number of characters needed to
input a word is now dependent on the word’s left
context in the sentence. Let S = (w1, . . . , wn) ∈
L be a sentence in the test corpus. The KSPC for
the test corpus then becomes

KSPC =
∑

S∈L
∑

w∈SKS(w|LContext(w, S))∑
S∈L

∑
w∈S Chars(w)

where KS(w|LContext) is the number of key
strokes needed to enter a word in a given context,
LContext(w, S) is the left context of w in S, and
Chars(w) is the number of characters in w.

Another performance measure is the disam-
biguation accuracy (DA), which is the percentage
of words that are correctly disambiguated after all

the keys have been pressed

DA =

∑

S∈L

∑

w∈S
PredHit(w|LContext(w, S))

#w
,

where PredHit(w|Context) = 1 if w is the
top prediction and 0 otherwise, and #w, the to-
tal number of words in L. A good DA means that
the user can more often simply accept the default
proposed word instead of navigating the prediction
list for the desired word.

As scoring tokens, we chose to keep the ones
that actually have the ability to differentiate the
models, i.e. we did not count the KSPC and DA
for words that were not in the dictionary. Neither
did we count white spaces, nor the punctuation
marks.

All our measures are without word or phrase
completion. This means that the lower-limit fig-
ure for KSPC is 1.

6.3 Results
As all the KSPC figures are close to 1, we com-
puted the error reduction rate (ERR), i.e. the re-
duction in the number of extra keystrokes needed
beyond one. We carried out all the optimizations
considering KSPC, but we can observe that KSPC
ERR and DA ERR strongly correlate.

Table 5 shows the results with scoring func-
tions using the word frequencies. The columns
include KSPC and DA together with KSPC ERR
and DA ERR compared with the baseline. Table 7
shows the respective results when using a bigram-
based disambiguation instead of just frequency.
The ERR is still compared to the word frequency
baseline but attention should also be drawn on the
relative increases: how much the new models can
improve bigram-based disambiguation.

7 Discussion

We can observe from the results that a model based
on dependency grammars improves the prediction
considerably. The DepSyn model is actually the
most effective one when applied together with the
frequency counts. Furthermore, the improvements
from the POS, SemA, and DepSyn model are
almost disjunct, as the combined model improve-
ment matches the sum of their respective individ-
ual contributions.

The 4.2% ERR observed when adding the
SemA model is consistent with the result from
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Figure 2: System architecture, where the set of scoring functions is S = {sLM , sSemA, sPOS , sDepSyn}
and the linear combination is =

∑

s∈S
λs · s(w).

Gong et al. (2008), where a 4.6% ERR was found.
On the other hand, the POS model only con-
tributed 4.7% ERR in our case, whereas Gong et
al. (2008) observed 12.6%. One possible expla-
nation for this is that they clustered related POS
tags into 19 groups reducing the sparseness prob-
lem. By performing this grouping, we can effec-
tively ignore morphological and lexical features
that have no relevance, when deciding which word
should come next. Other possible explanations in-
clude that our backoff model is not well suited for
this problem or that the POS sequences are not an
applicable model for Swedish.

The bigram language model has the largest im-
pact on the performance. The ERR for bigrams
alone is higher than all the other models com-
bined. Still, the other models have the ability to
contribute on top of the bigram model. For exam-
ple, the POS model increases the ERR by about
5% both when using bigram- and frequency-based
disambiguation, suggesting that this information is
not captured by the bigrams. On the other hand,
DepSyn increases the ERR by a more modest 3%
when using bigrams instead of 7% with word fre-
quencies. This is likely due to the fact that about
half of the dependency links only stretch to the
next preceding or succeeding word in the corpus.

The most effective combination of models are
the bigrams together with the POS sequence and

the dependency structure, both embedding syntac-
tic information. With this combination, we were
able to reduce the number of erroneous disam-
biguations as well as extra keystrokes by almost
one third.

8 Further Work

SMS texting, which is the target of our system,
is more verbal than the genres gathered in the
Stockholm-Umeå corpus. The language models
of a final application would then change consid-
erably from the ones we extracted from the SUC.
A further work would be to collect a SMS corpus
and replicate the experiments: retrain the models
and obtain the corresponding performance figures.

Moreover, we carried out our implementation
and simulations on desktop computers. The POS
model has an estimated size of 700KB (Gong et
al., 2008). The PParse term of theDepSynmodel
can be made as small as the feature model. We ex-
pect the optimized size of this model to be under
100KB in an embedded environment. The size of
the lexical variant of PLink is comparable to the bi-
gram model. This could however be remedied by
using the probability of the action that constructed
this last link. The computational power required
by LIBLINEAR is certainly within the reach of
modern hand-held devices. However, a prototype
simulation with real hardware conditions would
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be needed to prove an implementability on mobile
devices.

Finally, a user might perceive subtle differences
in the presentation of the words compared with
that of popular commercial products. Gutowitz
(2003) noted the reluctance to single-tap input
methods because of their “unpredictable” behav-
ior. Introducing syntax-based disambiguation
could increase this perception. A next step would
be to carry out usability studies and assess this el-
ement.
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Algorithm 1 Nivre’s algorithm.
1: Queue⇐W
2: Stack ⇐ nil
3: while ¬Queue.isEmpty() do
4: features⇐ ExtractFeatures()
5: action⇐ guide.Predict(features)
6: if action = RightArc ∧ canRightArc() then
7: RightArc()
8: else if action = LeftArc ∧ canLeftArc() then
9: LeftArc

10: else if action = Reduce ∧ canReduce() then
11: Reduce()
12: else
13: Shift()
14: end if
15: end while
16: return(A)

Algorithm 2 Reference parsing.
1: Queue⇐W
2: Stack ⇐ nil
3: while ¬Queue.isEmpty() do
4: x⇐ ExtractFeatures()
5: if 〈Stack.peek(), Queue.get(0)〉 ∈ A ∧ canRightArc() then
6: t⇐ RightArc
7: else if 〈Queue.get(0), Stack.peek()〉 ∈ A ∧ canLeftArc() then
8: t⇐ LeftArc
9: else if ∃w ∈ Stack : 〈w,Queue.get(0)〉 ∈ A∨ 〈Queue.get(0), w〉 ∈ A) ∧ canReduce() then

10: t⇐ Reduce
11: else
12: t⇐ Shift
13: end if
14: store training example 〈x, t〉
15: end while

Algorithm 3 Beam parse.
1: Agenda.add(InititalParserState)
2: while ¬done do
3: for parserState ∈ Agenda do
4: Output.add(parserState.doLeftArc())
5: Output.add(parserState.doRightArc())
6: Output.add(parserState.doReduce())
7: Output.add(parserState.doShift())
8: end for
9: Sort(Output)

10: Clear(Agenda)
11: Take N best parse trees from Output and put in Agenda.
12: end while
13: Return best item in Agenda.
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Configuration Scoring model DepSyn weights
F1 baseline 1× LM1 (Word frequencies) –
F2 0.9× LM1 + 0.1× POS –
F3 0.7× LM1 + 0.3× SemA –
F4 0.6× LM1 + 0.4×DepSyn (0.3, 0.7, 0.0)
F5 0.6× LM1 + 0.1× POS + 0.3×DepSyn (0.0 1.0 0.0)
F6 0.5× LM1 + 0.2× SemA+ 0.3×DepSyn (0.2 0.7 0.1)
F7 0.4× LM1 + 0.1× POS + 0.3×DepSyn+ 0.2× SemA (0.2, 0.8, 0.0)

Table 4: The different combinations of scoring models using frequency-based disambiguation as a base-
line. The DepSyn weight triples corresponds to (λ1, λ2, λ3) in Sect. 5.

Configuration KSPC DA KSPC ERR DA ERR
F1 1.015559 94.15% 0.00% 0.00%
F2 1.014829 94.31% 4.69% 2.72%
F3 1.014902 94.36% 4.22% 3.62%
F4 1.014462 94.56% 7.05% 7.04%
F5 1.013625 94.75% 12.43% 10.28%
F6 1.014159 94.62% 9.00% 8.10%
F7 1.013438 94.86% 13.63% 12.16%

Table 5: Results for the disambiguation based on word frequencies together with the semantic and syn-
tactic models.

Configuration Scoring model Bigram weights DepSyn weights
B1 1× LM2 (Bigram frequencies) (0.9, 0.1) –
B2 0.9× LM2 + 0.1× POS (0.8, 0.2) –
B3 0.95× LM2 + 0.05× SemA (0.8, 0.2) –
B4 0.9× LM2 + 0.1×DepSyn (0.8, 0.2) (0.2, 0.8, 0.0)
B5 0.8× LM2 + 0.1× POS + 0.1× SemA (0.8, 0.2) –
B6 0.81× LM2 + 0.08× POS + 0.11×DepSyn (0.8, 0.2) (0.2, 0.8, 0.0)

Table 6: The different combinations of scoring models using bigram-based disambiguation as baseline.
In addition to the DepSyn weights, this table also shows the language model interpolation weights, β1

and β2 described in Sect. 2.2.

Label KSPC DA KSPC ERR DA ERR
B1 1.012159254 95.48% 21.85% 22.81%
B2 1.011434213 95.75% 26.51% 27.41%
B3 1.011860573 95.50% 23.77% 23.20%
B4 1.011698693 95.62% 24.81% 25.19%
B5 1.011146932 95.80% 28.36% 28.23%
B6 1.010980592 95.91% 29.43% 30.09%

Table 7: Results for the disambiguation based on bigrams plus the semantic and syntactical models. The
error reduction rate is relative to the word frequency baseline.
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