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Abstract 

There are generally many ways to translite-

rate a name from one language script into 

another. The resulting ambiguity can make it 

very difficult to “untransliterate” a name by 

reverse engineering the process. In this paper, 

we present a highly successful cross-script 

name matching system that we developed by 

combining the creativity of human intuition 

with the power of machine learning. Our sys-

tem determines whether a name in Roman 

script and a name in Chinese script match 

each other with an F-score of 96%. In addi-

tion, for name pairs that satisfy a computa-

tional test, the F-score is 98%. 

 

1 Introduction 

There are generally many ways to transliterate a 

person‟s name from one language script into 

another. For example, writers have transliterated 

the Arabic name, الشكري, into Roman characters 

in at least 13 ways, such as Al Choukri, Ash-

shukri, and al-Schoukri. This ambiguity can 

make it very difficult to “untransliterate” a name 

by reverse engineering the process. 

We focused on a task that is related to transli-

teration. Cross-script name matching aims to de-

termine whether a given name part in Roman 

script matches a given name part in Chinese 

(Mandarin) script,
1
 where a name part is a single 

“word” in a person‟s name (such as a surname), 

and two names match if one is a transliteration of 

the other.
2
 Cross-script name matching has many 

                                                 
1 In this paper, we often use the word “Roman” to refer to 

“Roman script”, and similarly, “Chinese” usually stands 

for “Chinese script”. 

2 Sometimes a third script comes between the Roman and 

Chinese versions of the name. For example, a Roman 

name might be transliterated into Arabic, which is then 

transliterated into Chinese, or an Arabic name could be 

transliterated into Roman and Chinese independently. 

applications, such as identity matching, improv-

ing search engines, and aligning parallel corpora. 

We combine a) the creative power of human 

intuition, which can come up with clever ideas 

and b) the computational power of machine 

learning, which can analyze large quantities of 

data. Wan and Verspoor (1998) provided the 

human intuition by designing an algorithm to 

divide names into pieces that are just the right 

size for Roman-Chinese name matching (Section 

2.2.). Armed with Wan and Verspoor‟s algo-

rithm, a machine learning approach analyzes 

hundreds of thousands of matched name pairs to 

build a Roman-Chinese name matching system 

(Section 3). 

Our experimental results are in Section 4. The 

system correctly determines whether a Roman 

name and a Chinese name match each other with 

F = 96.5%.
3
 And F = 97.6% for name pairs that 

satisfy the Perfect Alignment hypothesis condi-

tion, which is defined in Section 2.2. 

 

2 Related Work 

Wan and Verspoor‟s (1998) work had a great 

impact on our research, and we explain how we 

use it in Section 2.2. In Section 2.1, we identify 

other related work. 

2.1 Chinese-English Name Matching 

Condon et al. (2006) wrote a paper about the 

challenges of matching names across Roman and 

Chinese scripts. In Section 6 of their paper, they 

offered an overview of several papers related to 

Roman-Chinese name matching. (Cohen et al., 

2003; Gao et al., 2004;  Goto et al., 2003; Jung et 

al., 2000; Kang and Choi, 2000; Knight and 

Graehl, 1997; Kondrak, 2000; Kondrak and 

Dorr, 2004; Li et al., 2004; Meng et al., 2001; Oh 

                                                 
3 F stands for F-score, which is a popular evaluation metric. 

(Andrade et al., 2009) 
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and Choi, 2006; Virga and Khudanpur, 2003; 

Wellner et al., 2005; Winkler, 2002) 

The Levenshtein algorithm is a popular way to 

compute string edit distance. (Levenshtein, 1966) 

It can quantify the similarity between two names. 

However, this algorithm does not work when the 

names are written in different scripts. So Free-

man et al. (2006) developed a strategy for Ro-

man-Arabic  string matching that uses equiva-

lence classes of characters to normalize the 

names so that Levenshtein‟s method can be ap-

plied.  Later, Mani et al. (2006) transformed that 

system from Roman-Arabic to Roman-Chinese 

name matching and extended the Levenshtein 

approach, attaining F = 85.2%. Then when they 

trained a machine learning algorithm on the out-

put, the performance improved to F = 93.1% 

 Mani et al. also tried applying a phonological 

alignment system (Kondrak, 2000) to the Ro-

man-Chinese name matching task, and they re-

ported an F-score of 91.2%. However, when they 

trained a machine learning approach on that sys-

tem‟s output, the F-score was only 90.6%.  

It is important to recognize that it would be in-

appropriate to present a side-by-side comparison 

between Mani‟s work and ours (F = 96.5%), be-

cause there are many differences, such as the 

data that was used for evaluation. 

2.2 Subsyllable Units 

Transliteration is usually based on the way 

names are pronounced.
4
 However, each character 

in a Roman name generally corresponds to a sin-

gle phoneme, while a Chinese character (CC) 

generally corresponds to a subsyllable unit 

(SSU). A phoneme is the smallest meaningful 

unit of sound, and a subsyllable unit is a se-

quence of one to three phonemes that conform to 

the following three constraints. (Wan and Vers-

poor, 1998) 

                                                 
4  Of course, there are exceptions. For example, when a 

name happens to be a word, sometimes that name is trans-

lated (rather than transliterated) into the other language. 

But our experimental results suggest that the exceptions 

are quite rare. 

(1) There is exactly one vowel phoneme.
5
 

(2) At most, one consonant phoneme may pre-

cede the vowel phoneme. 

(3) The vowel phoneme may be followed by, at 

most, one nasal phoneme.
6
 

Consider the example in Table 1. The name 

“Albertson” consists of eight phonemes in three 

syllables.7 The last syllable, SAHN, satisfies the 

definition of SSU, and the other two are split into 

smaller pieces, resulting in a total of five SSUs. 

There are also five CCs in the Chinese version,  

阿尔贝特松. We note that the fourth and sixth rows 

in the table show similarities in their pronuncia-

tions. For example, the first SSU, AE, sounds 

like the first CC, /a/. And, although the sounds 

are not always identical, such as BER and /pei/, 

Wan and Verspoor claimed that these SSU-CC 

correspondences can be generalized in the fol-

lowing way: 

Perfect Alignment (PA) hypothesis 

If a Roman name corresponds to a sequence of n 

SSUs, S1, S2, ..., Sn, and the Chinese form of that 

name is a sequence of n CCs, C1, C2, ..., Cn, then 

Ci matches Si for all 1 ≤ i ≤ n. 

In Section 4, we show that the PA hypothesis 

works very well. However, it is not uncommon 

to have more SSUs than CCs in a matching name 

pair, in which case, the PA hypothesis does not 

apply. Often this happens because an SSU is left 

out of the Chinese transliteration, perhaps be-

cause it is a sound that is not common in Chi-

nese. For example, suppose “Carlberg” (KAA, 

R,L,BER,G) is transliterated as 卡尔贝里 . In 

this example, the SSU, R, does not corres-

pond to any of the CCs. We generalize this 

phenomenon with another hypothesis:  

SSUs Deletion (SSUD) hypothesis 
If a Roman name corresponds to a sequence of 

n+k  SSUs (k>0), S1, S2, ..., Sn+k, and the Chinese 

form of that name is a sequence of n CCs, C1, C2, 

..., Cn, then, for some set of k Si’s, if those SSUs 

are removed from the sequence of SSUs, then the 

PA hypothesis holds. 

And in the case where the number of CCs is 

greater than the number of SSUs, we make the 

                                                 
5 Wan and Verspoor treat the phoneme, /ər/, as in Albertson, 

as a vowel phoneme. 

6 The nasal phonemes are /n/ and /ŋ/, as in “nothing”. 

7 To represent phonemes, we use two different standards in 

this paper. The symbols between slashes (like /ər/) are in 

the IPA format (International Phonetic Association, 

1999). And the phonemes written in capital letters (like 

ER) are in the ARPABET format (Klatt, 1990). 

Roman Characters: Albertson 

Phonemes: AE,L,B,ER,T,S,AH,N 

Syllables: AEL,BERT,SAHN 

Subsyllable Units: AE,L,BER,T,SAHN 

Chinese: 阿尔贝特松 

Chinese Phonemes: /a/,/ər/,/pei/,/t
h
ə/,/suŋ/ 

Table 1. Subsyllable Units 
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corresponding CCs Deletion (CCD) hypothesis. 

In the next section, we show how we utilize these 

hypotheses. 

 

3 Machine Learning 

We designed a machine learning algorithm to 

establish a mapping between SSUs and CCs. In 

Section 3.1, we show how our system can do 

Roman-Chinese name matching, and then we 

present the training procedure in Section 3.2. 

3.1 Application Mode 

Given a Roman-Chinese name pair, our system 

computes a match score, which is a number be-

tween 0 and 1 that is meant to represent the like-

lihood that two names match.  This is accom-

plished via the process presented in Figure 1. 

Starting in the upper-left node of the diagram 

with a Roman name and a Chinese name, the 

system determines how the Roman name should 

be pronounced by running it through the Festival 

system. (Black et al., 1999) Next, two algorithms 

designed by Wan and Verspoor (1998) join the 

phonemes to form syllables and divide the syl-

lables into SSUs.
8
 If the number of SSUs is equal 

to the number of characters in the Chinese 

name,
9
 we apply the PA hypothesis to align each 

SSU with a CC.  

The system computes a match score using a 

data structure called the SSU-CC matrix (subsyl-

lable unit – Chinese character matrix), which has 

a nonnegative number for each SSU-CC pair, 

and this value should represent the strength of 

the correspondence between the SSU and the 

CC. Table 2 shows an example of an SSU-CC 

matrix. With this matrix, the name pair <Albert, 

阿尔贝特> receives a relatively high match score,  

because the SSUs in Albert are AE, L, BER, and 

T, and the numbers in the SSU-CC matrix for 

<AE,阿>, <L,尔>, <BER,贝> and <T,特> are 2, 2, 

3, and 2, respectively.
10

 Alternatively, the system 

assigns a very low match score to <Albert,         

尔贝特阿>, because the values of <AE,尔>, <L,贝>, 

<BER,格>, and <T,阿> are all 0. 

3.2 Training Mode 

To generate an SSU-CC matrix, we train our sys-

tem on a corpus of Roman-Chinese name pairs 

                                                 
8  This procedure passes through three separate modules, 

each of which introduces errors, so we would expect the 

system to suffer from compounding errors. However, the 

excellent evaluation results in Section 4 suggest  other-

wise. This may be because the system encounters the 

same kinds of errors during training that it sees in the ap-

plication mode, so perhaps it can learn to compensate for 

them. 

9 Section 3.3 discusses the procedure used when these num-

bers are not equal. 

10 The equation used to derive the match score from these 

values can be found in Section 5. 

 
Figure 2. Training Mode 

 
Figure 1. Application Mode 
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A 
H 
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L 
I 
Y 

N 
A 
H R 

S 
A 
H 
N T 

伦 0 0 0 0 0 0 1 0 0 0 0 0 

利 0 0 0 0 0 0 0 1 0 0 0 0 

卡 0 0 0 0 1 0 0 0 0 0 0 0 

叶 0 0 1 0 0 0 0 0 0 0 0 0 

埃 0 0 1 0 0 0 0 0 0 0 0 0 

娜 0 0 0 0 0 0 0 0 1 0 0 0 

尔 0 0 0 0 0 2 0 0 0 1 0 0 

松 0 0 0 0 0 0 0 0 0 0 1 0 

特 0 0 0 0 0 0 0 0 0 0 0 2 

贝 0 3 0 0 0 0 0 0 0 0 0 0 

连 0 0 0 0 0 0 1 0 0 0 0 0 

里 0 0 0 1 0 0 0 0 0 0 0 0 

阿 2 0 0 0 0 0 0 0 0 0 0 0 

Table 2. SSU-CC Matrix #1 
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that match. Figure 2 shows a diagram of the 

training system. The procedure for transforming 

the Roman name into a sequence of SSUs is 

identical to that presented in Section 3.1. Then, if 

the number of SSUs is the same as the number of 

CCs,
9
 we apply the PA hypothesis to pair the 

SSUs with the CCs. For example, the third name 

pair in Table 3 has three SSU-CC pairs: <KAA,

卡>, <R,尔>, and <LIY,利>. So the system mod-

ifies the SSU-CC matrix by adding 1 to each cell 

that corresponds to one of these SSU-CC pairs. 

Training on the five name pairs in Table 3 pro-

duces the SSU-CC matrix in Table 2. 

3.3 Imperfect Alignment 

The system makes two passes through the train-

ing data. In the first pass, whenever the PA hypo-

thesis does not apply to a name pair (because the 

number of SSUs differs from the number of 

CCs), that name pair is skipped.  

Then, in the second pass, the system builds 

another SSU-CC matrix. The procedure for 

processing each name pair that satisfies the PA 

hypothesis‟s condition is exactly the same as in 

the first pass (Section 3.2). But the other name 

pairs require the SSUD hypothesis or the CCD 

hypothesis to delete SSUs or CCs. For a given 

Roman-Chinese name pair:  

where D is the set of all deletion sets that make 

the PA hypothesis applicable. Note that the size 

of D grows exponentially as the difference be-

tween the number of SSUs and CCs grows. 

As an example, consider adding the name pair 

<Carlberg, 卡尔贝里> to the data in Table 3. Carl-

berg has five SSUs: KAA,R,L,BER,G, but 卡尔贝-

里 has only four CCs. So the PA hypothesis is not 

applicable, and the system ignores this name pair 

in the first pass. Table 2 shows the values in Ma-

trix #1 when it is completed. 

In the second pass, we must apply the SSUD 

hypothesis to <Carlberg, 卡尔贝里> by deleting 

one of the SSUs. There are five ways to do this, 

as shown in the five rows of Table 4. (For in-

stance, the last row represents the case where G 

is deleted ― the SSU-CC pairs are <KAA,卡>, 

<R,尔>, <L,贝>, <BER,里>, and <G,Ø>.
11

) 

Each of the five options are evaluated using 

the values in Matrix #1 (Table 2) to produce the 

scores in the second column of Table 4. Then the 

                                                 
11 The Ø represents a deleted SSU. We include a row and 

column named Ø in Matrix #2 to record values for the 

cases in which the SSUs and CCs are deleted. 

For every d in D: 

Temporarily make the deletions in d. 

Evaluate the resulting name pair with Matrix #1. 

Scale the evaluation scores of the d‟s to sum to 1. 

For every d in D: 

Temporarily make the deletions in d. 

For every SSU-CC pair, ssu-cc, in the result: 

Add d‟s scaled score to cell [ssu,cc] in Matrix #2. 

Example # 1 2 3 4 5 

Roman 

Characters 
Albert Albertson Carly Elena Ellenberg 

Subsyllable 

Units 
AE,L,BER,T AE,L,BER,T,SAHN KAA,R,LIY EH,LAHN,NAH EH,LAHN,BER,G 

Chinese 

Characters 
阿尔贝特 阿尔贝特松 卡尔利 叶连娜 埃伦贝里 

Table 3. Training Data 

CCs Score Scaled Score 

Ø卡尔贝里 0.00 0.00 

卡Ø尔贝里 0.90 0.54 

卡尔Ø贝里 0.76 0.46 

卡尔贝Ø里 0.00 0.00 

卡尔贝里Ø 0.00 0.00 

Table 4. Subsyllable Unit Deletion 

 

 
Ø 

B 
E 
R G 

K 
A 
A L R ... 

Ø  0.00 0.00 0.00 0.46 0.54  

卡 0.00 0.00 0.00 2.00 0.00 0.00  

尔 0.00 0.00 0.00 0.00 2.54 1.46  

贝 0.00 4.00 0.00 0.00 0.00 0.00  

里 0.00 0.00 2.00 0.00 0.00 0.00  

...        

Table 5. SSU-CC Matrix #2 
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system scales the scores to sum to 1, as shown in 

the third column, and it uses those values as 

weights to determine how much impact each of 

the five options has on the second matrix. Table 

5 shows part of Matrix #2. 

In application mode, when the system encoun-

ters a name pair that does not satisfy the PA hy-

pothesis‟s condition it tries all possible deletion 

sets and selects the one that produces the highest 

match score. 

3.4 Considering Context 

It might be easier to estimate the likelihood that 

an SSU-CC pair is a match by using information 

found in surrounding SSU-CC pairs, such as the 

SSU that follows a given SSU-CC pair. We do 

this by increasing the number of columns in the 

SSU-CC matrix to separate the examples based 

on the surrounding context. 

For example, in Table 2, we cannot determine 

whether LAHN should map to 伦 or 连. But the 

SSU that follows LAHN clears up the ambiguity, 

because when LAHN immediately precedes 

BER, it maps to  伦, but when it is followed by 

NAH, it corresponds to 连. Table 6 displays a 

portion of the SSU-CC matrix that accounts for 

the contextual information provided by the SSU 

that follows an SSU-CC pair. 

3.5 The Threshold 

Given an SSU-CC name pair, the system produc-

es a number between 0 and 1. But in order to 

evaluate the system in terms of precision, recall, 

and F-score, we need the system to return a yes 

(a match) or no (not a match) response. So we 

use a threshold value to separate those two cases.  

The threshold value can be manually selected 

by a human, but this is often difficult to do effec-

tively. So we developed the following automated 

approach to choose the threshold. After the train-

ing phase finishes developing Matrix #2, the sys-

tem processes the training data
12

 one more time. 

                                                 
12 We tried selecting the threshold with data that was not 

used in training, and we found no statistically significant 

improvement. 

But this time it runs in application mode (Section 

3.1), computing a match score for each training 

example. Then the system considers all possible 

ways to separate the yes and no responses with a 

threshold, selecting the threshold value that is the 

most effective on the training data. 

Building the SSU-CC matrices does not re-

quire any negative examples (name pairs that do 

not match). However, we do require negative 

examples in order to determine the threshold and 

to evaluate the system. Our technique for gene-

rating negative examples involves randomly 

rearranging the names in the data.
13

 

 

4 Evaluation of the System 

We ran several experiments to test our system 

under a variety of different conditions. After de-

scribing our data and experimental method, we 

present some of our most interesting experimen-

tal results. 

We used a set of nearly 500,000 Roman-

Chinese person name pairs collected from Xin-

hua News Agency newswire texts. (Huang, 

2005) Table 7 shows the distribution of the data 

based on alignment. Note that the PA hypothesis 

applies to more than 60% of the data. 

We used the popular 10-fold cross validation 

approach
14

 to obtain ten different evaluation 

scores. For each experiment we present the aver-

age of these scores. 

Our system‟s precision (P), recall (R), and F-

score (F) are: P = 98.19%, R = 94.83%, and F = 

96.48%. These scores are much better than we 

originally expected to see for the challenging 

task of Roman-Chinese name matching.  

Table 8 shows P, R, and F for subsets of the 

test data, organized by the number of SSUs mi-

                                                 
13 Unfortunately, there is no standard way to generate nega-

tive examples. 
14 The data is divided into ten subsets of approximately the 

same size, testing the system on each subset when trained 

on the other nine. 

 
LAHN 
(BER) 

LAHN 
(NAH) 

BER 
(G) 

BER 
(T) 

伦 1 0 0 0 

贝 0 0 1 2 

连 0 1 0 0 

Table 6. Considering Context 

 

Alignment % of Data 

#SSUs - #CCs ≥ 3 1.62% 

#SSUs - #CCs = 2 6.66% 

#SSUs - #CCs = 1 20.00% 

#SSUs - #CCs = 0 60.60% 

#SSUs - #CCs = -1 10.48% 

#SSUs - #CCs = -2 0.61% 

#SSUs - #CCs ≤ -3 0.02% 

Table 7. Statistics of the Data 
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nus the number of CCs in the name pairs. The 

differences between scores in adjacent rows of 

each column are statistically significant.
15

 Per-

fectly aligned name pairs proved to be the ea-

siest, with F = 97.55%, but the system was also 

very successful on the examples with the number 

of SSUs and the number of CCs differing by one 

(F = 96.08% and F = 97.37%). These three cases 

account for more than 91% of the positive exam-

ples in our data set. (See Table 7.) 

4.1 Deletion Hypotheses 

We ran tests to determine whether the second 

pass through the training data (in which the 

SSUD and CCD hypotheses are applied) is effec-

tive. Table 9 shows the results on the complete 

set of test data, and all of the differences between 

the scores are statistically significant.  

The first row of Table 9 presents F when the 

system made only one pass through the training 

data. The second row‟s experiments utilized the 

CCD hypothesis but ignored examples with more 

SSUs than CCs during training. For the third 

row, we used the SSUD hypothesis, but not the 

CCD hypothesis, and the last row corresponds to 

system runs that used all of the training exam-

ples. From these results, it is clear that both of 

the deletion hypotheses are useful, particularly 

the SSUD hypothesis. 

4.2 Context 

In Section 3.4, we suggested that contextual in-

formation might be useful. So we ran some tests, 

obtaining the results shown in Table 10. For the 

second row, we used no contextual information. 

Row 5 corresponds to the case where we gave 

the system access to the SSU immediately fol-

lowing the SSU-CC pair being analyzed. In row 

                                                 
15 We use the homoscedastic t test (“Student‟s t Test”, 2009) 

to decide whether the difference between two results is 

statistically significant. 

6‟s experiment, we used the SSU immediately 

preceding the SSU-CC pair under consideration, 

and row 7 corresponds to system runs that ac-

counted for both surrounding SSUs. 

We also tried simplifying the contextual in-

formation to boolean values that specify whether 

an SSU-CC pair is at a boundary of its name or 

not, and rows 1, 3, and 4 of Table 10 show those 

results. “Left Border” is true if and only if the 

SSU-CC pair is at the beginning of its name, 

“Right Border” is true if and only if the SSU-CC 

pair is at the end of its name, and “Both Borders” 

is true if and only if the SSU-CC pair is at the 

beginning or end of its name. All differences in 

the table are statistically significant, except for 

those between rows 2, 3, and 4. These results 

suggest that the right border provides no useful 

information, even if the left border is also in-

cluded in the SSU-CC matrix. But when the 

SSU-CC matrix only accounted for the left bor-

der, the F-score was significantly higher than the 

baseline. Providing more specific information in 

the form of SSUs actually made the scores go 

down significantly. 

4.3 Sparse Data 

We were initially surprised to discover that using 

the rich information in the surrounding SSUs 

made the results worse. The explanation for this 

is that adding contextual information increases 

the size of the SSU-CC matrix, and so several of 

the numbers in the matrix become smaller. (For 

example, compare the values in the “BER” col-

umns in Table 2 and Table 6.) This means that 

the system might have been suffering from a 

sparse data problem, which is a situation where 

there are not enough training examples to distin-

guish correct answers from incorrect answers, 

and so incorrect answers can appear to be correct 

by random chance.  

There are two factors that can contribute to a 

sparse data problem. One is the amount of train-

ing data available ― as the quantity of training 

data increases, the sparse data problem becomes 

less severe. The other factor is the complexity of 

Alignment P R F 

#SSUs - #CCs ≥ 3 72.38% 94.02% 81.79% 

#SSUs - #CCs = 2 95.26% 92.67% 93.95% 

#SSUs - #CCs = 1 99.07% 93.27% 96.08% 

#SSUs - #CCs = 0 99.87% 95.33% 97.55% 

#SSUs - #CCs = -1 98.33% 96.42% 97.37% 

#SSUs - #CCs = -2 73.80% 94.98% 83.04% 

#SSUs - #CCs ≤ -3 7.54% 78.04% 13.71% 

Table 8. Varying Alignment of Name Pairs 

# Contextual Information F 

1 Left Border 96.48% 

2 No Context 96.25% 

3 Both Borders 96.24% 

4 Right Border 96.19% 

5 Next SSU 87.53% 

6 Previous SSU 85.89% 

7 Previous SSU and Next SSU 47.89% 

Table 10. Evaluation with Context 

Hypotheses F 

PA 75.25% 

PA & CCD 83.74% 

PA & SSUD 92.86% 

PA & CCD & SSUD 96.48% 
Table 9. Varying the Training Data 
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the learned model ― as the model becomes more 

complex, the sparse data problem worsens. 

Our system‟s model is the SSU-CC matrix, 

and a reasonable measure of the its complexity is 

the number of entries in the matrix. The second 

column of Table 11 shows the number of SSU-

CC pairs in training divided by the number of 

cells in the SSU-CC matrix. These ratios are 

quite low, suggesting that there is a sparse data 

problem. Even without using any context, there 

are nearly 8 cells for each SSU-CC pair, on aver-

age.
16

  

It might be more reasonable to ignore cells 

with extremely low values, since we can assume 

that these values are effectively zero. The third 

column of Table 11 only counts cells that have 

values above 10
-7

. The numbers in that column 

look better, as the ratio of cells to training pairs 

is better than 1:4 when no context is used. How-

ever, when using the previous SSU, there are still 

more cells than training pairs.  

Another standard way to test for sparse data is 

to compare the system‟s results as a function of 

the quantity of training data. As the amount of 

training data increases, we expect the F-score to 

rise, until there is so much training data that the 

F-score is at its optimal value.
17

 Figure 3 shows 

the results of all of the context experiments that 

we ran, varying the amount of training data. 

(90% of the training data was used to get the F-

scores in Table 10.) The t test tells us that “No 

Context” is the only curve that does not increase 

significantly on the right end. This suggests that 

all of the other curves might continue increasing 

if we used more training data. So even the “Both 

SSUs” case could potentially achieve a competi-

tive score, given enough training examples. Also, 

                                                 
16 It is true that a name pair can have multiple SSU-CC 

pairs, but even if the average number of SSU-CC pairs per 

name pair is as high as 8 (and it is not), one training name 

pair per SSU-CC matrix cell is still insufficient. 

17 Note that this value may not be 100%, because there are 

factors that can make perfection difficult to achieve, such 

as errors in the data. 

more training data could produce higher scores 

than 96.48%. 

5 Summary 

We designed a system that achieved an F-score 

of 96.48%, and F = 97.55% on the 60.61% of the 

data that satisfies the PA hypothesis‟s condition.  

Due to the paper length restriction, we can on-

ly provide short summaries of the other experi-

ments that that we ran. 

1) We experimentally compared six different 

equations for computing match scores and 

found that the best of them is an arithmetic 

or geometric average of Prob(SSU|CC) and 

Prob(CC|SSU).  

2) We attempted to make use of two simple 

handcrafted rules, but they caused the sys-

tem‟s performance to drop significantly. 

3) We compared two approaches for automati-

cally computing the pronunciation of a Ro-

man name and found that using the Festival 

system (Black et al., 1999) alone is just as ef-

fective as using the CMU Pronunciation Dic-

tionary (CMUdict, 1997) supplemented by 

Festival. 

4) We tried computing the threshold value with 

data that was not used in training the system. 

However, this failed to improve the system‟s 

performance significantly. 

 

6 Future Work 

There are so many things that we still want to do, 

including: 

1. modifying our system for the task of 

transliteration (Section 6.1),  

2. running fair comparisons between our 

work and related research, 

3. using Levenshtein‟s algorithm (Levensh-

tein, 1966) to implement the SSUD and 

Contextual Info. All Cells  Cells > 10
-7

 
 

No Context 0.128 4.35 

Right Border 0.071 3.45 

Left Border 0.069 3.45 

Both Borders 0.040 3.13 

Next SSU 0.002 1.12 

Previous SSU 0.001 0.78 

Both SSUs far less far less 

Table 11. Num. SSU-CC Pairs  per Matrix Cell 

 
Figure 3. Testing for Sparse Data 
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CCD hypotheses, instead of exhaustively 

evaluating all possible deletion sets (Sec-

tion 3.3),
18

  

4. developing a standard methodology for 

creating negative examples,  

5. when using contextual information, split-

ting rows or columns of the SSU-CC 

matrix only when they are ambiguous 

according to a metric such as Informa-

tion Gain (Section 3.4),
19

 

6. combining our system with other Ro-

man-Chinese name matching systems in 

a voting structure (Van Halteren, Zavrel, 

and Daelemans, 1998), 

7. independently evaluating the modules 

that determine pronunciation, construct 

syllables, and separate subsyllable units 

(Section 3),  

8. converting phonemes into feature vectors 

(Aberdeen, 2006),  

9. modifying our methodology to apply it 

to other similar languages, such as Japa-

nese, Korean, Vietnamese, and Ha-

waiian.  

10. manually creating rules based on infor-

mation in the SSU-CC matrix, and  

11. utilizing graphemic information. 

6.1 Transliteration 

We would like to modify our system to enable 

it to transliterate a given Roman name into Chi-

nese in the following way. First, the system 

computes the SSUs as in Section 3.1. Then it 

produces a match score for every possible se-

quence of CCs that has the same length as the 

sequence of SSUs, returning all of the CC se-

quences with match scores that satisfy a prede-

termined threshold restriction. 

For example, in a preliminary experiment, 

given the Roman name Ellen, the matcher pro-

duced the transliterations below, with the match 

scores in parentheses.
20

 

 埃 伦  (0.32) 

 埃 兰  (0.14) 

 埃 隆  (0.11)  

 埃 朗  (0.05) 

                                                 
18 We thank a reviewer for suggesting this method of im-

proving efficiency. 

19 We thank a reviewer for this clever way to control the 

size of the SSU-CC matrix when context is considered. 

20 A manually-set threshold of 0.05 was used in this experi-

ment. 

Based on our data, the first and fourth results 

are true transliterations of Ellen, and the only 

true transliteration that failed to make the list is 

埃连. 

 

7 Conclusion 

There was a time when computational linguistics 

research rarely used machine learning. Research-

ers developed programs and then showed how 

they could successfully handle a few examples, 

knowing that their programs were unable to ge-

neralize much further. Then the language com-

munity became aware of the advantages of ma-

chine learning, and statistical systems almost 

completely took over the field. Researchers 

solved all kinds of problems by tapping into the 

computer‟s power to process huge corpora of 

data. But eventually, the machine learning sys-

tems reached their limits. 

We believe that, in the future, the most suc-

cessful systems will be those developed by 

people cooperating with machines. Such systems 

can solve problems by combining the computer‟s 

ability to process massive quantities of data with 

the human‟s ability to intuitively come up with 

new ideas. 

Our system is a success story of human-

computer cooperation. The computer tirelessly 

processes hundreds of thousands of training ex-

amples to generate the SSU-CC matrix. But it 

cannot work at all without the insights of Wan 

and Verspoor. And together, they made a system 

that is successful more than 96% of the time. 
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