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Abstract

We present IRECTL.: an online discrimi-
native sequence prediction model that em-
ploys a many-to-many alignment between
target and source. Our system incorpo-
rates input segmentation, target charac-
ter prediction, and sequence modeling in
a unified dynamic programming frame-
work. Experimental results suggest that
DIRECTL is able to independently dis-
cover many of the language-specific reg-
ularities in the training data.

I ntroduction

results of DRECTL with its variants that incor-
porate language-specific pre-processing, phonetic
alignment, and manual data correction.

2 Tranditeration alignment

In the transliteration task, training data consist of
word pairs that map source language words to
words in the target language. The matching be-
tween character substrings in the source word and
target word is not explicitly provided. These hid-
den relationships are generally known aggn-
ments. In this section, we describe an EM-based
many-to-many alignment algorithm employed by
DIRECTL. In Section 4, we discuss an alternative
phonetic alignment method.

In the transliteration task, it seems intuitively im- V& @Pply an unsupervised many-to-many align-

portant to take into consideration the specifics of €Nt @lgorithm (Jiampojamarn et al., 2007) to the
the languages in question. Of particular impor_'[ransllt.eratlon t'as'k. The algorithm fo!lows the ex-
tance is the relative character length of the sourc@€Ctation maximization (EM) paradigm. In the
and target names, which vary widely depending orfXPectation step shown in Algorithm 1, partial
whether languages employ alphabetic, syllabic, of°UNts7 Of the possible substr_mgTallgnments are
ideographic scripts. On the other hand, faced witFollected from each word paifz*,y") in the
the reality of thousands of potential language paird'@iNing data;T" and V' represent the lengths of

that involve transliteration, the idea of a Ianguage-Wo_r_dsx gndy,. respectively. The forward propf
independent approach is highly attractive. ability « is estimated by summing the probabili-

In this paper, we present/RECTL: a translit- ties of all possible sequences of substring pairings

eration system that, in principle, can be applied to_fron_w I_Eft to ”_ght' The ORWARD-M2M p_rocedure
any language pair. [RECTL treats the transliter- Is similar t.o lines 5 thfo‘_’gh 12 of Algorlthm L, ex
ation task as a sequence prediction problem: giveﬁepj[ that it uses I_E.qu.atlon 1on Ilng 8, I_Equatlon 2
an input sequence of characters in the source la on line 12, and mfu_ahzgszo@ = 1. Likewise, the
guage, it produces the most likely sequence o ackward p_rqbabllltyﬁ 1S estimated by summing
characters in the target language. In Section Zt,he probabilities from right to left.

we discuss the alignment of character substrings 1)
in the source and target languages. Our transcrip-

tion model, described in Section 3, is based on @)

an online discriminative training algorithm that

makes it possible to efficiently learn the weights The maxX and maxY variables specify the
of a large number of features. In Section 4, wemaximum length of substrings that are permitted
provide details of alternative approaches that inwhen creating alignments. Also, for flexibility, we
corporate language-specific information. Finally,allow a substring in the source word to be aligned
in Section 5 and 6, we compare the experimentalith a “null” letter (¢) in the target word.
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Algorithm 1. Expectationm2m alignment Algorithm 2: Online discriminative training

Input: 27, 4V, maz X, mazxy,~y Input: Data{(xl,yl), (_X2,y2)_7 e (xm,ym)},

Output: v number of iterationg, size ofn-best listn
1 o« := FORWARD-M2M (27, 4" maz X, mazY) OUtplit' Learned weights)
2 3 :=BACKWARD-M2M (zT,y", maz X, mazY) 1¢:=0
3 if (ar,v = 0) then 2 for k iterationsdo
4 return 3 forj=1...mdo
5 fort=0...T,v=0...Vdo 4 Y ={¥j1,.- -, ¥jn} = argmaxy[t) - D(x;,y)]
6 if (t>0)then 5 updatey according toY; andy,
7 fori=1...mazX stt—i>0do 6 returnsy ! !

@i w0(@f iy 1,9)Btw
8 V(xi—i-ﬂv € += = o
9 if (v>0At>0)then
10 forfi =,1~~1~ maz X 5}‘/ tst—i pr%d rametersy. The values ofk andn are deter-
11 orj=1... - o) . ]
! et S = mined using a development set. The model param-

(Cl,'t . v ) 4= O‘f,—ﬂ,,v—J6(1f,_1‘,+1vyv_7+1>5t,v i

27\ F i1 Yoyt1) T ar,v eters are updated according to the correct output

y; and the predicted-best outputsf/j, to make
the model prefer the correct output over the in-

In the maximization step, we normalize the par-correct ones. Specifically, the feature weight vec-
tial countsy to the alignment probability using  tor + is updated by using MIRA, the Margin In-
the conditional probability distribution. The EM fused Relaxed Algorithm (Crammer and Singer,
steps are repeated until the alignment probability2003). MIRA modifies the current weight vector
0 converges. Finally, the most likely alignment for ), by finding the smallest changes such that the
each word pair in the training data is computednew weight vector),, separates the correct and in-
with the standard Viterbi algorithm. correct outputs by a margin of at led$y,y ), the
loss for a wrong prediction. We define this loss to
be 0 ify = y; otherwise it isl + d, whered is
We adapt the online discriminative training frame-the Levenshtein distance betwegrandy. The
work described in (Jiampojamarn et al., 2008) toupdate operation is stated as a quadratic program-
the transliteration task. Once the training data hasning problem in Equation 3. We utilize a function
been aligned, we can hypothesize that#fidet-  from the SVM¥"* package (Joachims, 1999) to
ter substringz; € x in a source language word solve this optimization problem.
is transliterated into theé™ substringy;, € y in )
the target language word. Each word pair is rep- o ¥n I Yn = Vo I
resented as a feature vectd(x,y). Our feature subject tovy € Y : . . ©)
vector consists of (1)-gram context features, (2) Yo (2(x,y) = 2(x,3)) 2 Uy, ¥)
HMM-like transition features, and (3) linear-chain  Thearg max operation is performed by an exact
features. Then-gram context features relate the search algorithm based on a phrasal decoder (Zens
letter evidence that surrounds each letteto its and Ney, 2004). This decoder simultaneously
outputy;. We include alln-grams that fit within  finds thel most likely substrings of letters that
a context window of size. Thec value is deter- generate the most probable outpgt given the
mined using a development set. The HMM-likefeature weight vector) and the input wordz”'.
transition features express the cohesion of the outFhe search algorithm is based on the following dy-
puty in the target language. We make a first ordemamic programming recurrence:
Markov assumption, so that these features are bi-
grams of the form{y;_1, ;). The linear-chain fea- Q(0,8) =0
tures are identical to the context features, except@(t,p) = max{y - ¢(zy1, 9", p) + Q(t',p)}
thaty; is replaced with a bi-grany; 1, ;). t— maZ;:X<t’<t

Algorithm 2 trains a linear model in this fea- Q(7+1,$) = mg}x{w 08, 0,9) + Q(T,p)}
ture space. The procedure makepasses over P
the aligned training data. During each iteration,To find the n-best predicted outputs, the table
the model produces themost likely output words (@ records the top: scores for each output sub-
Yj in the target language for each input watg  string that has the suffix substring and is gen-
in the source language, based on the current parated by the input letter substring; here,p’ is

3 Discriminativetraining
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a sub-output generated during the previous stedn Japanese, we replace each Katakana character
The notation¢(x§/+17p’7p) is a convenient way with one or two phonemes using standard tran-
to describe the components of our feature vectoscription tables. For the Latin script, we simply
®(x,y). Then-best predicted outputs can be treat every letter as an IPA symbol (International
discovered by backtracking from the end of the taPhonetic Association, 1999). The IPA contains a

ble, which is denoted b@(T" + 1, $). subset of 26 letter symbols that tend to correspond

to the usual phonetic value that the letter repre-
4 Beyond DIRECTL sents in the Latin script. The Chinese characters
4.1 Intermediate phonetic representation are first converted to Pinyin, which is then handled

We experimented with converting the original Chi- I té same way as the Latin script.
nese characters to Pinyin as an intermediate repre- Slmllar solutions could be engmee.ret_j for other
sentation. Pinyin is the most commonly known SCripts. We observed that the transcriptions do not

Romanization system for Standard Mandarin. Itsneed to be very precise in order for ALINE to pro-

alphabet contains the same 26 letters as Englisfiuce Nigh quality alignments.

Each Chinese character can be transcribed ph@3 System combination
netically into Pinyin. Many resources for Pinyin

i ) ; The combination of predictions produced by sys-
conversion are available onlifeA small percent-

_ : tems based on different principles may lead to im-
age of Chinese characters have multiple PronuncCisoved prediction accuracy. We adopt the follow-
ations represented by different Pinyin representgrng combination algorithm. First, we rank the in-
tions. For_ tho;e characters (about 30 characters i iqal systems according to their top-1 accuracy
the transliteration data), we manually selected the | o development set. To obtain the top-1 pre-
pronunciations that are normally used for namesition for each input word, we use simple voting,
This preprocessing step significantly reduces thgit ties broken according to the ranking of the
size of target sym.bol's from 370 di;tinct Chinesesystems. We generalize this approach to hanelle
characters to 26 Pinyin symbols which enables oufeg; jists by first ordering the candidate translitera-
system to produce better alignments. tions according to the highest rank assigned by any

In order to verify whether the addition of fhe systems, and then similarly breaking ties by
language-specific knowledge can improve thevoting and system ranking.
overall accuracy, we also designed intermediate

representations for Russian and Japanese. Evaluation
focused on symbols that modify the neighbor-In the context of the NEWS 2009 Machine
ing characters without producing phonetic outputTransliteration Shared Task (Li et al., 2009), we
themselves: the twger characters in Russian, tested our system on six data sets: from English to
and the long vowel andokuon signs in Japanese. Chinese (EnCh) (Li et al., 2004), Hindi (EnHi),
Those were combined with the neighboring charRussian (EnRu) (Kumaran and Kellner, 2007),
acters, creating new “super-characters.” Japanese Katakana (EnJa), and Korean Hangul
o - (EnKo); and from Japanese Name to Japanese
42 Phonetic alignment with ALINE Kanji (JnJk¥. We optimized the models’ param-
ALINE (Kondrak, 2000) is an algorithm that eters by training on the training portion of the
performs phonetically-informed alignment of two provided data and measuring performance on the
strings of phonemes. Since our task requiregevelopment portion. For the final testing, we
the alignment of characters representing differentrained the models on all the available labeled data
writing scripts, we need to first replace every char-(training plus development data). For each data
acter with a phoneme that is the most likely to beset, we converted any uppercase letters to lower-
produced by that character. case. Our system outputs the top 10 candidate an-
We applied slightly different methods to the swers for each input word.
test languages. In converting the Cyrillic script  Table 1 reports the performance of our system
into phonemes, we take advantage of the facgn the development and final test sets, measured
that the Russian orthography is largely phonemicin terms of top-1 word accuracy (ACC). For cer-
which makes it a relatively straightforward task. tain language pairs, we tested variants of the base

'For example, http://www.chinesetopinyin.com/ Zhttp:/iwww.cjk.org/
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Task Model Dev | Test quality alignments. The former can be applied di-
EnCh DIRECTL 724 71.7 L. .
INT(M2v) | 73.9 | 73.4 rectly to the training data without the need for an
INT(ALINE) | 73.8 | 73.2 intermediate representation, while the latter does
COMBINED | 74.8 | 74.6 i i i i
not re . . -
e ST LA 55 t require any trammg_ $urpr|smgly incorpo
DIRECTL+MC | 42.3 | 50.9 ration of language-specific intermediate represen-
EnJa| DIRECTL 49.9 50.0 tations does not consistently improve the perfor-
INT(M2M)* 49.6 | 49.2 i indi _
INTALINE) | 48.3 | 510 mance of our system, which indicates that-D
CoMBINED® | 50.6 | 50.5 RECTL may be able to discover the structures im-
EnKo | DIRECTL 36.7 | 38.7 plicit in the training data without additional guid-
EnRu |I?\l|$(li/|CZTML) gg-g gcl)-g ance. The EnHi results suggest that manual clean-
INT(ALINE) | 80.0 | 60.7 ing of noisy data can yield noticeable gains in ac-
CoMmBINED* | 80.3 | 60.8 curacy. On the other hand, a simple method of
Jnk | DIRECTL | 535 56.0 combining predictions from different systems pro-

Table 1: Top-1 word accuracy on the developmenfluced clear improvement on the EnCh set, but

and test sets. The asterisk denotes the results oBlixed results on two other sets. More research on
tained after the test reference sets were released his issue is warranted.
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