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Abstract 2 MDL Training for Trandliteration

We present a transliteration system that In our transliteration setting, we are given a string
introduces minimum description length e written in an alphabet; (e.g., Latin), which is
training for transliteration and combines to be transliterated into a strinfwritten in an al-

it with discriminative modeling. We ap- phabet/; (e.g., Chinese). We consider a transliter-
ply the proposed approach to translitera- ation process that is conducted by a transliteration
tion from English to 8 non-Latin scripts, model T, which represents a function mapping a
with promising results. pair of strings(e;, f;) into a scorel’(e;, f;) € R.
For an alignment A = {(e;, f;)} of e and f, we
1 Introduction define the alignment scofE(A) = Y, T'(e;, fi).

For a stringe and a modeT’, the decoding process

Recent research in transliteration and translatiorgeeks the optimal transliteratid(e) with respect
showed utility of increasing the n-gram size Ny, ihe modelr™

transliteration models and phrase tables (Koehn

et al., 2003). Yet most learning algorithms for  T'(¢) = arg max{ T(A) | 3A = {(e;, fi)} }
training n-gram transliteration models place re- !

strictions on the size of n-gram due to tractability  pifferent assumptions for transliteration mod-
and overfitting issues, and, in the case of maching|s |ead to different estimation algorithms. A
translation, construct the phrase table after trainpopular approach is to assumejaint gener-
ing the model, in an ad-hoc manner. In this paperative model for pairs(e, f), so that given an
we present a minimum description length (MDL) alignmentA — {(e;, f;)}, a probability P(e, f)
approach (Grunwald, 2007) for learning transliter-is defined to be[l, p(ei, fi). The probabili-
ation models comprising n-grams of unrestrictedies p(e;,, ;) are estimated using the EM algo-

Size. Given a b|||ngua| dictionary Of '[I’ansli'[el‘ated rithm’ and the Corresponding transliteration model
data we seek to derive a transliteration model S¢s 7'(¢;, f,) = log(p(e;, f;)). We can alterna-

that the combined size of the data and the model igyely model theconditional probability directly:

minimized. P(fle) = IL;p(file;), where we again estimate
Use of discriminative modeling for transliter- the conditional probabilities(f;|e;) via the EM

ation and translation is another promising direc-g|gorithm, and define the transliteration model ac-

tion allowing incorporation of arbitrary features cordingly: T'(e;, f;) = log(p(filei)). We can also

in the transliteration process (Zelenko and Aonecombine joint estimation with conditional decod-
2006; Goldwasser and Roth, 2008). Here we prorng, observing thap(f;|e;) = peii)  and us-
pose to use the transliteration model derived via . _ Zf plesfi) _
MDL training as a starting point and leam the N9 t_he cqnqmonal transllteratlon model after esti-
model weights in the discriminative manner. ThematIng aJ_O'm generatlye model. .
discriminative approach also provides a natural Increasing the maximum n-gram size in prob-

way to integrate the language modeling COmpo_ablllstlc modeling approaches, at some point, de-

nent into the transliteration decoding process. grades model accuracy due to overfitting. There-

We experimentally evaluate the proposed apfore, probabilistic approaches typically use a small

proach on the standard datasets for the task grgram size, and perform additional model gt

transliterating from English to 8 non-Latin scripts  'Here we consider only monotone alignments.
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factum: examples include joint n-gram modeling (e, f). Use the alignments to re-estimafte
and phrase table construction in machine transla-  and re-computé’. Exit when there is no im-
tion. provement in the combined model and data
We propose to apply the MDL principle to size.

transliteration modeling by seeking the model that
compresses the transliteration data so that thExperimentally, we observed fast convergence of
combined size of the compressed data and thie above algorithm just after a few iterations,
model is minimized. IfT" corresponds to a joint though we cannot present a convergence proof as
probabilistic modelP = {p(e;, f;)}, then we can Yet. We picked the initial model by computing
use the model to encode the dda= {(e, f)} in ~ CO-Occurrence counts of n-gram pairsin that

is, n(e;, fi) = >(e.f) min(ne(e;),ny(fi)), where

Cp(P) = - Z log P(e, f) ne(e;) (ny(f;)) is the number of times the n-gram
(e.f) e; (f;) appeared in the string(f).
= =Y maza logp(es, fi) Note that a Bayesian interpretation of the pro-
() i posed approach is not straightforward due to

the use of empirical componentlog p(e;, f;) in

bits, whered = {(e;, f;)} isan alignment of and model encoding. Changing the model encoding to
f. use, for example, a code faxe;, f;) would allow

We can encode each symbol of an alphaldet for a direct Bayesian interpretation of the proposed
usinglog |V| bits so encoding a stringof length  code, and we plan to pursue this direction in the
|s| from alphabetl” takesCly (s) = log|V|(|s| +  future.
1) bits (we add an extra string termination sym- The output of the MDL training algorithm is
bol for separability). Therefore, we encode eaclthe joint probability modelP that we use to de-

transliteration model in fine the transliteration model weights as the loga-
Cn(P) Z Cren £ rithm of corresponding conditional probabilities:
T = T €55 Ji oy — p(ei,fi) ; .
< T(es, fi) log S plen) During the decod
ing process of inferringf from e via an align-
bits, whereCr(e;, fi) = Cy,(e;) + Cv,(fi) — mentA, we integrate the language model proba-

log p(e;, fi) is the number of bits used to encodenbility p(f) via a linear combinationZzg N (e) =
both the pair(e;, f;) and its code according t8.  argmax{T(A) + plogp(f)/|f|}, wherep is
Thus, we seek a probability distributioR that a combination parameter estimated via cross-
minimizesC(P) = Cp(P) + Cp(P). validation.

Let P be an initial joint probability distribution
for a transliteration model’ such that a string pair 3 Discriminative Training
(e, fi) appearedh(e;, f;) times, andp(e;, f;) =

We use the MDL-trained transliteration model
n(6i7fi)/N, where N = Z(eiafi) n(e“fl)

. . T as a starting point for discriminative train-
Then, encoding a pai(e;, fi) takes on aver- ing: we consider all n-gram pair&;, f;) with
Cle;, fi) = Orleifi) _ o (e, ;) bits - g: g p irJi '
age DIt (e fi) &P€i, Ji nonzero probabilitieg(e;, f;) as features of a lin-
here we distribute the model size component tQ,. . yiscriminative modelp scr. We also in-

all occurrences ofe;, f;) in the data. Nofice yo4ate the normalized language modeling prob-
that the combined data and model sizéP) = . 1 o
ability po(f) = p(f)7T in the discriminative

iy [i is fi)- It is thi tit
g((gf}”)-)nt(ﬁat]\flv)ec éfopjgie to usleS Whlesn ggﬁgulc);ingmc’del as one of the featuresIpsscr(e) =
o argmax {T(A) + Topo(f)}. We learn the

the MDL training algorithm below. g o
gayg weights T'(e;, f;) and T of the discriminative

1. Pick an initial P. ComputeC(e;, f;) = model using the average perceptron algorithm of
CT((cfi}fi) — logp(es, ;). Set combined size (Collins, 2002).  Since both the transliteration
C(P) = ety nles, £;)Cei, ;). model and the language model are required to be

learned from the same data, and the language mod-
2. lterate: during each iteration, for eacheling probability is integrated into our decoding
(e, f) € D, find the minimum codesize process, we remove the stringrom the language
alignment A = argming ) ; C(e;, f;) of model before processing the exampfee) during
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training; we re-incorporate the strirgin the lan- Init Comp | Ratio | Dict
guage model after the examg|g, e) is processed | Chinese 333Kb | 158 Kb | 0.48 | 5780

by the averaged perceptron algorithm. We use theHindi 159Kb| 72Kb | 0.45 | 1956
dlscrlml_natlvely tralr_wed model as the "standard Japa.r_1ese 170 Kb | 82 Kb | 0.48 | 4394
system in our experiments. (Kanji)

Kannada 131 Kb| 62 Kb | 0.48 | 2010
4 Experiments

P Japanese | g9 | 136 Kb | 0.47 | 3383
(Katakana)

We use the standard data for transliterating Korean 69Kb | 31Kb | 045 | 1181

from English into 8 n_on-Latln scripts: Chlnes_e_z RusSian 28kb | 37kb | 048 | 865
(Haizhou et al., 2004); Korean, Japanese (Kanji), Tamil 134 Kb | 62 Kb | 0.46 | 1827
and Japanese (Katakana) (CJK Institute, 2009} :

Hindi, Tamil, Kannada, and RUSSian (KumaranTable 1: MDL Data and Model Compression
and Kellner, 2007). The data is provided as parkhowing initial data size, final combined data and

of the Named Entities Workshop 2009 Machinemodel| size, the compression ratio, and the number
Transliteration Shared Task (L| et a.l., 2009) of n_gram pairs in the final model.

For all 8 datasets, we report scores on the stan-
dard tests sets provided as part of the evaluation-
Details of the evaluation methodology are pre
sented in (Li et al., 2009).

T1(Acc) | T2(Acc) | T2(F) | T2(MRR)
Chinese 0.522 | 0.619 | 0.847| 0.711

Hindi 0.312 | 0.409 | 0.864| 0.527
4.1 Preprocessing ?;g;?)ese 0.484 | 0.509 | 0.675| 0.6

We perform the same uniform processing of data: Kannada | 0.227 | 0.345 | 0.854| 0.462
names are considered sequences of Unicode CharJapanese
acters in their standard decomposed form (NFD). (Katakana) 0.318 | 0.420 | 0.807| 0.541
In particular, Korean Hangul characters are def Korean 0.339 | 0413 | 0.702] 0524
composed into Jamo syllabary. Since the evalu- Russian 0.488 | 0.566 | 0.919| 0.662
ation data are provided in the re-composed form), Tamil 0267 | 0374 | 0.880! 0512
we re-compose output of the transliteration sys-
tem. Table 2: Experimental results for transliteration
We split multi-word names (in Hindi, Tamil, from English to 8 non-Latin scripts comparing
and Kannada datasets) in single words and comperformance of generative (T1) and corresponding
ducted training and evaluation on the single worddiscriminative (T2) models.
level. We assume no word order change for multi-
word names and ignore name pairs with different
numbers of words. both alignment and decoding, we use a beam
search decoder, with the beam size set to 100.

4.2 System Parametersand Tuning

We apply pre-set system parameters with very Iit-4'3 Results

tle tuning. In particular, we utilize a 5-gram lan- Our first set of experiments illustrates compres-
guage model with Good-Turing discounting. Thesion achieved by MDL training. Table 1 shows for
MDL training algorithm requires only the cardi- each for the training datasets, the original size of
nalities of the corresponding alphabets as paraméhe data, compressed size of the data including the
ters, and we use the following approximate vocabmodel size, the compression ratio, and the number
ulary sizes typically rounded to the closest powerf n-gram pairs in the final model.
of 2 (except for Chinese and Japanese): for En- We see very similar compression for all lan-
glish, Russian, Tamil, and Kannada, we 8ét=  guages. The number of n-gram pairs for the final
32; for Katakana and HindiV'| = 64; for Korean model is also relatively small. In general, MDL
Jamo,|V| = 128; for Chinese and Japanese Kaniji, training with discriminative modeling allows us to
|V | = 1024. discover a flexible small set of features (n-gram
We perform 10 iterations of the average per-pairs) without placing any restriction on n-gram
ceptron algorithm for discriminative training. For size. We can interpret MDL training as search-
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ing implicitly for the best bound on the n-gram classification and segmentation, in both super-

size together with searching for appropriate feavised and unsupervised settings.

tures. Our preliminary experiments also indicate

that performance of models produced by the MDLRefer ences

approach r.oughly correqunds to performancg 0{( Al-onaizan and K. Knight. 2002. Machine translit-

models trained with the optimal bound on the size eration of names in arabic text. HCL Workshop

of n-gram features. on Comp. Approaches to Semitic Languages, pages
Table 2 demonstrates that discriminative model- 34-46.

ing significantly improves performance of the cor-S. Argamon, N. Akiva, A. Amir, and O. Kapah. 2004.

responding generative models. In this setting, the Efficient unsupervised recursive word segmentation

MDL training step is effectively used for feature g?gcg)ﬂmgmum description length. IProceedings

construction: its goal is to automatically hone in '

on a small set of features whose weights are latef- _BO?_VU”;"U’ T Kl;ight, agd IS Ravi. tz?gg- g_ew ob-

e jective function for word alignment. IRroceedings
learned by discriminative methOds'_ ] NAACL Workshop on Integer Linear Programming
From a broader perspective, it is an open for NLP.

questlon Whethgr seeking a compact representab-JK Institute. 2009. http://www.cjk.org.
tion of sequential data leads to robust and best-
performing models, especially in noisy environ-M. Collins.  2002. Discriminative training meth-
ments. For example, state-of-the-art phrase trans- ?rgzrfgvr\]/il?hdggr?e%tlig\r? g}ggﬁ{f{mzhe;%’cggd?negéper'
lation models eschew succinct representations, o EMNLP. '

and instead employ broad redundant sets of feaJ- Goldsmith. 2001. Unsupervised learning of the mor
. Itn. . u VI | -
tures (Koehn et al., 2003). On the other hand, phology of a natural languag&omputational Lin-

recent research show that small translation mod- gigtics pages 153-198.

els lead to superior alignment (Bodrumlu et al., .

2009). Therefore, investigation of the trade-offD' Goldwasser and D. Roth. 2008. Translitera-
' ' g ) tion as constrained optimization. Rroceedings of

between robust redundant and succinct representa- gpmNLP.

tion present an interesting area for future researctb Grunwald, 2007The Minimum Description Length

principle. MIT Press.
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There is plethora of work on transliteration cov- ceedings of ACL.
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2007) in natural language processing has beeR Koehn, F. Och, and D. Marcu. 2003. Statis-
heretofore mostly limited to morphological analy- }\lchaTI/NpXLaC':sLe-based translation.  Rroceedings of
sis (Goldsmith, 2001; Argamon et al., 2004). (Bo- ' _
drumlu et al., 2009) present a related approach off- Kumaran and T. Kellner. 2007. A generic frame-
optimizing the alignment dictionary size in ma- work for machine transliteration. IRroceedings of

. . SGIR

chine translation.
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proach for training transliteration models that al-
lows to avoid overfitting without putting apriori
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