
Proceedings of the 8th International Conference on Computational Semantics, pages 359–370,
Tilburg, January 2009. c©2009 International Conference on Computational Semantics

Semantic Normalisation : a Framework and an Experiment

Paul Bedaride Claire Gardent
INRIA/LORIA CNRS/LORIA

Université Henri Poincaré, Nancy Nancy
paul.bedaride@loria.fr claire.gardent@loria.fr

Abstract

We present a normalisation framework for linguistic representations and illustrate its use
by normalising the Stanford Dependency graphs (SDs) produced by the Stanford parser into
Labelled Stanford Dependency graphs (LSDs). The normalised representations are evaluated
both on a testsuite of constructed examples and on free text. The resulting representations
improve on standard Predicate/Argument structures produced by SRL by combining role la-
belling with the semantically oriented features of SDs. Furthermore, the proposed normalisa-
tion framework opens the way to stronger normalisation processes which should be useful in
reducing the burden on inference.

1 Introduction

In automated text understanding, there is a tradeoff between the degree of abstraction provided
by the semantic representations used and the complexity of the logical or probabilistic reasoning
involved. Thus, a system that normalises syntactic passives as actives avoids having to reason
about equivalences between grammatical dependencies. Similarly, normalising phrasal synonyms
into their one word equivalent (e.g., take a turn for the worse/worsen) or converting the semantic
representation of deverbal nominals into their equivalent verbal representations (Caesar’s destruc-
tion of the city/Caesar destroyed the city) avoids having to reason with the corresponding lexical
axioms. In short, the better, semantic representations abstract away from semantically irrelevant
distinctions, the less reasoning needs to be performed.

In this paper, we investigate a normalisation approach and present a framework for normalising
linguistic representations which we apply to converting the dependency structures output by the
Stanford parser (henceforth, Stanford Dependencies or SDs) into labelled SD graphs (LSD) that
is, dependency graphs where grammatical relations have been converted to roles.

The LSD graphs we produce and the normalisation framework we present, provide an inter-
esting alternative both for the shallow Predicate/Argument structures produced by semantic role
labelling (SRL) systems and for the complex logical formulae produced by deep parsers.

Thus as we shall see in Section 2, labelled SDs are richer than the standard Predicate/Argument
structures produced by SRL in that (i) they indicate dependencies between all parts of a sentence,

1

359



not just the verb and its arguments1 and (ii) they inherit the semantically oriented features of
SDs namely, a detailed set of dependencies, a precise account of noun phrases and a semantically
oriented treatment of role marking prepositions, of heads and of conjunctions.

Furthermore, the normalisation framework (formal system and methodology) we present, can
be extended to model and implement more advanced normalisation steps (e.g., deverbal/verbal and
phrasal/lexical synonym normalisation) thereby potentially supporting a stronger normalisation
process than the semantic role labelling already supported by SRL systems and by deep parsers.

In sum, although the normalised SDs presented in this paper, do not exhibit a stronger normal-
isation than that available in the Predicate/Argument structures already produced by deep parsers
and by SRL systems, we believe that they are interesting in their own right in that they combine
semantic role labelling with the semantic features of SDs. Moreover, the proposed normalisation
framework opens the way for a stronger normalisation process.

The paper is structured as follows. Section 2 presents the representations handled by the system
namely, the SD graphs and their labelled versions, the LSDs. Section 3 presents the rewriting
system used and explains how SDs are converted to LSDs. Section 4 reports on evaluation. Section
5 discusses related work and concludes with pointers for further research.

2 (Normalised) Stanford Dependency graphs

Stanford Dependency graphs. SD graphs are syntactic dependency graphs where nodes are
words and edges are labelled with syntactic relations. As detailed in [dMM06, dM08], SD graphs
differ from other dependency graphs in several ways. First, they involve an extensive set of 56
dependency relations. These relations are organised in a hierarchy thereby permitting underspec-
ifying the relation between a head and its dependent (by using a very generic relation such as
dependent). Second, in contrast to other relational schemes such as the GR [CMB99] and PARC
[KCR+03], NP-internal dependency relations are relatively fine-grained2 thereby permitting a de-
tailed description of NPs internal structure and providing better support for an accurate definition
of their semantics. Third, heads are constrained to be content words i.e., noun, verbs, adjectives,
adverbs but also conjunctions. In particular, contrary to the GR scheme, SD graphs take copula
be to be a dependent rather than a head. Fourth, SD graphs are further simplified in that some
nodes may be collapsed. for instance, role marking prepositions are omitted and a trace kept of
that preposition in the dependency name (e.g., prep-on).

The practical adequacy of SD graphs and their ability to support shallow semantic reasoning
is attested by a relatively high number of experiments. Thus, in 2007, 5 out of the 21 systems
submitted to the RTE (Recognising Textual Entailment) challenge used the SD representations.
SDs have been used in bioinformatics for extracting relations between genes and proteins [EOR07,
CS07]. It has furthermore been used for opinion extraction [ZJZ06], sentence-level sentiment
analysis [MP07] and information extraction [BCS+07].

1In the CoNLL 2008 shared task on joint parsing of syntactic and semantic dependencies [SJM+08], the aim is to
produce dependency structures labelled with predicate/argument relations. Although such structures are similar to the
LSD graphs we produce, there are differences both in the precise type of structures built and in how these are built. We
discuss this point in more detail in section 5.

2e.g., appos for apposition, nn for noun-noun compounds, num for a numeric modifier and number for an element in
a compound number.

360



love

John Mary
nsubj dobj

love

Mary be John

nsubjpass agentauxpass

love

John Mary
arg0 arg1

Figure 1: SDs and LSDs for ”John loves Mary” and ”Mary is loved by John”

Normalised Stanford Dependency graphs. From the SDs produced by the Stanford parser, we
produce labelled SDs where the syntactic relations between a verb and its arguments are replaced
by the roles. For instance, the SDs and LSDs for the sentences “john loves mary” and “mary is
loved by john” are as given in Figure 1. The roles used in LSDs are those used in the PropBank for
core- and adjunct-like arguments namely, A0, A1, A2, A3, A4, AM where AM covers all PropBank
adjunct tags such as AM-TMP, AL-LOC, etc..

As mentioned in the introduction, LSD graphs combine the advantages of SD graphs with se-
mantic role labelling. From semantic role labelling, they take the more semantic predicate/argument
relations. From SD graphs, they inherit the semantic oriented features such as the deletion of con-
tent poor function words, the rich hierarchy of NP internal relations and the detailed description of
the relations holding between words other than the verb and its arguments.

In short, LSD graphs are both more semantic than SD graphs and richer than SRL Predi-
cate/Argument structures.

3 Normalising dependency trees

To normalise the SD graphs, we extend the Stanford parser with a normalisation module de-
signed to translate the grammatical relations between a verb and its arguments into roles. This
normalisation module consists of an ordered set of rewrite rules and is defined semi-automatically
in a two-step procedure as follows.

First, the rewrite rules for transitive verbs are defined. This first step is done manually and is
based on the XTAG [Gro01] inventory of possible syntactic contexts for verbs of this type.

Second, further rewrite rules for verbs of other classes (ditransitive, verbs with sentential ar-
gument, verbs with one prepositional argument, etc.) are automatically derived from the set of
rewrite rules for transitive verbs and from a small set of “base-form rewrite rules” manually de-
fined for each class. The rules are then lexicalised using the information contained in the PropBank
Frames3.

3The PropBank Frames specify for each verb sense in PropBank, the arguments it accepts and the corresponding
semantic roles.

361



x

y z

x

y z
nsubj dobj arg0 arg1

x

y z t

x

z y
nsubjpass agentauxpass arg0 arg1

Figure 2: Rewriting rules for active and passive

3.1 Defining basic rewrite rules

In the first phase, we manually define a set of rewrite rules for each possible syntactic variation of
a transitive verb.

Using the XTAG Tree Adjoining Grammar [Gro01], we start by listing these variations. In-
deed a Tree Adjoining Grammar (TAG) lists the set of all possible syntactic configurations for
basic clauses and groups them into so-called (tree) families. Thus the Tnx0Vnx1 family is a set
of trees describing the possible syntactic contexts in which a transitive verb can occur. Further,
W1nx0Vnx1 names a tree in that family which describes a syntactic context in which a transitive
verb (nx0Vnx1) occurs together with a canonical nominal subject (nx0) and a questioned object
(W1). We use the XTAG families to produce a list of basic clauses illustrating the possible syntac-
tic variations of each verb type. For instance, using the Tnx0Vnx1 XTAG family, we create a “list
of Tnx0Vnx1 sentences” i.e.,

(1) “John loves Mary”,“Mary is loved by John”, “Mary, John loves”, “It is Mary who is loved
by John”, “It is John who loves Mary”, “Mary who is loved by John”, “John who loves
Mary”,etc.

We then parse these sentences using the Stanford parser and retrieve the correct dependency struc-
ture from the output thus gathering the set of dependency structures associated by the Stanford
parser with the various syntactic realisations of a given verb type.

Finally, for each distinct dependency structure found, we define a rewrite rule which maps this
dependency structure onto a unique (canonical) semantic representation. For instance, the rewrite
rules for the active and passive form of a sentence featuring a transitive verb are as sketched in
Figure 2 (see below for the exact content of these rules).

To define our rewrite rules, we resort to a standard rewriting system namely GrGen [KG07].
Used in multiple domains (e.g., formal calculus, combinatoric algebra, operational semantics),
rewriting is a technique for modelling reduction and simplification. For instance, the rewriting rule
r1 : x ∗ y + x ∗ z → x ∗ (y + z) permits factorising 5 ∗ 6 + 5 ∗ 7 + 5 ∗ 8 to 5 ∗ ((6 + 7) + 8). More
generally, a rewriting system consists of a set of rewriting rules of the form l → r where l and r
are filtering and rewriting patterns respectively. Given an object o, such a rule will apply to o if o

362



rule nx0Vnx1 {
pattern{
verb:element;
if{verb.verb != "None";}
np0:element;
np1:element;
verb -:nsubj-> np0;
verb -:dobj-> np1;

}
replace {
verb -:arg0-> np0;
verb -:arg1-> np1;

}}

rule nx1Vbynx0 {
pattern{
verb:element;
if{verb.verb != "None";}
np1:element;
be:element;
np0:element;
verb -:nsubjpass-> np1;
verb -:auxpass-> be;
verb -:agent-> np0;

}
replace {
verb -:arg0-> np0;
verb -:arg1-> np1;

}}

Figure 3: Two rewrite rules in the GrGen format

satisfies the filtering pattern l. The result of applying a rule to an object o is o where the sub-part of
o matched by l is rewritten according to the rewriting pattern r. Matching consists in looking for
a homograph homomorphism between the pattern graph l and the host graph h while the allowed
rewriting operations include information duplication, deletion and addition4.

In GrGen, the objects handled by rewriting are attributed typed directed multigraphs. These
are directed graphs with typed nodes and edges, where between two nodes more than one edge of
the same type and direction is permitted. According to its type, each node or edge has a defined set
of attributes associated with it. Moreover, the type system suppports multiple inheritance on node
and edge types.

Expressive and efficient, GrGen5 is well suited to specify our normalisation rules. For instance,
the rewrite rule sketched in figure 2 can be specified as given in Figure 3. The left handside (lhs) of
the rule specifies a pattern in terms of nodes, node attributes, edge labels and conditions on nodes.
The right handside specifies how to rewrite the subgraphs matched by the lhs.

More generally, the SD graphs can be seen as attributed typed directed multigraphs where
node attributes are words and edge labels are grammatical relations. Rewrite rules can then be
used to modify, add or duplicate information present in the dependency graphs to create predicate-
argument structures.

Typically, rewriting is not confluent (different rule application orders yield different results)and
GrGen supports various sophisticated control strategies. So far however, we simply used rule
sequencing : rules are tested and fired in the order in which they are listed. They are ordered by
specificity with the most specific rules listed first. For instance, the rule rewriting a long passive
will precede that for a short passive thereby preventing the short passive rule from applying to a

4For a more precise definition of satisfaction, matching and replacement, we refer the reader to [EHK+99].
5There are other rewriting systems available such as in particular, the Tsurgen system used in the Stanford Parser to

map parse trees into dependency graphs. We opted for GrGen instead because it fitted our requirements best. GrGen
is efficient, notationally expressive (for specifying graphs but also rules and rule application strategies) and comes with
a sophisticated debugging environment. Importantly, GrGen developers are also quick to react to questions and to
integrate proposed modifications.

363



long passive sentence.
We also use GrGen “global rewriting mode”. This ensures that whenever the rule filtering pat-

tern matches several subgraphs in the input structures, the rewriting operates on each of the filtered
subgraph. As we shall see in section 3, our rewrite rules are applied on not one but 5 dependency
graphs at a time. Moreover the same rewrite rules may be applicable to several subgraphs in a
sentence analysis (typically when the sentence contains 2 or more verbs occurring in the same
syntactic configuration). Global rewriting thereby avoids having to iterate over the rule set.

3.2 Deriving new rewrite rules

Manually specifying the normalisation rules is time consuming and error prone. To extend the
approach to all types of verbs and syntactic configurations, we semi-automatically derive new
rewrite rules from existing ones.

Let us call source class, the syntactic class from which we derive new rules, target class, the
syntactic class for which rewrite rules are being derived and base-form rewrite rule, a rewrite
rule operating on a “base-form” that is, either on an active, a passive or a short passive form
subcategorising for canonical (i.e., non extracted) arguments.

Now, let us define the set of primitive rewrite rules used to bootstrap the process as the set of
all rewrite rules defined for the source class together with the set of base-form rewrite rules defined
for the target class.

To derive new rules from the set of primitive rewrite rules, we start by computing the differ-
ences (in terms of edges, node and labels) between a source base-form rewrite rule (RR) and either
a target, base-form RR (DIFF+arg) or a source non base-form RR (DIFF+movt). We then use the
resulting DIFFs to compute new rewrite rules which differ either from a source RR by a DIFF+arg

patch or from a target base-form RR by a DIFF+movt. Figure 4 illustrates the idea on a specific
example. The RR for a ditransitive verb with questioned object (“What does John put on the ta-
ble?”, W1nx0Vnx1pnx2) is derived both by applying a DIFF+W1 patch to the nx0Vnx1pnx2
active base-form RR (“John put a book on the table.”) and by applying a DIFF+pnx2 patch to
the source RR operating on W1nx0Vnx1 verbs with questioned object (“Who does Mary love?”).
Note that in this way, the same rewrite rule (W1nx0Vnx2nx1) is derived in two different ways
namely, from the W1nx0Vnx1 RR by applying a DIFF+pnx2 patch and from the nx0Vnx1pnx2
RR by applying a DIFF+W1 one. We use this double derivation process to check the approach
consistency and found that in all cases, the same rule is derived by both possible paths.

Using the method just sketched, we derived 377 rules from a set of 352 primitive rewrite rules.
Although the ratio might seem weak, automating the derivation of rewrite rules facilitates system
maintenance and extension. This is because whenever a correction in the set of primitive rewrite
rules is carried out, the change automatically propagates to the related derived rules. In practice,
we found that a real feature when adapting the system to the Propbank data. We believe that it will
also be useful when extending the system to deal with nominalisations.

4 Evaluation and discussion

We evaluated our normalisation method both on a testsuite of constructed examples and on real
world data namely, the Propbank corpus.

364



nx0Vnx1 nx0Vnx1pnx2

W1nx0Vnx1 W1nx0Vnx1pnx2

+pnx2

+pnx2

DIFFarg

+W1 +W1DIFFmvt

Source RR Target RR

Base Form RR

Figure 4: Deriving new rules from existing ones

4.1 Evaluation on a testsuite of constructed examples

This first evaluation aims to provide a systematic, fine grained assessment of how well the system
normalises each of the several syntactic configurations assigned by XTAG to distinct verb types.
The emphasis is here in covering the most exhaustive set of possible syntactic configurations possi-
ble. Because constructing the examples was intricate and time consuming, we did not cover all the
possibilities described by XTAG however. Instead we concentrated on listing all the configurations
specified by XTAG for 4 very distinct families namely, Tnx0Vnx1, Tnx0Vnx2nx1,Tnx0Vplnx1
and Tnx0Vnx1pnx2. The first class is the class for transitive verbs. Because of passive, this class
permits many distinct variations. The second class is the class of verbs with 3 nominal arguments.
This class is difficult for role labelling as the distinction between the complements often relies on
semantic rather than syntactic grounds. The third class is the class of verbs with a particle and 2
nominal arguments (ring up) and the fourth, the class of ditransitive.

For these constructed sentences, we had no gold standard i.e., no role annotation. Hence we
used logical inference to check normalisation. We proceeded by grouping the test items in (non)
entailment pairs and then checked whether the associated LSDs supported the detection of the
correct entailment relation (i.e., true or false).

The testsuite. Using a restricted lexicon, a set of clauses covering the possible syntactic patterns
of the four verb classes and regular expressions describing sentence-semantics pairs, we develop
a script generating (sentence,semantics) pairs where sentences contain one or more clauses. After
having manually verified the correctness of the generated pairs, we used them to construct textual
entailment testsuite items that is, pairs of sentences annotated with TRUE or FALSE dependending
on whether the two sentences are related by entailment (TRUE) or not (FALSE). The resulting
testsuite6 contains 4 976 items of which 2 335 are entailments between a sentence and a clause
(1V+TE, example 2), 1 019 between two complex sentences (2V+TE, example 3) and 1 622 are
non-entailments (V-TE, example 4).

(2) T1: John likes the book that Mary put on the table.
T2: John likes a book
Annotations: 1V+TE, TRUE

6Available at http://www.loria.fr/˜bedaride/publications/taln08-bedgar/index.html.

365



(3) T1: John likes the book that Mary put on the table.
T2: The book which is put on the table by Mary, is liked by John
Annotations: 2V+TE, TRUE

(4) T1: John likes the book that Mary put on the table.
T2: John likes a table
Annotations: V-TE, FALSE

Checking for entailment. For each testsuite item, we then checked for entailment by translating
LSDs into FOL formulae and checking entailment between the first five LSDs derived from the
parser output for the sentences contained in the testsuite item.

The translation of a LSD into a FOL formula is done as follows. Each node is associated with
an existentially quantified variable and a predication over that variable where the predicate used is
the word labelling the node. Each edge translates to a binary relation between the source and the
target node variables. The overall formula associated with an LSD is then the conjunction of the
predications introduced by each node. For instance, for the LSD given in Figure 1, the resulting
formula is ∃x, y, z : love(x) ∧ john(y) ∧mary(z) ∧ arg0(x, y) ∧ arg1(x, z).

This translation procedure is of course very basic. Nonetheless, because the testsuite builds
on a restricted syntax and vocabulary7, it suffices to check how well the normalisation process
succeeds in assigning syntactic variants the same semantic representation.

Results. The test procedure just described is applied to the LSD graphs produced by the normal-
isation module on the testsuite items. Table 5 gives the results. For each class of testsuite items
(1V+TE, 2V+TE, V-TE), we list the percentage of cases recognised by the system as entailment
(+TE) and non entailment (-TE). Because FOL is only semi-decidable, the reasoners do not always
return an answer. The Failure line gives the number of cases for which the reasoners fail.

The results on positive entailments (1V+TE,2V+TE) show that the proposed normalisation
method is generally successful in recognising syntax based entailments with an overall average
precision of 86.3% (and a breakdown of 94.9% for 1V+TE and 66.6% for 2V+TE cases). Impor-
tantly, the results on negative entailments (99.2% overall precision) show that the method is not
overly permissive and does not conflate semantically distinct structures. Finally, it can be seen that
the results degrade for the Tnx0Vnx2nx1 class (John gave Mary a book). This is due mainly to
genuine syntactic ambiguities which cannot be resolved without further semantic (usually ontolog-
ical) knowledge. For instance, both The book which John gave the woman and The woman whom
John gave the book are assigned the same dependency structures by the Stanford parser. Hence
the same rewrite rule applies to both structures and necessarily assigns one of them the wrong
labelling. Other sources of errors are cases where the DIFF patch used to derive a new rule fail
to adequately generalise to the target structure. In such cases, the erroneous rewrite rule can be
modified manually.

7In particular, the testsuite contains no quantifiers.

366



family ans 1V+TE 2V+TE V-TE
+TE 585 (98.2%) 212 (72.4%) 0 (0.0%)

Tnx0Vnx1 -TE 11 (1.8%) 79 (27.0%) 57 (100.0%)
Failure 0 (0.0%) 2 (0.6%) 0 (0.0%)

+TE 513 (89.2%) 131 (55.7%) 3 (0.4%)
Tnx0Vnx2nx1 -TE 61 (10.6%) 103 (43.8%) 703 (99.6%)

Failure 1 (0.2%) 1 (0.5%) 0 (0.0%)
+TE 567 (95.5%) 169 (67.9%) 0 (0.0%)

Tnx0Vplnx1 -TE 27 (4.5%) 79 (31.7%) 198 (100.0%)
Failure 0 (0.0%) 1 (0.4%) 0 (0.0%)

+TE 550 (96.5%) 167 (69.0%) 10 (1.5%)
Tnx0Vnx1pnx2 -TE 16 (2.8%) 69 (28.5%) 651 (98.5%)

Failure 4 (0.7%) 6 (2.5%) 0 (0.0%)
+TE 2215 (94.9%) 679 (66.6%) 13 (0.8%)

all -TE 115 (4.9%) 330 (32.4%) 1609 (99.2%)
Failure 5 (0.2%) 10 (1.0%) 0 (0.0%)

Figure 5: Precision on constructed examples. Each cell gives the proportion of cases recognised as
entailment by the system. Bold face figures give the precision i.e., the proportion of answers given
by the system that are correct.

4.2 Evaluation on the PropBank

The PropBank (Proposition Bank) was created by semantic annotation of the Wall Street Journal
section of Treebank-2. Each verb occurring in the Treebank has been treated as a semantic pred-
icate and the surrounding text has been annotated for arguments and adjuncts of the predicate as
illustrated in (5).

(5) [A0 He ] [AM-MOD would ] [AM-NEG n’t ] [V accept ] [A1 anything of value ] from [A2
those he was writing about ] .

The labels used for the core and adjunct-like arguments are the following8. The labels A0 .. A5
designate arguments associated with a verb predicate as defined in the PropBank Frames scheme.
A0 is the agent, A1 the patient or the theme. For A2 to A5 no consistent generalisation can be
made and the annotation reflects the decisions made when defining the PropBank Frames scheme.
Further, the AM-T label describes adjunct like arguments of various sorts, where T is the type of
the adjunct. Types include locative, temporal, manner, etc.

We used the PropBank to evaluate our normalisation procedure on free text. As in the CoNLL
(Conference on Natural Language Learning) shared task for SRL, the evaluation metrics used
are precision, recall and F measure. An argument is said to be correctly recognised if the words
spanning the argument as well as its semantic role match the PropBank annotation. Precision is
the proportion of arguments predicted by a system which are correct. Recall is the proportion of
correct arguments which are predicted by a system. F-measure is the harmonic mean of precision
and recall. The results are given below.

8This is in fact simplified. The PropBank corpus additionally provide information about R-* arguments (a reference
such as a trace to some other argument of A* type) and C-* arguments (a continuation phrase in a split argument).

367



args 0 1 2 3 4 5 a m total
recall 68.4% 68.2% 62.4% 47.2% 57.6% 5.3% 0.0% 64.4% 66.1%

precision 88.0% 80.2% 76.4% 83.1% 83.3% 50.0% — 75.0% 80.6%
f-mesure 77.0% 73.7% 68.7% 60.2% 68.1% 9.5% — 69.3% 72.6%

Precision (80.6%) is comparable to the results obtained in the ConLL 2005 SRL shared task
where the top 8 systems have an average precision ranging from 76.55% to 82.28%. Recall is
generally a little low (the ConLL05 recall ranged from 64.99% to 76.78%) for mainly two reasons:
either the Stanford parser, did not deliver the correct analysis or the required rewrite rule was not
present.

5 Conclusion

Our approach is akin to so-called semantic role labelling (SRL) approaches [CM05] and to sev-
eral rewriting approaches developed to modify parsing output in RTE systems [Ass07]. It differs
from the SRL approaches in that unlike most SRLs systems, it is based on a hybrid, statistic and
symbolic, framework. As a result, improving or extending the system can be done independently
of the availability of an appropriately annotated corpus. However, the quality, performance and
coverage of the system remains dependent on those of the Stanford parser9,

Our approach also differs from approaches that use the lambda calculus to normalise syntactic
variation. In such approaches, a compositional semantics module associates words and grammar
rules or derivation structures with lambda terms which in effect normalise variations such as for
instance, the active/passive variation. One important advantage of lambda based approaches is that
the rewriting system is confluent. The drawback however is that the specification of the appropriate
lambda terms requires expert linguistic skills. In contrast, the rewrite rule approach is compara-
tively easier to handle (the rules presented here were developed by a computer scientist) and its
use is supported by sophisticated developing environments such as GrGen which provides strong
notational expressivity (the rewrite rules can include conditions, can operate on graphs of arbi-
trary depth, etc. ), a good debugging environment and good processing times. In short although,
the lambda calculus approach is undoubtly more principled, the rewrite rule approach is arguably
easier to handle and easier to understand.

Normalisation of linguistic representations is not new. It is used in particular, in [BCC+07,
DBBT07, RTF07] for dealing with entailment detection in the RTE (Recognising Textual Entail-
ment) challenge. The approach we present here differs from these approaches both by its sys-
tematic treatment of syntactic variation and by its use of GrGen as a framework for specifying
transformations. More generally, our approach emphasises the following three points namely (i)
the systematic testing of all possible syntactic variations (based on the information contained in
XTAG); (ii) the use of an expressive, efficient and well-understood graph rewriting system for
defining transformations; and (iii) the development of a methodology for automatically deriving
new rewrite rules from existing ones.

By providing a well-defined framework for specifying, deriving and evaluating rewrite rules,
we strive to develop a system that normalises NLP representations in a way that best supports

9[KM03] report a label F-mesure of 86.3% on section 23 of the Penn Treebank.

368



semantic processing. The emphasis is on aligning Predicate/Argument structures that diverge in
the surface text but that are semantically similar (e.g., John buy a car from Peter/Peter sells a car
to John). In particular, we plan to extend the system to normalise nominal dependencies (using
NomBank) and converse constructions.

References

[Ass07] Association for Computational Linguistics. Proceedings of the ACL-PASCAL Work-
shop on Textual Entailment and Paraphrasing, Prague, Czech Republic, June 2007.

[BCC+07] D. G. Bobrow, C. Condoravdi, R. S. Crouch, V. de Paiva, L. Karttunen, T. H. King,
R. Nairn, L. Price, and A. Zaenen. Precision-focused textual inference. In ACL-
PASCAL Workshop on Textual Entailment and Paraphrasing, pages 16–21, Prague,
Czech Republic, June 2007.

[BCS+07] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni. Open in-
formation extraction from the web. In IJCAI ’07: Proceedings of International Joint
Conference on Artificial Intelligence, pages 2670–2676, Hyderabad, India, January
2007.

[CM05] X. Carreras and L. Marquez. Introduction to the conll-2005 shared task: Semantic role
labeling. In Proceedings of the CoNLL-2005 Shared Task: Semantic Role Labeling,
pages 152–164, Ann Arbor, Michigan, June 2005.

[CMB99] J. Carroll, G. Minnen, and T. Briscoe. Corpus annotation for parser evaluation. In
EACL Workshop on Linguistically Interpreted Corpora, Bergen, Norway, June 1999.

[CS07] A. B. Clegg and A. J. Shepherd. Benchmarking natural-language parsers for biological
applications using dependency graphs. BMC Bioinformatics, 8:24, January 2007.

[DBBT07] R. Delmonte, A. Bristot, M. A. P. Boniforti, and S. Tonelli. Entailment and anaphora
resolution in rte3. In ACL-PASCAL Workshop on Textual Entailment and Paraphras-
ing, pages 48–53, Prague, Czech Republic, June 2007.

[dM08] M.-C. de Marneffe and C. D. Manning. The stanford typed dependencies representa-
tions. In COLING’08 Workshop on Cross-framework and Cross-domain Parser Eval-
uation, Manchester, England, August 2008.

[dMM06] Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. Gener-
ating typed dependency parses from phrase structure parses. In LREC ’06: Proceed-
ings of 5th International Conference on Language Resources and Evaluation, pages
449–454, Genoa, Italy, May 2006.

[EHK+99] H. Ehrig, R. Heckel, M. Korff, Loewe M., L. Ribeiro, A. Wagner, and A. Corradini.
Handbook of Graph Grammars and Computing by Graph Transformation., volume 1,
chapter Algebraic Approaches to Graph Transformation - Part II: Single Pushout A.
and Comparison with Double Pushout A, pages 247–312. World Scientific, 1999.

369



[EOR07] G. Erkan, A. Ozgur, and D. R. Radev. Semi-supervised classification for extracting
protein interaction sentences using dependency parsing. In EMNLP-CoNLL ’07: Pro-
ceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pages 228–237, Prague,
Czech Republic, June 2007. Association for Computational Linguistics.

[Gro01] XTAG Research Group. A lexicalized tree adjoining grammar for english. Technical
Report IRCS-01-03, IRCS, University of Pennsylvania, 2001.

[KCR+03] T. King, R. Crouch, S. Riezler, M. Dalrymple, and R. Kaplan. The parc 700 depen-
dency bank. In EACL workshop on Linguistically Interpreted Corpora, Budapest,
Hungary, April 2003.

[KG07] M. Kroll and R. Geiß. Developing graph transformations with grgen.net. Technical
report, October 2007. preliminary version, submitted to AGTIVE 2007.

[KM03] D. Klein and C. D. Manning. Accurate unlexicalized parsing. In ACL ’03: Proceedings
of the 41st Annual Meeting of the Association for Computational Linguistics, pages
423–430, Sapporo, Japan, July 2003. Association for Computational Linguistics.

[MP07] A. Meena and T. V. Prabhakar. Sentence level sentiment analysis in the presence
of conjuncts using linguistic analysis. In Ecir ’07: Proceedings of 29th European
Conference on Information Retrieval, pages 573–580, Rome, Italy, April 2007.

[RTF07] A. B. N. Reiter, S. Thater, and A. Frank. A semantic approach to textual entailment:
System evaluation and task analysis. In ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, pages 10–15, Prague, Czech Republic, June 2007.

[SJM+08] M. Surdeanu, R. Johansson, A. Meyers, L. Màrquez, and J. Nivre. The CoNLL-2008
shared task on joint parsing of syntactic and semantic dependencies. In CoNLL ’08:
Proceedings of the 12th Conference on Computational Natural Language Learning,
pages 159–177, Manchester, UK, August 2008.

[ZJZ06] L. Zhuang, F. Jing, and X.-Y. Zhu. Movie review mining and summarization. In
CIKM ’06: Proceedings of the 15th ACM international conference on Information
and knowledge management, pages 43–50, Arlington, Virginia, USA, November 2006.
ACM.

370


