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Abstract

Cell phone text messaging users express them-
selves briefly and colloquially using a variety
of creative forms. We analyze a sample of cre-
ative, non-standard text message word forms
to determine frequent word formation pro-
cesses in texting language. Drawing on these
observations, we construct an unsupervised
noisy-channel model for text message normal-
ization. On a test set of303 text message
forms that differ from their standard form, our
model achieves59% accuracy, which is on par
with the best supervised results reported on
this dataset.

1 Text Messaging

Cell phone text messages—or SMS—contain many
shortened and non-standard forms due to a variety
of factors, particularly the desire for rapid text entry
(Grinter and Eldridge, 2001; Thurlow, 2003).1 Fur-
thermore, text messages are written in an informal
register; non-standard forms are used to reflect this,
and even for personal style (Thurlow, 2003). These
factors result in tremendous linguistic creativity, and
hence many novel lexical items, in the language of
text messaging, ortexting language.

Normalization of non-standard forms—
converting non-standard forms to their standard
forms—is a challenge that must be tackled before
other types of natural language processing can
take place (Sproat et al., 2001). In the case of
text messages, text-to-speech synthesis may be

1The number of characters in a text message may also be
limited to160 characters, although this is not always the case.

particularly useful for the visually impaired; au-
tomatic translation has also been considered (e.g.,
Aw et al., 2006). For texting language, given the
abundance of creative forms, and the wide-ranging
possibilities for creating new forms, normalization
is a particularly important problem, and has indeed
received some attention in computational linguistics
(e.g., Aw et al., 2006; Choudhury et al., 2007;
Kobus et al., 2008).

In this paper we propose an unsupervised noisy
channel method for texting language normalization,
that gives performance on par with that of a super-
vised system. We pursue unsupervised approaches
to this problem, as large collections of text mes-
sages, and their corresponding standard forms, are
not readily available.2 Furthermore, other forms of
computer-mediated communication, such as Inter-
net messaging, exhibit creative phenomena similar
to text messaging, although at a lower frequency
(Ling and Baron, 2007). Moreover, technological
changes, such as new input devices, are likely to
have an impact on the language of such media (Thur-
low, 2003).3 An unsupervised approach, drawing
on linguistic properties of creative word formations,
has the potential to be adapted for normalization of
text in other similar genres—such as Internet dis-
cussion forums—without the cost of developing a
large training corpus. Moreover, normalization may
be particularly important for such genres, given the

2One notable exception is Fairon and Paumier (2006), al-
though this resource is in French. The resource used in our
study, Choudhury et al. (2007), is quite small in comparison.

3The rise of other technology, such as word prediction, could
reduce the use of abbreviations, although it’s not clear such
technology is widely used (Grinter and Eldridge, 2001).
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Formation type Freq. Example
Stylistic variation 152 betta (better)
Subseq. abbrev. 111 dng (doing)
Prefix clipping 24 hol (holiday)
Syll. letter/digit 19 neway (anyway)
G-clipping 14 talkin (talking)
Phonetic abbrev. 12 cuz (because)
H-clipping 10 ello (hello)
Spelling error 5 darliog (darling)
Suffix clipping 4 morrow (tomorrow)
Punctuation 3 b/day (birthday)
Unclear 34 mobs (mobile)
Error 12 gal (*girl)
Total 400

Table 1: Frequency of texting forms in the development
set by formation type.

need for applications such as translation and ques-
tion answering.

We observe that many creative texting forms are
the result of a small number of specific word for-
mation processes. Rather than using a generic er-
ror model to capture all of them, we propose a mix-
ture model in which each word formation process is
modeled explicitly according to linguistic observa-
tions specific to that formation.

2 Analysis of Texting Forms

To better understand the creative processes present
in texting language, we categorize the word forma-
tion process of each texting form in our development
data, which consists of400 texting forms paired with
their standard forms.4 Several iterations of catego-
rization were done in order to determine sensible
categories, and ensure categories were used consis-
tently. Since this data is only to be used to guide
the construction of our system, and not for formal
evaluation, only one judge (a native English speak-
ing author of this paper) categorized the expressions.
The findings are presented in Table 1.

Stylistic variations, by far the most frequent cat-
egory, exhibit non-standard spelling, such as repre-

4Most texting forms have a unique standard form; however,
some have multiple standard forms, e.g.,will andwell can both
be shortened towl. In such cases we choose the category of the
most frequent standard form; in the case of frequency ties we
choose arbitrarily among the categories of the standard forms.

senting sounds phonetically. Subsequence abbrevi-
ations, also very frequent, are composed of a sub-
sequence of the graphemes in a standard form, of-
ten omitting vowels. These two formation types ac-
count for approximately66% of our development
data; the remaining formation types are much less
frequent. Prefix clippings and suffix clippings con-
sist of a prefix or suffix, respectively, of a standard
form, and in some cases a diminutive ending; we
also consider clippings which omit just ag or h from
a standard form as they are rather frequent.5 A sin-
gle letter or digit can be used to represent a syllable;
we refer to these as syllabic (syll.) letter/digit. Pho-
netic abbreviations are variants of clippings and sub-
sequence abbreviations where some sounds in the
standard form are represented phonetically. Several
texting forms appear to be spelling errors; we took
the layout of letters on cell phone keypads into ac-
count when making this judgement. The items that
did not fit within the above texting form categories
were marked as unclear. Finally, for some expres-
sions the given standard form did not appear to be
appropriate. For example,girl is not the standard
form for the texting formgal; rather,gal is an En-
glish word that is a colloquial form ofgirl. Such
cases were marked as errors.

No texting forms in our development data corre-
spond to multiple standard form words, e.g.,wanna
for want to.6 Since such forms are not present in our
development data, we assume that a texting form al-
ways corresponds to a single standard form word.

It is important to note that some text forms have
properties of multiple categories, e.g.,bak (back)
could be considered a stylistic variation or a subse-
quence abbreviation. In such cases, we simply at-
tempt to assign the most appropriate category.

The design of our model for text message normal-
ization, presented below, uses properties of the ob-
served formation processes.

3 An Unsupervised Noisy Channel Model
for Text Message Normalization

Let S be a sentence consisting ofstandard forms
s1s2...sn; in this study the standard forms are reg-

5Thurlow (2003) also observes an abundance of g-clippings.
6A small number of similar forms, however, appear with a

single standard form word, and are therefore marked as errors.
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ular English words. LetT be a sequence oftexting
forms t1t2...tn, which are the texting language real-
ization of the standard forms, and may differ from
the standard forms. Given a sequence of texting
formsT , the challenge is then to determine the cor-
responding standard formsS.

Following Choudhury et al. (2007)—and vari-
ous approaches to spelling error correction, such
as, e.g., Mays et al. (1991)—we model text mes-
sage normalization using a noisy channel. We
want to find argmaxSP (S|T ). We apply Bayes
rule and ignore the constant termP (T ), giving
argmaxSP (T |S)P (S). Making the independence
assumption that eachti depends only onsi, and not
on the context in which it occurs, as in Choudhury
et al., we expressP (T |S) as a product of probabili-
ties: argmaxS (

∏
i P (ti|si))P (S).

We note in Section 2 that many texting forms are
created through a small number of specific word for-
mation processes. Rather than model each of these
processes at once using a generic model forP (ti|si),
as in Choudhury et al., we instead create several such
models, each corresponding to one of the observed
common word formation processes. We therefore
rewrite P (ti|si) as

∑
wf P (ti|si,wf )P (wf) where

wf is a word formation process, e.g., subsequence
abbreviation. Since, like Choudhury et al., we focus
on the word model, we simplify our model as below.

argmaxsi

∑

wf

P (ti|si,wf )P (wf )P (si)

We next explain the components of the model,
P (ti|si,wf ), P (wf ), andP (si), referred to as the
word model, word formation prior, and language
model, respectively.

3.1 Word Models

We now consider which of the word formation pro-
cesses discussed in Section 2 should be captured
with a word modelP (ti|si,wf ). We model stylis-
tic variations and subsequence abbreviations simply
due to their frequency. We also choose to model
prefix clippings since this word formation process is
common outside of text messaging (Kreidler, 1979;
Algeo, 1991) and fairly frequent in our data. Al-
though g-clippings and h-clippings are moderately
frequent, we do not model them, as these very spe-
cific word formations are also (non-prototypical)

graphemes w i th ou t
phonemes w I T au t

Table 2: Grapheme–phoneme alignment forwithout.

subsequence abbreviations. We do not model syl-
labic letters and digits, or punctuation, explicitly; in-
stead, we simply substitute digits with a graphemic
representation (e.g.,4 is replaced byfor), and re-
move punctuation, before applying the model. The
other less frequent formations—phonetic abbrevia-
tions, spelling errors, and suffix clippings—are not
modeled; we hypothesize that the similarity of these
formation processes to those we do model will allow
the system to perform reasonably well on them.

3.1.1 Stylistic Variations

We propose a probabilistic version of edit-
distance—referred to here as edit-probability—
inspired by Brill and Moore (2000) to model
P (ti|si, stylistic variation). To compute edit-
probability, we consider the probability of each edit
operation—substitution, insertion, and deletion—
instead of its cost, as in edit-distance. We then sim-
ply multiply the probabilities of edits as opposed to
summing their costs.

In this version of edit-probability, we allow two-
character edits. Ideally, we would compute the edit-
probability of two strings as the sum of the edit-
probability of each partitioning of those strings into
one or two character segments. However, following
Brill and Moore, we approximate this by the prob-
ability of the partition with maximum probability.
This allows us to compute edit-probability using a
simple adaptation of edit-distance, in which we con-
sider edit operations spanning two characters at each
cell in the chart maintained by the algorithm.

We then estimate two probabilities:P (gt|gs, pos)
is the probability of texting form graphemegt given
standard form graphemegs at positionpos , where
pos is the beginning, middle, or end of the word;
P (ht|ps, hs, pos) is the probability of texting form
graphemesht given the standard form phonemesps

and graphemeshs at positionpos . ht, ps, andhs can
be a single grapheme or phoneme, or a bigram.

We compute edit-probability between the
graphemes ofsi and ti. When filling each cell
in the chart, we consider edit operations between
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segments ofsi andti of length0–2, referred to asa
andb, respectively. Ifa aligns with phonemes insi,
we also consider those phonemes,p. In our lexicon,
the graphemes and phonemes of each word are
aligned according to the method of Jiampojamarn
et al. (2007). For example, the alignment for
without is given in Table 2. The probability of
each edit operation is then determined by three
properties—the length ofa, whethera aligns with
any phonemes insi, and if so,p—as shown below:

|a|= 0 or 1, not aligned w/si phonemes:P (b|a, pos)
|a|= 2, not aligned w/si phonemes:0
|a|= 1 or 2, aligned w/si phonemes:P (b|p, a, pos)

3.1.2 Subsequence Abbreviations

We model subsequence abbreviations according
to the equation below:

P (ti|si, subseq abrv) =

{
c if ti is a subseq ofsi

0 otherwise

wherec is a constant.
Note that this is similar to the error model for

spelling correction presented by Mays et al. (1991),
in which all words (in our terms, allsi) within
a specified edit-distance of the out-of-vocabulary
word (ti in our model) are given equal probability.
The key difference is that in our formulation, we
only consider standard forms for which the texting
form is potentially a subsequence abbreviation.

In combination with the language model,
P (ti|si, subseq abbrev) assigns a non-zero prob-
ability to each standard formsi for which ti is
a subsequence, according to the likelihood ofsi

(under the language model). The models interact
in this way since we expect a standard form to be
recognizable relative to the other words for whichti
could be a subsequence abbreviation

3.1.3 Prefix Clippings

We model prefix clippings similarly to subse-
quence abbreviations.

P (ti|si, prefix clipping) =





c if ti is possible

pre. clip. ofsi

0 otherwise

Kreidler (1979) observes that clippings tend to be
mono-syllabic and end in a consonant. Further-

more, when they do end in a vowel, it is often
of a regular form, such astelly for television and
breaky for breakfast. We therefore only consider
P (ti|si, prefix clipping) if ti is a prefix clipping ac-
cording to the following heuristics:ti is mono-
syllabic after stripping any word-final vowels, and
subsequently removing duplicated word-final con-
sonants (e.g,telly becomestel, which is a candidate
prefix clipping). Ifti is not a prefix clipping accord-
ing to these criteria,P (ti|si) simply sums over all
models except prefix clipping.

3.2 Word Formation Prior

Keeping with our goal of an unsupervised method,
we estimateP (wf ) with a uniform distribution. We
also consider estimatingP (wf ) using maximum
likelihood estimates (MLEs) from our observations
in Section 2. This gives a model that is not fully
unsupervised, since it relies on labelled training
data. However, we consider this a lightly-supervised
method, since it only requires an estimate of the fre-
quency of the relevant word formation types, and not
labelled texting form–standard form pairs.

3.3 Language Model

Choudhury et al. (2007) find that using a bigram lan-
guage model estimated over a balanced corpus of
English had a negative effect on their results com-
pared with a unigram language model, which they
attribute to the unique characteristics of text messag-
ing that were not reflected in the corpus. We there-
fore use a unigram language model forP (si), which
also enables comparison with their results. Never-
theless, alternative language models, such as higher
order ngram models, could easily be used in place of
our unigram language model.

4 Materials and Methods

4.1 Datasets

We use the data provided by Choudhury et al. (2007)
which consists of texting forms—extracted from a
collection of 900 text messages—and their manu-
ally determined standard forms. Our development
data—used for model development and discussed in
Section 2—consists of the400 texting form types
that are not in Choudhury et al.’s held-out test set,
and that are not the same as one of their standard
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forms. The test data consists of1213 texting forms
and their corresponding standard forms. A subset of
303 of these texting forms differ from their standard
form.7 This subset is the focus of this study, but we
also report results on the full dataset.

4.2 Lexicon

We construct a lexicon of potential standard forms
such that it contains most words that we expect to
encounter in text messages, yet is not so large as
to make it difficult to identify the correct standard
form. Our subjective analysis of the standard forms
in the development data is that they are frequent,
non-specialized, words. To reflect this observation,
we create a lexicon consisting of all single-word en-
tries containing only alphabetic characters found in
both the CELEX Lexical Database (Baayen et al.,
1995) and the CMU Pronouncing Dictionary.8 We
remove all words of length one (excepta and I) to
avoid choosing, e.g., the letterr as the standard form
for the texting formr. We further limit the lexicon
to words in the20K most frequent alphabetic uni-
grams, ignoring case, in the Web 1T 5-gram Corpus
(Brants and Franz, 2006). The resulting lexicon con-
tains approximately 14K words, and excludes only
three of the standard forms—cannot, email, andon-
line—for the400 development texting forms.

4.3 Model Parameter Estimation

MLEs for P (gt|gs, pos)—needed to estimate
P (ti|si, stylistic variation)—could be estimated
from texting form–standard form pairs. However,
since our system is unsupervised, no such data is
available. We therefore assume that many texting
forms, and other similar creative shortenings, occur
on the web. We develop a number of character
substitution rules, e.g.,s⇒ z, and use them to create
hypothetical texting forms from standard words.
We then compute MLEs forP (gt|gs, pos) using the
frequencies of these derived forms on the web.

7Choudhury et al. report that this dataset contains1228 tex-
ting forms. We found it to contain1213 texting forms cor-
responding to1228 standard forms (recall that a texting form
may have multiple standard forms). There were similar incon-
sistencies with the subset of texting forms that differ fromtheir
standard forms. Nevertheless, we do not expect these small dif-
ferences to have an appreciable effect on the results.

8http://www.speech.cs.cmu.edu/cgi-bin/
cmudict

We create the substitution rules by examining ex-
amples in the development data, considering fast
speech variants and dialectal differences (e.g., voic-
ing), and drawing on our intuition. The derived
forms are produced by applying the substitution
rules to the words in our lexicon. To avoid con-
sidering forms that are themselves words, we elimi-
nate any form found in a list of approximately480K
words taken from SOWPODS9 and the Moby Word
Lists.10 Finally, we obtain the frequency of the de-
rived forms from the Web 1T 5-gram Corpus.

To estimate P (ht|ps, hs, pos), we first esti-
mate two simpler distributions:P (ht|hs, pos) and
P (ht|ps, pos). P (ht|hs, pos) is estimated in the
same manner asP (gt|gs, pos), except that two char-
acter substitutions are allowed.P (ht|ps, pos) is es-
timated from the frequency ofps, and its align-
ment with ht, in a version of CELEX in which
the graphemic and phonemic representation of each
word is many–many aligned using the method of
Jiampojamarn et al. (2007).11 P (ht|ps, hs, pos)
is then an evenly-weighted linear combination of
P (ht|hs, pos) and P (ht|ps, pos). Finally, we
smooth each ofP (gt|gs, pos) andP (ht|ps, hs, pos)
using add-alpha smoothing.

We set the constantc in our word models for
subsequence abbreviations and prefix clippings such
that

∑
si

P (ti|si,wf )P (si) = 1. We similarly nor-
malizeP (ti|si, stylistic variation)P (si).

We use the frequency of unigrams (ignoring case)
in the Web 1T 5-gram Corpus to estimate our lan-
guage model. We expect the language of text mes-
saging to be more similar to that found on the web
than that in a balanced corpus of English.

4.4 Evaluation Metrics

To evaluate our system, we consider three accuracy
metrics: in-top-1, in-top-10, and in-top-20.12 In-
top-n considers the system correct if a correct stan-
dard form is in then most probable standard forms.
The in-top-1 accuracy shows how well the system
determines the correct standard form; the in-top-10

9http://en.wikipedia.org/wiki/SOWPODS
10http://icon.shef.ac.uk/Moby/
11We are very grateful to Sittichai Jiampojamarn for provid-

ing this alignment.
12These are the same metrics used by Choudhury et al.

(2007), although we refer to them by different names.
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Model % accuracy
Top-1 Top-10 Top-20

Uniform 59.4 83.8 87.8
MLE 55.4 84.2 86.5
Choudhury et al. 59.9 84.3 88.7

Table 3: % in-top-1, in-top-10, and in-top-20 accuracy
on test data using both estimates forP (wf ). The results
reported by Choudhury et al. (2007) are also shown.

and in-top-20 accuracies may be indicative of the
usefulness of the output of our system in other tasks
which could exploit a ranked list of standard forms,
such as machine translation.

5 Results and Discussion

In Table 3 we report the results of our system using
both the uniform estimate and the MLE ofP (wf ).
Note that there is no meaningful random baseline
to compare against here; randomly ordering the
14K words in our lexicon gives very low accuracy.
The results using the uniform estimate ofP (wf )—
a fully unsupervised system—are very similar to
the supervised results of Choudhury et al. (2007).
Surprisingly, when we estimateP (wf ) using MLEs
from the development data—resulting in a lightly-
supervised system—the results are slightly worse
than when using the uniform estimate of this proba-
bility. Moreover, we observe the same trend on de-
velopment data where we expect to have an accurate
estimate ofP (wf ) (results not shown). We hypothe-
size that the ambiguity of the categories of text forms
(see Section 2) results in poor MLEs forP (wf ),
thus making a uniform distribution, and hence fully-
unsupervised approach, more appropriate.

Results by Formation Type We now consider in-
top-1 accuracy for each word formation type, in Ta-
ble 4. We show results for the same word forma-
tion processes as in Table 1, except for h-clippings
and punctuation, as no words of these categories are
present in the test data. We present results using the
same experimental setup as before with a uniform
estimate ofP (wf ) (All), and using just the model
corresponding to the word formation process (Spe-
cific), where applicable.13

13In this case our model then becomes, for each word forma-
tion processwf , argmaxsi

P (ti|si,wf )P (si).

Formation type Freq. % in-top-1 acc.
n = 303 Specific All

Stylistic variation 121 62.8 67.8
Subseq. abbrev. 65 56.9 46.2
Prefix clipping 25 44.0 20.0
G-clipping 56 - 91.1
Syll. letter/digit 16 - 50.0
Unclear 12 - 0.0
Spelling error 5 - 80.0
Suffix clipping 1 - 0.0
Phonetic abbrev. 1 - 0.0
Error 1 - 0.0

Table 4: Frequency (Freq.), and % in-top-1 accuracy us-
ing the formation-specific model where applicable (Spe-
cific) and all models (All) with a uniform estimate for
P (wf ), presented by formation type.

We first examine the top panel of Table 3 where
we compare the performance on each word forma-
tion type for both experimental conditions (Specific
and All). We first note that the performance using
the formation-specific model on subsequence abbre-
viations and prefix clippings is better than that of
the overall model. This is unsurprising since we ex-
pect that when we know a texting form’s formation
process, and invoke a corresponding specific model,
our system should outperform a model designed to
handle a range of formation types. However, this is
not the case for stylistic variations; here the over-
all model performs better than the specific model.
We observed in Section 2 that some texting forms
do not fit neatly into our categorization scheme; in-
deed, many stylistic variations are also analyzable
as subsequence abbreviations. Therefore, the subse-
quence abbreviation model may benefit normaliza-
tion of stylistic variations. This model, used in iso-
lation on stylistic variations, gives an in-top-1 accu-
racy of33.1%, indicating that this may be the case.

Comparing the performance of the individual
word models on only word types that they were de-
signed for (column Specific in Table 4), we see that
the prefix clipping model is by far the lowest, in-
dicating that in the future we should consider ways
of improving this word model. One possibility is
to incorporate phonemic knowledge. For example,
bothfriday andfriend have the same probability un-
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derP (ti|si, prefix clipping) for the texting formfri,
which has the standard formfriday in our data. (The
language model, however, does distinguish between
these forms.) However, if we consider the phonemic
representations of these words,friday might emerge
as more likely. Syllable structure information may
also be useful, as we hypothesize that clippings will
tend to be formed by truncating a word at a syllable
boundary. We may similarly be able to improve our
estimate ofP (ti|si, subseq. abrrev.). For example,
both text andtaxation have the same probability un-
der this distribution, but intuitivelytext, the correct
standard form in our data, seems more likely. We
could incorporate knowledge about the likelihood of
omitting specific characters, as in Choudhury et al.
(2007), to improve this estimate.

We now examine the lower panel of Table 4, in
which we consider the performance of the overall
model on the word formation types that are not ex-
plicitly modeled. The very high accuracy on g-
clippings indicates that since these forms are also a
type of subsequence abbreviation, we do not need to
construct a separate model for them. We in fact also
conducted experiments in which g-clippings and h-
clippings were modeled explicitly, but found these
extra models to have little effect on the results.

Recall from Section 3.1 our hypothesis that suf-
fix clippings, spelling errors, and phonetic abbrevia-
tions have common properties with formation types
that we do model, and therefore the system will per-
form reasonably well on them. Here we find pre-
liminary evidence to support this hypothesis as the
accuracy on these three word formation types (com-
bined) is57.1%. However, we must interpret this
result cautiously as it only considers seven expres-
sions. On the syllabic letter and digit texting forms
the accuracy is50.0%, indicating that our heuris-
tic to replace digits in texting forms with an ortho-
graphic representation is reasonable.

The performance on types of expressions that
we did not consider when designing the system—
unclear and error—is very poor. However, this has
little impact on the overall performance as these ex-
pressions are rather infrequent.

Results by Model We now consider in-top-1 ac-
curacy using each model on the303 test expres-
sions; results are shown in Table 5. No model on its

Model % in-top-1 accuracy
Stylistic variation 51.8
Subseq. Abbrev. 44.2
Prefix clipping 10.6

Table 5: % in-top-1 accuracy on the303 test expressions
using each model individually.

own gives results comparable to those of the over-
all model (59.4%, see Table 3). This indicates that
the overall model successfully combines informa-
tion from the specific word formation models.

Each model used on its own gives an accuracy
greater than the proportion of expressions of the
word formation type for which the model was de-
signed (compare accuracies in Table 5 to the num-
ber of expressions of the corresponding word forma-
tion type in the test data in Table 4). As we note in
Section 2, the distinctions between the word forma-
tion types are not sharp; these results show that the
shared properties of word formation types enable a
model for a specific formation type to infer the stan-
dard form of texting forms of other formation types.

All Unseen Data Until now we have discussed re-
sults on our test data of303 texting forms which dif-
fer from their standard forms. We now consider the
performance of our system on all1213 unseen tex-
ting forms,910 of which are identical to their stan-
dard form. Since our model was not designed with
such expressions in mind, we slightly adapt it for
this new task; ifti is in our lexicon, we return that
form assi, otherwise we apply our model as usual,
using the uniform estimate ofP (wf ). This gives
an in-top-1 accuracy of88.2%, which is very sim-
ilar to the results of Choudhury et al. (2007) on this
data of89.1%. Note, however, that Choudhury et al.
only report results on this dataset using a uniform
language model;14 since we use a unigram language
model, it is difficult to draw firm conclusions about
the performance of our system relative to theirs.

6 Related Work

Aw et al. (2006) model text message normaliza-
tion as translation from the texting language into the

14Choudhury et al. do use a unigram language model for their
experiments on the303 texting forms which differ from their
standard forms (see Section 3.3).
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standard language. Kobus et al. (2008) incorporate
ideas from both machine translation and automatic
speech recognition for text message normalization.
However, both of these approaches are supervised,
and have only limited means for normalizing texting
forms that do not occur in the training data.

Our work, like that of Choudhury et al. (2007),
can be viewed as a noisy-channel model for spelling
error correction (e.g., Mays et al., 1991; Brill and
Moore, 2000), in which texting forms are seen as
a kind of spelling error. Furthermore, like our ap-
proach to text message normalization, approaches to
spelling correction have incorporated phonemic in-
formation (Toutanova and Moore, 2002).

The word model of the supervised approach of
Choudhury et al. consists of hidden Markov models,
which capture properties of texting language similar
to those of our stylistic variation model. We pro-
pose multiple word models—corresponding to fre-
quent texting language formation processes—and an
unsupervised method for parameter estimation.

7 Conclusions

We analyze a sample of texting forms to determine
frequent word formation processes in creative tex-
ting language. Drawing on these observations, we
construct an unsupervised noisy-channel model for
text message normalization. On an unseen test set
of 303 texting forms that differ from their standard
form, our model achieves59% accuracy, which is on
par with that obtained by the supervised approach of
Choudhury et al. (2007) on the same data.

More research is required to determine the impact
of our normalization method on the performance of
a system that further processes the resulting text. In
the future, we intend to improve our word models by
incorporating additional linguistic knowledge, such
as information about syllable structure. Since con-
text likely plays a role in human interpretation of
texting forms, we also intend to examine the perfor-
mance of higher order ngram language models.
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