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Abstract

Active learning is an effective method for cre-
ating training sets cheaply, but it is a biased
sampling process and fails to explore large
regions of the instance space in many appli-
cations. This can result in a missed cluster
effect, which signficantly lowers recall and
slows down learning for infrequent classes.
We show that missed clusters can be avoided
in sequence classification tasks by using sen-
tences as natural multi-instance units for label-
ing. Co-selection of other tokens within sen-
tences provides an implicit exploratory com-
ponent since we found for the task of named
entity recognition on two corpora that en-
tity classes co-occur with sufficient frequency
within sentences.

1 Introduction

Active learning (AL) has been shown to be an effec-
tive approach to reduce the amount of data needed
to train an accurate statistical classifier. AL selects
highly informative examples from a pool of unla-
beled data and prompts a human annotator for the
labels of these examples. The newly labeled exam-
ples are added to a training set used to build a statis-
tical classifier. This classifier is in turn used to assess
the informativeness of further examples. Thus, a
select-label-retrain loop is formed that quickly se-
lects hard to classify examples, honing in on the de-
cision boundary (Cohn et al., 1996).

A fundamental characteristic of AL is the fact that
it constitutes a biased sampling process. This is so

∗ Both authors contributed equally to this work.

by design, but the bias can have an undesirable con-
sequence: partial coverage of the instance space. As
a result, classes or clusters within classes may be
completely missed, resulting in low recall or slow
learning progress. This has been called the missed
cluster effect (Schütze et al., 2006). While AL has
been studied for a range of NLP tasks, the missed
cluster problem has hardly been addressed.

This paper studies the missed class effect, a spe-
cial case of the missed cluster effect where complete
classes are overlooked by an active learner. The
missed class effect is the result of insufficient ex-
ploration before or during a mainly exploitative AL
process. In AL approaches where exploration is only
addressed by an initial seed set, poor seed set con-
struction gives rise to the missed class effect.

We focus on the missed class effect in the con-
text of a common NLP task: named entity recogni-
tion (NER). We show that for this task the missed
class effect is avoided by increasing the sampling
granularity from single-instance units (i.e., tokens)
to multi-instance units (i.e., sentences). For AL ap-
proaches to NER, sentence selection recovers better
from unfavorable seed sets than token selection due
to what we call the co-selection effect. Under this
effect, a non-targeted entity class co-occurs in sen-
tences that were originally selected because of un-
certainty on tokens of a different entity class.

The rest of the paper is structured as follows: Sec-
tion 2 introduces the missed class effect in detail.
Experiments which demonstrate the co-selection ef-
fect achieved by sentence selection for NER are de-
scribed in Section 3 and their results presented in
Section 4. We draw conclusions in Section 5.
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2 The Missed Class Effect

This section first describes the missed class ef-
fect. Then, we discuss several factors influencing
this effect, focusing on co-selection, a natural phe-
nomenon in common NLP applications of AL.

2.1 Sampling bias and misguided AL

The distribution of the labeled data points obtained
with an active learner deviates from the true data
distribution. While this sampling bias is intended
and accounts for the effectiveness of AL, it also
poses challenges as it leads to classifiers that per-
form poorly in some regions, or clusters, of the ex-
ample space. In the literature, this phenomenon has
been described as the missed cluster effect (Schütze
et al., 2006; Dasgupta and Hsu, 2008)

In this context, we must distinguish between ex-
ploration and exploitation. By design, AL is a
highly exploitative strategy: regions around decision
boundaries are inspected thoroughly so that decision
boundaries are learned well, but regions far from any
of the initial decision boundaries remain unexplored.

An exploitative sampling approach thus has to be
combined with some kind of exploratory strategy to
make sure the example space is adequately covered.
A common approach is to start an AL process with
an initial seed set that accounts for the exploration
step. However, a seed set which is not represen-
tative of the example space may completely mis-
guide AL — at least when no other explorative tech-
niques are applied as a remedy. While approaches
to balancing exploration and exploitation (Baram et
al., 2003; Dasgupta and Hsu, 2008; Cebron and
Berthold, 2009) have been discussed, we here fo-
cus on a “pure” AL scenario where exploration takes
only place in the beginning by a seed set. In sum-
mary, the missed clusters are the result of a sce-
nario where poor exploration is combined with ex-
clusively exploitative sampling.

Why is AL an exploitative sampling strategy? AL
selects data points based on the confidence of the ac-
tive learner. Assume an initial seed set that does not
contain examples of a specific cluster. This leads to
an initial active learner that is mistakenly overconfi-
dent about the class membership of instances in this
missed cluster. Far away from the decision bound-
ary, the active learner assumes a high confidence for

A B C

(a)

A B C

(b)

Figure 1: Illustration of the missed cluster effect in a 1-
d scenario. Shaded points are contained in the seed set,
vertical lines are final decision boundaries, and dashed
rectangles mark the explored regions

all instances in that cluster, even if they are in fact
misclassified. Consequently, the active learner will
fail to select these instances for long until some re-
direction impulse is received (if at all).

To give an example, let us consider a simple 1-
d toy scenario with examples from three clusters A,
B, and C as shown in Figure 1. In scenario (a), AL
is started from a seed set including one example of
clusters A and B only. In subsequent rounds, AL
will select examples in these clusters only (shown as
the dashed box in the figure). Examples in cluster
C are ignored as they are far from the initial deci-
sion boundary. Eventually, a decision boundary is
fixed as shown by the vertical line which indicates
that this AL process has completely overlooked ex-
amples from cluster C.

Assuming that the examples fall in two classes
X1 = {A ∪ C} and X2 = {B} the learned clas-
sifier has low recall for class X1 and relatively low
precision for class X2 as it erroneously assigns ex-
amples of cluster C to class X2. In a related sce-
nario with three classes X1 = {A}, X2 = {B}, and
X3 = {C} this would even mean that the classifier
is not at all aware about the third class resulting in
the missed class problem.

A more representative seed set circumvents this
problem. Given a seed set including one example
of each cluster, AL might find a second decision
boundary1 between clusters B and C because it is
now aware of examples from C. Figure 1(b) shows
a possible result of AL on this seed set.

The missed cluster effect can be understood as
the generalized problem. A special case of it is the

1Assuming a classifier that can learn several boundaries.
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missed class effect as shown in the previous exam-
ple. In general, it has the same causes (insufficient
exploration and misguided exploitation), but is eas-
ier to test. Often we know (at least the number of) all
classes under scrutiny, while we usually cannot as-
sume all clusters in the feature space to be known. In
this paper, we focus on the missed class effect, i.e.,
scenarios where classes are overlooked by a mis-
guided AL process resulting in a slow (active) learn-
ing progress.

2.2 Factors influcencing the missed class effect
AL in a practical scenario is subject to several fac-
tors which mitigate or intensify the missed class ef-
fect described before. In the following, we describe
three such factors, with a special focus on the co-
selection effect, which we claim to significantly mit-
igate the missed class effect in a specific type of NLP
tasks, sequence learning problems such as NER or
POS tagging.

Class imbalance Many studies on AL for NLP
tasks assume that AL is started from a randomly
drawn seed set. Such a seed set can be problem-
atic when the class distribution in the data is highly
skewed. In this case, “rare” classes might not be
represented in the seed set, increasing the chance to
completely miss out such a class using AL. When
classes are relatively frequent, an active learner —
even when started from an unfavorable seed set —
might still mistake an example of one class for an
uncertain example of a different class and conse-
quently select it. Thereby, it can acquire information
about the former class “by accident” leading to sud-
den and rapid discovery of the newly-found class.
However, in the case of extreme class imbalance this
is very unlikely. Severe class imbalance intensifies
the missed cluster effect.

Similarity of considered classes If, e.g., two of
the classes to be learned, say Xi and Xj , are harder
to discriminate than others, or if the data contains
lots of noise, an active learner is more likely to select
some instances of Xi if at least its “similar” coun-
terpart Xj was represented in the seed set. Hence,
it may mistake the instances of Xi and Xj before it
has acquired enough information to discriminate be-
tween them. So, under certain situations similarity
of classes can mitigate the missed class effect.

The co-selection effect Many NLP tasks are se-
quence learning problems including, e.g., POS tag-
ging, and named entity recognition. Sequences are
consecutive text tokens constituting linguistically
plausible chunks, e.g., sentences. Algorithms for se-
quence learning obviously work on sequence data,
so respective AL approaches need to select complete
sequences instead of single text tokens (Settles and
Craven, 2008). Furthermore, sentence selection has
been preferred over token selection in other works
with the argument that the manual annotation of sin-
gle, possibly isolated tokens is almost impossible or
at least extremely time-consuming (Ringger et al.,
2007; Tomanek et al., 2007).

Within such sequences, instances of different
classes often co-occur. Thus, an active learner that
selects uncertain examples of one class gets exam-
ples of a second class as an unintended, yet pos-
itive side effect. We call this the co-selection ef-
fect. As a result, AL for sequence labeling is not
“pure” exploitative AL, but implicitly comprises an
exploratory aspect which can substantially reduce
the missed class problem. In scenarios where we
cannot hope for such a co-selection, we are much
more likely to have decreased AL performance due
to missed clusters or classes.

3 Experiments

We ran several experiments to investigate how the
sampling granularity, i.e. the size of the selection
unit, influences the missed class effect. AL based
on token selection (T-AL) is compared to AL based
on sentence selection (S-AL). Although our experi-
ments are certainly also subject to the other factors
mitigating the missed class effect (e.g. similarity of
classes), the main focus of the experiments is on the
co-selection effect that we expected to observe in
S-AL. Several scenarios of initial exploration were
simulated by seed sets of different characteristics.
The experiments were run on synthetic and real data
in the context of named entity recognition (NER).

3.1 Classifiers and active learning setup

The active learning approach used for both S-AL
and T-AL is based on uncertainty sampling (Lewis
and Gale, 1994) with the margin metric (Schein and
Ungar, 2007) as uncertainty measure. Let c and c′
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be the two most likely classes predicted for token
xj with p̂c,xj and p̂c′,xj

being the associated class
probabilities. The per-token margin is calculated as
M = |p̂c,xj − p̂c′,xj

|.
For T-AL, the sampling granularity is the token,

while in S-AL, complete sentences are selected. For
S-AL, the margins of all tokens in a sentence are
averaged and the aggregate margin is used to select
sentences. We chose this uncertainty measure for S-
AL for better comparison with T-AL. In either case,
examples (tokens or sentences) with a small margin
are preferred for selection. In every iteration, a batch
of examples is selected: 20 sentences for S-AL, 200
tokens for T-AL.

Bayesian logistic regression as implemented in
the BBR classification package (Genkin et al., 2007)
with out-of-the-box parameter settings was used as
base learner for T-AL. For S-AL, a linear-chain
Conditional Random Field (Lafferty et al., 2001) is
employed as implemented in MALLET (McCallum,
2002). Both base learners employ standard features
for NER including the lexical token itself, various
orthographic features such as capitalization, the oc-
currence of special characters like hyphens, and con-
text information in terms of features of neighboring
tokens to the left and right of the current token.

3.2 Data sets
We used three data sets in our experiments. Two of
them (ACE and PBIO) are standard data sets. The
third (SYN) is a synthetic set constructed to have
specific characteristics. For simplicity, we consider
only scenarios with two entity classes, a majority
class (MAJ) and a minority class (MIN). We dis-
carded all other entity annotations originally con-
tained in the corpus assigning the OUTSIDE class.2

The first data set (PBIO) is based on the annota-
tions of the PENNBIOIE corpus for biomedical en-
tity extraction (Kulick et al., 2004). As PENNBIOIE
makes fine-grained and subtle distinctions between
various subtypes of classes irrelevant for this study,
we combined several of the original classes into two
entity classes: The majority class consists of the
three original classes ‘gene-protein’, ‘gene-generic’,
and ‘gene-rna’. The minority class consists of
the original and similar classes ‘variation-type’ and

2The OUTSIDE class marks that a token is not part of an
named entity.

’variation-event’. All other entity labels were re-
placed by the OUTSIDE class.

The second data set (ACE) is based on the
newswire section of the ACE 2005 Multilingual
Training Corpus (Walker et al., 2006). We chose
the ‘person’ class as majority class and the ‘organi-
zation’ class as the minority class. Again, all other
classes are mapped to OUTSIDE.

The synthetic data set (SYN) was constructed by
combining the sentences from the original ACE and
PENNBIOIE corpora. The ‘person’ class consti-
tutes the minority class, the very similar classes
‘malignancy’ and ‘malignancy-type’ were merged
to form the majority class. All other class la-
bels were set to OUTSIDE. SYN’s construction
was motivated by the following characteristics of
the new data set which would make the appear-
ance of the missed class effect very likely for
insufficient exploration scenarios:
(i) absence of inner-sentence entity class correlation
to ensure that sentences contain either mentions of
only a single entity class or no mentions at all.
(ii) marked entity class imbalance between the ma-
jority and minority classes
(iii) dissimilar surface patterns of entity mentions of
the two entity classes with the rationale that class
similarity will be low.

Table 1 summarizes characteristics of the data
sets. While SYN exhibits high imbalance (e.g., 1:9.4
on the token level), PBIO and ACE are moderately
skewed. In PBIO, the number of sentences contain-
ing any entity mention is relatively high compared
to ACE or SYN. For our experiments, the corpora
were randomly split in a pool for AL and a test set
for performance evaluation.

Inner-sentence entity class co-occurrence We
have described co-selection as a potential mitigat-
ing factor for the missed class effect in Section 2.
For this effect to occur, there must be some corre-
lation between the occurrence of entity mentions of
the MAJ class with those from MIN.

Table 2 shows correlation statistics based on the
χ2 measure. We found strong correlation in all three
corpora3: For ACE and PBIO, the correlation is pos-
itive; for SYN it is negative so when a sentence in
SYN contains a majority class entity mention, it is

3All correlations are statistically significant (p < 0.01).
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PBIO ACE SYN

sentences (all) 11,164 2,642 13,804
sentences (MAJ) 7,075 767 5,667
sentences (MIN) 2,156 974 974
MIN-MAJ ratio 1 : 3.3 1 : 1.3 1 : 5.8

tokens (all) 277,053 66,752 343,773
tokens (MAJ) 17,928 2,008 18,959
tokens (MIN) 4,079 1,822 2,008
MIN-MAJ ratio 1 : 4.4 1 : 1.1 1 : 9.4

Table 1: Characteristics of the data sets; “sentences
(MAJ)”, e.g., specifies the number of sentences contain-
ing mentions of the majority class.

PBIO ACE SYN

χ2 132.34 6.07 727
P (MIN |MAJ) 0.26 0.31 0.0

Table 2: Co-occurrence of entity classes in sentences

highly unlikely that it also contains a minority entity.
In fact, it is impossible by construction of the data
set. Further, this table shows the probability that a
sentence containing the majority class also contains
the minority class. As expected, this is exactly 0 for
SYN, but significantly above 0 for PBIO and ACE.

3.3 Seed sets

Selection of an appropriate seed set for the start of an
AL process is important to the success of AL. This is
especially relevant in the case of imbalanced classes
because a typically small random sample will pos-
sibly not contain any example of the rare class. We
constructed different types of seed sets (whose nam-
ing intentionally reflects the use of the entity classes
from Section 3.2) to simulate different scenarios of
ill-managed initial exploration. All seed sets have
a size of 20 sentences. The RANDOM set was ran-
domly sampled, the MAJ set is made of sentences
containing at least one majority class entity, but no
minority class entity. Accordingly, MIN is densely
populated with minority entities. Finally, OUTSIDE
contains only sentences without entity mentions.

One could think of the OUTSIDE and MAJ seed
sets of cases where a random seed set selection has
unluckily produced an especially bad seed set. MIN
serves to demonstrate the opposite case. For each
type of seed set, we sampled ten independent ver-
sions to calculate averages over several AL runs.

3.4 Cost measure

The success of AL is usually measured as reduc-
tion of annotation effort according to some cost mea-
sure. Traditionally, the most common cost measure
considers a unit cost per annotated token, which fa-
vors AL systems that select individual tokens. In
a real annotation setting, however, it is unnatural,
and therefore hard for humans to annotate single,
possibly isolated tokens, leading to bad annotation
quality (Hachey et al., 2005; Ringger et al., 2007).
When providing context, the question arises whether
the annotator can label several tokens present in the
context (e.g., an entire multi-token entity or even
the whole sentence) at little more cost than anno-
tating a single token. Thus, assigning a linear cost
of n to a sentence where n is the sentence’s length
in tokens seems to unfairly disadvantage sentence-
selection AL setups.

However, more work is needed to find a more re-
alistic cost measure. At present there is no other
generally accepted cost measure than unit cost per
token, so we report costs using the token measure.

4 Results

This section presents the results of our experiments
on the missed class effect in two different AL
scenarios, i.e., sentence selection (S-AL) and to-
ken selection (T-AL). The AL runs were stopped
when convergence on the minority class F-score was
achieved. This was done because early AL iterations
before the convergence point are most important and
representative for a real-life scenario where the pool
is extremely large, so that absolute convergence of
the classifier’s performance will never be reached.

The learning curves in Figures 2, 3, and 4 reveal
general characteristics of S-AL compared to T-AL.
For S-AL, the number of tokens on the x-axis is the
total number of tokens in the sentences labeled so
far. While S-AL generally yields higher F-scores, T-
AL converges much earlier when counted in terms
of tokens. The reason for this is that T-AL can se-
lect uncertain data more specifically. In contrast, S-
AL also selects tokens that the classifier can already
classify reliably – these tokens are selected because
they co-occur in a sentence that also contains an un-
certain token. Whether T-AL is really more efficient
clearly depends on the cost-metric applied (cf. Sec-
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(a) T-AL learning curve, single run
with OUTSIDE seed
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(b) T-AL mean margin curve, single
run with OUTSIDE seed
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(c) T-AL learning curves, minority
class, all seeds, 10 runs
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(d) S-AL learning curve, single run
with OUTSIDE seed
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(e) S-AL mean margin curve, single
run with OUTSIDE seed
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(f) S-AL learning curves, minority
class, all seeds, 10 runs

Figure 2: Results on SYN corpus for token selection (a,b,c) and sentence selection (d,e,f)

tion 3.4). Since the focus of this paper is on compar-
ing the missed class effect in a sentence and a token
selection AL setting (T-AL and S-AL) we apply the
straight-forward token measure.

4.1 The pathological case

Figure 2 shows results on the SYN corpus for T-AL
(upper row) and S-AL (lower row). Figures 2(a)
and 2(d) show the minority and majority class learn-
ing curves for a single run starting from the OUT-
SIDE seed set, which was particularly problematic
on SYN. (We show single runs to give a better pic-
ture of what happens during the selection process.)
The figures show that for both AL scenarios, the
OUTSIDE seed set caused the active learner to focus
exclusively on the majority class and to completely
ignore the minority class for many AL iterations (al-
most 30,000 tokens for S-AL and over 4,000 tokens
for T-AL). Had we stopped the AL process before
this turning point, the classifier’s performance on
the majority entity class would have been reason-
ably high while the minority class would not have
been learned at all — which is precisely the defini-

tion of an (initially) missed class.
Figures 2(b) and 2(e) show the corresponding

mean margin plots of these AL runs, indicating the
confidence of the classifier on each class. The mean
margin is calculated as the average margin over to-
kens in the remaining pool, separately for each true
class label.4 As expected, the active learner is over-
confident but wrong on instances of the minority
class (assigning them to the OUTSIDE class, we
assume). Only after some time, margin scores on
minority class tokens start decreasing. This hap-
pens because from time to time minority class ex-
amples are mistakenly considered as majority class
examples with low confidence and thus selected by
accident. Lowered minority class confidence then
causes the selection of further minority class exam-
ples, resulting in a turning point with a steep slope
of the minority class learning curve.

Consequences of seed set selection We compare
the minority class learning curves for all types of

4Note that in a real, non-simulation active learning task, the
true class labels would be unknown.
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(b) T-AL mean margin curve, single
run with MAJ seed
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(c) T-AL learning curves, minority
class, all seeds, 10 runs
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(d) S-AL learning curve, single run
with MAJ seed
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(e) S-AL mean margin curve, single
run with MAJ seed
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(f) S-AL learning curves, minority
class, all seeds, 10 runs

Figure 3: Results on PBIO corpus for token selection (a,b,c) and sentence selection (d,e,f)

seed sets and for random selection (cf. Figures 2(c)
and 2(f)), now averaged over 10 runs. On S-AL all
but the MIN seed set were inferior to random selec-
tion. Even the commonly used random seed set se-
lection is problematic because the minority class is
so rare that there are random seed sets without any
example of the minority class.

On T-AL, all seed sets are better than random se-
lection. This, however, is because random selec-
tion is an extremely weak baseline for T-AL due to
the token distribution (cf. Table 1). Still, the RAN-
DOM, MAJ, and OUTSIDE seed sets are signifi-
cantly worse than a seed set which covers the minor-
ity class well. Note that the majority class learning
curves are relatively invariant against different seed
sets. The minority class seed set does have some
negative impact on initial learning progress on the
majority class (not shown here), but the impact is
rather small. Because of the higher frequency of
the majority class, the classifier soon finds major-
ity class examples to compensate for the seed set by
chance or class similarity.

4.2 Missed class effect mitigated by co-selection

Results on PBIO corpus On the PBIO corpus,
where minority and majority class entity mentions
naturally co-occur on the sentence level, we get
a different picture. Figure 3 shows the learning
(3(a), 3(d)) and mean margin (3(b), 3(e)) curves for
the MAJ seed set. T-AL still exhibits the missed
class effect on this seed set. The minority class
learning curve again has a delayed slope and high
mean margin scores of minority tokens at the be-
ginning, resulting in insufficient selection and slow
learning. S-AL, on the other hand, does not re-
ally suffer from the missed class effect: minor-
ity class entity mentions are co-selected in sen-
tences which were chosen due to uncertainty on
majority class tokens. Minority class mean mar-
gin scores quickly fall, reinforcing selection for mi-
nority class entities. Learning curves for minority
and majority classes run approximately in parallel.

Figure 3(f) shows that all seed sets perform quite
similar for S-AL. MIN unsurprisingly is a bit better.
With the other seed sets, S-AL performance is com-
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Figure 4: Minority class learning curves for all seeds on
ACE averaged over 10 runs

parable to random selection. On the PBIO corpus,
random selection is a strong baseline as almost every
sentence contains an entity mention — which is not
the case for SYN and ACE (cf. Table 1). As there is
no co-selection effect for T-AL, the MAJ and OUT-
SIDE seed sets also here are subject to the missed
class problem (Figure 3(c)), although not as severely
as on the SYN corpus.

Results on ACE corpus Figure 4 shows learning
curves averaged over 10 runs on ACE. Overall, the
missed class effect is less pronounced on ACE com-
pared to PBIO. Still, co-selection avoids a good por-
tion of the missed class effect on S-AL — all seed
sets yield results much better than random selection
right from the beginning.

On T-AL, the OUTSIDE seed set has a marked
negative effect. However, while different seed
sets still have visible differences in learning perfor-
mance, the magnitude of the effect is smaller than
on PBIO. It is difficult to find the exact reasons
in a non-synthetic, natural language corpus where a
lot of different effects are intermingled. One might
assume higher class similarity between the major-
ity (“persons”) and the minority (“organizations”)
classes on the ACE corpus than, e.g., on the PBIO

corpus. Moreover, there is hardly any imbalance
in frequency between the two entity classes on the
ACE corpus. We briefly discussed such influencing
factors possibly mitigating the missed class effect in
Section 2.2.

4.3 Discussion

To summarize, on a synthetic corpus (SYN) the
missed class effect can be well studied in both

AL scenarios, i.e., S-AL and T-AL. Moving from
a relatively controlled, synthetic corpus (extreme
class imbalance, no inner-sentence co-occurrence
between entity classes, quite different entity classes)
to more realistic corpora, effects generally mix a bit
due to different degrees of class imbalance and prob-
ably higher similarity between entity classes.

Our experiments unveil that co-selection in S-AL
effectively helps avoid dysfunctional classifiers that
insufficiently explore the instance space due to a
disadvantageous seed set. In contrast, AL based
on token-selection (T-AL) cannot recover from in-
sufficient exploration as easy as AL with sentence-
selection and is thus more sensitive to the missed
class effect.

5 Conclusion

We have shown that insufficient exploration in the
initial stages of active learning gives rise to regions
of the sample space that contain missed classes that
are incorrectly classified. This results in low clas-
sification performance and slow learning progress.
Comparing two sampling granularities, tokens vs.
sentences, we found that the missed class effect is
more severe when isolated tokens instead of sen-
tences are selected for labeling.

The missed class problem in sequence classifica-
tion tasks can be avoided using sentences as natural
multi-instance units for selection and labeling. Us-
ing multi-instance units, co-selection of other tokens
within sentences provides an implicit exploratory
component. This solution is effective if classes co-
occur sufficiently within sentences which is the case
for many real-life entity recognition tasks.

While other work has proposed sentence selection
in AL for sequence labeling as a means to ease and
speed up annotation, we have gathered here addi-
tional motivation from the perspective of robustness
of learning. Future work will compare the beneficial
effect introduced by co-selection with other forms of
exploration-enabled active learning.
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