Named Entity Transcription with Pair n-Gram Models

Martin Jansche
Google Inc.
mjansche@google. com

Abstract

We submitted results for each of the eight
shared tasks. Except for Japanese name
kanji restoration, which uses a noisy channel
model, our Standard Run submissions were
produced by generative long-range pair n-
gram models, which we mostly augmented
with publicly available data (either from
LDC datasets or mined from Wikipedia) for
the Non-Standard Runs.

1 Introduction

This paper describes the work that we did at Google,
Inc. for the NEWS 2009 Machine Transliteration
Shared Task (Li et al., 2009b; Li et al., 2009a). Except
for the Japanese kanji task (which we describe be-
low), all models were pair n-gram language models.
Briefly, we took the training data, and ran an iterative
alignment algorithm using a single-state weighted
finite-state transducer (WFST). We then trained a lan-
guage model on the input-output pairs of the align-
ment, which was then converted into a WFST encod-
ing a joint model. For the Non-Standard runs, we use
additional data from Wikipedia or from the LDC, ex-
cept where noted below. In the few instances where
we used data not available from Wikipedia or LDC,
we will be happy to share them with other participants
of this competition.

2 Korean

For Korean, we created a mapping between each
Hangul glyph and its phonetic transcription in World-
Bet (Hieronymus, 1993) based on the tables from
Unitran (Yoon et al., 2007). Vowel-initial syllables
were augmented with a “0” at the beginning of the
syllable, to avoid spurious resyllabifications: Abbott
should be OfH{ E, never Q¥ 2. We also filtered the
set of possible Hangul syllable combinations, since
certain syllables are never used in transliterations, e.g.
any with two consonants in the coda. The mapping

32

Richard Sproat
Google Inc. and OHSU
rws@google.com

between Hangul syllables and phonetic transcription
was handled with a simple FST.

The main transliteration model for the Standard
Run was a 10-gram pair language model trained on
an alignment of English letters to Korean phonemes.
All transliteration pairs observed in the training/
development data were cached, and made available
if those names should recur in the test data. We
also submitted a Non-Standard Run with English/
Korean pairs mined from Wikipedia. These were de-
rived from the titles of corresponding interlinked En-
glish and Korean articles. Obviously not all such
pairs are transliterations, so we filtered the raw list
by predicting, for each English word, and using the
trained transliteration model, what the ten most likely
transliterations were in Korean; and then accepting
any pair in Wikipedia where the string in Korean also
occurred in the set of predicted transliterations. This
resulted in 11,169 transliteration pairs. In addition a
dictionary of 9,047 English and Korean translitera-
tion pairs that we had obtained from another source
was added. These pairs were added to the cache, and
were also used to retrain the transliteration model,
along with the provided data.

3 Indian Languages

For the Indian languages Hindi, Tamil and Kannada,
the same basic approach as for Korean was used. We
created a reversible map between Devanagari, Tamil
or Kannada symbols and their phonemic values, us-
ing a modified version of Unitran. However, since
Brahmi-derived scripts distinguish between diacritic
and full vowel forms, in order to map back from
phonemic transcription into the script form, it is nec-
essary to know whether a vowel comes after a conso-
nant or not, in order to select the correct form. These
and other constraints were implemented with a simple
hand-constructed WFST for each script.

The main transliteration model for the Standard
Run was a 6-gram pair language model trained on
an alignment of English letters to Hindi, Kannada

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 32-35,
Suntec, Singapore, 7 August 2009. (©2009 ACL and AFNLP

or Tamil phonemes in the training and development
sets. At test time, this WFST was composed with the
phoneme to letter WFST just described to produce a
WEST that maps directly between English letters and
Indian script forms. As with Korean, all observed
transliteration pairs from the training/development
data were cached, and made available if those names
should recur in the test data. For each Indian lan-
guage we also submitted a Non-Standard Run which
included English/Devanagari, English/Tamil and En-
glish/Kannada pairs mined from Wikipedia, and fil-
tered as described above for Korean. This resulted
in 11,674 pairs for English/Hindi, 10,957 pairs for
English/Tamil and 2,436 pairs for English/Kannada.
These pairs were then added to the cache, and were
also used to retrain the transliteration model, along
with the provided data.

4 Russian

For Russian, we computed a direct letter/letter cor-
respondences between the Latin representation of
English and the Cyrillic representation of Russian
words. This seemed to be a reasonable choice since
Russian orthography is fairly phonemic, at least at an
abstract level, and it was doubtful that any gain would
be had from trying to model the pronunciation better.
We note that many of the examples were, in fact, not
English to begin with, but a variety of languages, in-
cluding Polish and others, that happen to be written
in the Latin script.

We used a 6-gram pair language model for the
Standard Run. For the Non-Standard Runs we in-
cluded: (for NSR1) a list of 3,687 English/Russian
pairs mined from the Web; and (for NSR2), those,
plus a set of 1,826 mined from Wikipedia and filtered
as described above. In each case, the found pairs were
put in the cache, and were used to retrain the language
model.

5 Chinese

For Chinese, we built a direct stochastic model be-
tween strings of Latin characters representing the En-
glish names and strings of hanzi representing their
Chinese transcription. It is well known (Zhang et al.,
2004) that the direct approach produces significantly
better transcription quality than indirect approaches
based on intermediate pinyin or phoneme represen-
tations. This observation is consistent with our own
experience during system development.

In our version of the direct approach, we first
aligned the English letter strings with their corre-

33

sponding Chinese hanzi strings using the same mem-
oryless monotonic alignment model as before. We
then built standard n-gram models over the align-
ments, which were then turned, for use at runtime,
into weighted FSTs computing a mapping from En-
glish to Chinese.

The transcription model we chose for the Stan-
dard Run is a 6-gram language model over align-
ments, built with Kneser-Ney smoothing and a mini-
mal amount of Seymore-Rosenfeld shrinking.

We submitted two Non-Standard Runs with addi-
tional names taken from the LDC Chinese/English
Name Entity Lists v 1.0 (LDC2005T34). The only list
from this collection we used was Propernames Peo-
ple EC, which contains 572,213 “English” names (in
fact, names from many languages, all represented in
the Latin alphabet) with one or more Chinese tran-
scriptions for each name. Data of similar quality can
be easily extracted from the Web as well. For the sake
of reproducible results, we deliberately chose to work
with a standard corpus. The LDC name lists have
all of the problems that are usually associated with
data extracted from the Web, including improbable
entries, genuine mistakes, character substitutions, a
variety of unspecified source languages, etc.

We removed names with symbols other than let-
ters ‘a’ through ‘z’ from the list and divided it into
a held-out portion, consisting of names that occur in
the development or test data of the Shared Task, and
a training portion, consisting of everything else, for a
total of 622,187 unique English/Chinese name pairs.
We then used the model from the Standard Run to
predict multiple pronunciations for each of the names
in the training portion of the LDC list and retained
up to 5 pronunciations for each English name where
the prediction from the Standard model agreed with
a pronunciation found in the LDC list.

For our first Non-Standard Run, we trained a 7-
gram language model based on the Shared Task train-
ing data (31,961 name pairs) plus an additional 95,576
name pairs from the intersection of the LDC list and
the Standard model predictions. Since the selection
of additional training data was, by design, very con-
servative, we got a small improvement over the Stan-
dard Run.

The reason for this cautious approach was that the
additional LDC data did not match the provided train-
ing and development data very well, partly due to
noise, partly due to different transcription conven-
tions. For example, the Pinyin syllable b¢ is predom-
inantly written as & in the LDC data, but {& does not

occur at all in the Shared Task training data:

Character Occurrences
Train LDC

0 13,110

18 1,547 3,709

We normalized the LDC data (towards the tran-
scription conventions implicit in the Shared Task
data) by replacing hanzi for frequent Pinyin syllables
with the predominant homophonous hanzi from the
Shared Task data. This resembles a related approach
to pronunciation extraction from the web (Ghoshal et
al., 2009), where extraction validation and pronunci-
ation normalization steps were found to be tremen-
dously helpful, even necessary, when using web-
derived pronunciations. One of the conclusions there
was that extracted pronunciations should be used di-
rectly when available.

This is what we did in our second Non-Standard
Run. We used the filtered and normalized LDC data
as a static dictionary in which to look up the transcrip-
tion of names in the test data. This is how the shared
task problem would be solved in practice and it re-
sulted in a huge gain in quality. Notice, however, that
doing so is non-trivial, because of the data quality and
data mismatch problems described above.

6 Japanese Katakana

The “English” to Japanese katakana task suffered
from the usual problem that the Latin alphabet side
covered many languages besides English. It thus be-
came an exercise in guessing which one of many valid
ways of pronouncing the Latin letter string would be
chosen as the basis for the Japanese transcription. We
toyed with the idea of building mixture models before
deciding that this issue is more appropriate for a pro-
nunciation modeling shared task. In the end, we built
the same kinds of straightforward pair n-gram models
as in the tasks described earlier.

For Japanese katakana we performed a similar
kind of preprocessing as for the Indian languages:
since it is possible (under minimal assumptions)
to construct an isomorphism between katakana and
Japanese phonemes, we chose to use phonemes as
the main level of representation in our model. This
is because Latin letters encode phonemes as opposed
to syllables or morae (to a first approximation) and
one pays a penalty (a loss of about 4% in accuracy on
the development data) for constructing models that go
from Latin letters directly to katakana.

For the Standard Run, we built a 5-gram model that
maps from Latin letter strings to Japanese phoneme
strings. The model used the same kind of Kneser-

34

Ney smoothing and Seymore-Rosenfeld shrinking as
before. In addition, we restrict the model to only pro-
duce well-formed Japanese phoneme strings, by com-
posing it with an unweighted Japanese phonotactic
model that enforces the basic syllable structure.

7 Japanese Name Kanji

It is important to note that the Japanese name kanji
task is conceptually completely different from all of
the other tasks. We argue that this conceptual dif-
ference must translate into a different modeling and
system building approach.

The conceptual difference is this: In all other tasks,
we’re given well-formed “English” names. For the
sake of argument, let’s say that they are indeed just
English names. These names have an English pro-
nunciation which is then mapped to a correspond-
ing Hindi or Korean pronunciation, and the resulting
Hindi or Korean “words” (which do not look like or-
dinary Hindi or Korean words at all, except for su-
perficially following the phonology of the target lan-
guage) can be written down in Devanagari or Hangul.
Information is lost when distinct English sounds get
mapped to the same phonemes in the target language
and when semantic information (such as the gender of
the bearer of a name) is simply not transmitted across
the phonetic channel that produces the approximation
in the target language (transcription into Chinese is an
exception in this regard). We call this forward tran-
scription because we’re projecting the original repre-
sentation of a name onto an impoverished approxima-
tion.

In name kanji restoration, we’re moving in the op-
posite direction. The most natural, information-rich
form of a Japanese name is its kanji representation
(ja-Hani). When this gets transcribed into romaji (ja-
Latn), only the sound of the name is preserved. In
this task, we’re asked to recover the richer kanji form
from the impoverished romaji form. This is the op-
posite of the forward transcription tasks and just begs
to be described by a noisy channel model, which is
exactly what we did.

The noisy channel model is a factored generative
model that can be thought of as operating by drawing
an item (kanji string) from a source model over the
universe of Japanese names, and then, conditional on
the kanji, generating the observation (romaji string)
in a noisy, nondeterministic fashion, by drawing it at
random from a channel model (in this case, basically
a model of kanji readings).

To simplify things, we make the natural assump-

tion that there is a latent segmentation of the romaji
string into segments of one or more syllables and
that each individual kanji in a name generates exactly
one segment. For illustration, consider the example
abukawa 81)1], which has three possible segmenta-
tions: a+bukawa, abu+kawa, and abuka+wa. Note
that boundaries can fall into the middle of ambisyl-
labic long consonants, as in matto ¥ME.

Complicating this simple picture are several kinds
of noise in the training data: First, Chinese pinyin
mixed in with Japanese romaji, which we removed
mostly automatically from the training and develop-
ment data and for which we deliberately chose not to
produce guesses in the submitted runs on the test data.
Second, the seemingly arbitrary coalescence of cer-
tain vowel sequences. For example, onuma X8 and
onuma /N8B appear as onuma, and kouda EFFH and
koda S£M appear as koda in the training data. Severe
space limitations prevent us from going into further
details here: we will however discuss the issues dur-
ing our presentation at the workshop.

For the Standard Run, we built a trigram character
language model on the kanji names (16,182 from the
training data plus 3,539 from the development data,
discarding pinyin names). We assume a zero-order
channel model, where each kanji generates its portion
of the romaji observation independent of its kanji or
romaji context. We applied an EM algorithm to the
parallel romaji/kanji data (19,684 items) in order to
segment the romaji under the stated assumptions and
train the channel model. We pruned the model by re-
placing the last EM step with a Viterbi step, result-
ing in faster runtime with no loss in quality. NSR 1
uses more than 100k additional names (kanji only,
no additional parallel data) extracted from biograph-
ical articles in Wikipedia, as well as a list, found on
the Web, of the 10,000 most common Japanese sur-
names. A total of 117,782 names were used to train a
trigram source model. Everything else is identical to
the Standard Run. NSR 2 is like NSR 1 but adds dic-
tionary lookup. If we find the romaji name in a dictio-
nary of 27,358 names extracted from Wikipedia and
if a corresponding kanji name from the dictionary is
among the top 10 hypotheses produced by the model,
that hypothesis is promoted to the top (again, this per-
forms better than using the extracted names blindly).
NSR 3 is like NSR 1 but the channel model is trained
on a total of 108,172 romaji/kanji pairs consisting of
the training and development data plus data extracted
from biographies in Wikipedia. Finally NSR 4 is like
NSR 3 but adds the same kind of dictionary lookup as

35

in NSR 2. Note that the biggest gains are due first to
the richer source model in NSR 1 and second to the
richer channel model in NSR 3. The improvements
due to dictionary lookups in NSR 2 and 4 are small
by comparison.

8 Results

Results for the runs are summarized below. “Rank”
is rank in SR/NSR as appropriate:

Run ACC F Rank
en/ta SR 0.436 0.894 2
NSR1 0437 0.894 5
ja-Latn/ SR 0.606 0.749 2
ja-Hani NSR1 0.681 0.790 4
NSR2 0.703 0.805 3
NSR3 0.698 0.805 2
NSR4 0.717 0.818 1
en/ru SR 0.597 0925 3
NSR1 0.609 0.928 2
NSR2 0.955 0.989 1
en/zh SR 0.646 0.867 6
NSRI 0.658 0.865 10
NSR2 0909 0.960 1
en/hi SR 0.415 0.858 9
NSR1 0.424 0.862 8
en/ko SR 0476 0.742 1
NSR1 0.794 0.894 1
en/kn SR 0.370 0.867 2
NSR1 0.374 0.868 4
en/ja-Kana SR 0.503 0.843 3
NSR1 0.564 0.862 n/a
Acknowledgments

The authors acknowledge the use of the English-Chinese
(EnCh) (Li et al., 2004), English-Japanese Katakana (EnJa),
English-Korean Hangul (EnKo), Japanese Name (in English)-
Japanese Kanji (JnJk) (http://www.cjk.org), and English-
Hindi (EnHi), English-Tamil (EnTa), English-Kannada (EnKa),
English-Russian (EnRu) (Kumaran and Kellner, 2007) corpora.

References

Arnab Ghoshal, Martin Jansche, Sanjeev Khudanpur, Michael
Riley, and Morgan E. Ulinksi. 2009. Web-derived pronunci-
ations. In ICASSP.

James L. Hieronymus. 1993. ASCII phonetic symbols for the
world’s languages: Worldbet. AT&T Bell Laboratories, tech-
nical memorandum.

A. Kumaran and Tobias Kellner. 2007. A generic framework for
machine transliteration. In SIGIR--30.

Haizhou Li, Min Zhang, and Jian Su. 2004. A joint source chan-
nel model for machine transliteration. In ACL-42.

Haizhou Li, A. Kumaran, Vladimir Pervouchine, and Min Zhang.
2009a. Report on NEWS 2009 machine transliteration shared
task. In ACL-IJCNLP 2009 Named Entities Workshop, Singa-
pore.

Haizhou Li, A. Kumaran, Min Zhang, and Vladimir Pervouchine.
2009b. Whitepaper of NEWS 2009 machine transliteration
shared task. In ACL-1IJCNLP 2009 Named Entities Workshop,
Singapore.

Su-Youn Yoon, Kyoung-Young Kim, and Richard Sproat. 2007.
Multilingual transliteration using feature based phonetic
method. In ACL.

Min Zhang, Haizhou Li, and Jian Su. 2004. Direct orthographi-
cal mapping for machine transliteration. In COLING.

