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Abstract tasks, text topic clustering and chat disentangle-
ment, where typical datasets are too large for ILP
We evaluate several heuristic solvers for corre- to find a solution. We show, as in previous work
|§-tIOI’.1 Clusge”t”g' Ehg NP-hard _prOb]L?thf pt:)ar- on consensus clustering (Goder and Filkov, 2008),
tioning a dataset given painwise atlinities be- 4, ot jocal search can improve the solutions found by
tween all points. We experiment on two prac- | d hods. We i . h |
tical tasks, document clustering and chat dis- ~ €OMMONly-use methoas. Ve mvgsﬂgate the rela-
entanglement, to which ILP does not scale.  tionship between the clustering objective and exter-
On these datasets, we show that the cluster- nal evaluation metrics such as F-score and one-to-
ing objective often, but not always, correlates one overlap, showing that optimizing the objective
with external metrics, and that local search al-  is usually a reasonable aim, but that other measure-
ways improves over greedy solutions. We use  ments like number of clusters found should some-
semi-definite programming (SDP) toprovidea  i,64 he ysed to reject pathological solutions. We
tighter bound, showing that simple algorithms that the best heuristi ite cl ¢
are already close to optimality. prove a.\ € eg gurls Ics are _qu' € close 1o Qp-
timal, using the first implementation of the semi-

definite programming (SDP) relaxation to provide
1 Introduction tighter bounds.

Correlation clustering is a powerful technique for The specific algorithms we investigate are, of
discovering structure in data. It operates on th&OUrse, only a subset of the large numbe'r of pos-
pairwise relationships between datapoints, partitior?—Ible solutions, or even of those proposed in the_ lit-
ing the graph to minimize the number of unrelaterature- We chose to test a few common, efficient

pairs that are clustered together, plus the numb@gorlghgws trlja_‘t are easily |mplem(;nted. (d)ur use Ofd
of related pairs that are separated. Unfortunatel ’goo ounding strategy means that we do not nee

this minimization problem is NP-hard (Ailon et al., 0 perform an exhaustive comparison; we will show

2008). Practical work has adopted one of thre@at’ though the methods we describe are not per-

strategies for solving it. For a few specific tasks, onEeCt’ the remaining improvements possible with any

can restrict the problem so that it is efficiently solv—algor'thm are relatively small.

able. I'n most cases, hpwever, this is impossible. Irz Previous Work

teger linear programming (ILP) can be used to solve

the general problem optimally, but only when theCorrelation clustering was first introduced by Ben-

number of data points is small. Beyond a few hunbor et al. (1999) to cluster gene expression pat-

dred points, the only available solutions are heuristiterns. The correlation clustering approach has sev-

or approximate. eral strengths. It does not require users to specify
In this paper, we evaluate a variety of solu-a parametric form for the clusters, nor to pick the

tions for correlation clustering on two realistic NLPnumber of clusters. Unlike fully unsupervised clus-
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tering methods, it can use training data to optimizenetrics!

the pairwise classifier, but unlike classification, it A variety of approximation algorithms for corre-
does not require samples from the specific clustetation clustering with worst-case theoretical guar-
found in the test data. For instance, it can use meantees have been proposed: (Bansal et al., 2004;
sages about cars to learn a similarity function thahilon et al., 2008; Demaine et al., 2006; Charikar
can then be applied to messages about atheism. et al., 2005; Giotis and Guruswami, 2006). Re-

Correlation clustering is a standard method forearchers including (Ben-Dor et al., 1999; Joachims
coreference resolution. It was introduced to th&"d Hopcroft, 2005, Mathieu and Schudy, 2008)
area by Soon et al. (2001), who describe the firsf—tUdy _correlatlon clustering theoretlcally_ when the
link heuristic method for solving it. Ng and Cardie/NPut is generated by ran(;iomly perturbing an un-
(2002) extend this work with better features, and dek"oWwn ground truth clustering.
velop the best-link heuristic, which finds better solu -
tions. McCallum and Wellner (2004) explicitly de—3 Algorithms
scribe the problem as correlation clustering and us&’e begin with some notation and a formal definition
an approximate technique (Bansal et al., 2004) tof the problem. Our input is a complete, undirected
enforce transitivity. Recently Finkel and ManninggraphG with n nodes; each edge in the graph has
(2008) show that the optimal ILP solution outper-a probabilityp;; reflecting our belief as to whether
forms the first and best-link methods. Cohen andodesi and;j come from the same cluster. Our goal
Richman (2002) experiment with various heuristids to find a clustering, defined as a new gragh
solutions for the cross-document coreference task wfith edgesz;; € {0,1}, where ifz;; = 1, nodes
grouping references to named entities. 1 and j are assigned to the same cluster. To make
correlation clustering has proven useful irfhis consistent, the edges must define an equivalence

Finally, . . oo
g;latlonshlp:xii = landxz;; = xj, = 1implies

several discourse tasks. Barzilay and Lapata (200
use it for content aggregation in a generation systemyis = “ik- , _ _

In Malioutov and Barzilay (2006), it is used for topic  OUr Objective is to find a clustering as consistent
segmentation—since segments must be contiguo® POssible with our beliefs—edges with high proba-
the problem can be solved in polynomial time. El_bl_hty should not _c_ross cluster bounda_lrles, and edges
sner and Charniak (2008) address the related proith low probability should. We defm:q;;} as the
lem of disentanglement (which we explore in SecS0St of cutting an edge whose probabilitypig and

tion 5.3), doing inference with the voting greedy al-i; S the cost of keeping it. Mathematically, this
objective can be written (Ailon et al., 2008; Finkel

gorithm. .
, ) ] and Manning, 2008) as:
Bertolacci and Wirth (2007), Goder and Filkov
(2008) and Gionis et al. (2007) conduct experiments min Z wijwy; + (1 - xij)w;;- @)

on the closely related problem obnsensus cluster-
ing, often solved by reduction to correlation cluster-
ing. The input to this problem is a set of clusteringsThere are two plausible definitions for the costs

the output is a “median” clustering which minimizesandw ™, both of which have gained some support in
the sum of (Rand) distance to the inputs. Althouglthe literature. We can takezg = pij andw;; =
these papers investigate some of the same algorithrhs- p;; (additive weights) as in (Ailon et al., 2008)
we use, they use an unrealistic lower bound, and snd others, onwg = log(pij), w;; = log(1l — pij)
cannot convincingly evaluate absolute performancglogarithmic weights) as in (Finkel and Manning,
Gionis et al. (2007) give an external evaluation 02008). The logarithmic scheme has a tenuous math-
some UCI datasets, but this is somewhat unconvine@matical justification, since it selects a maximum-
ing since their metric, thémpurity index which is likelihood clustering under the assumption that the
essentially preC|§|on 'ghoring rec?”’ gives a perfeCtmand Wirth (2007) gave normalized mutual infor-
score to the all-singletons clustering. The other tWeation for one algorithm and data set, but almost all of their
papers are based on objective values, not externasults study objective value only.

15:9<J
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pi; are independent and identically distributed given
the status of the edgg in the true clustering. If
we obtain thep;; using a classifier, however, this as-
sumption is obviously untrue—some nodes will be
easy to link, while others will be hard—so we eval-
uate the different weighting schemes empirically.

3.1 Greedy Methods

We use four greedy methods drawn from the lit-
erature; they are both fast and easy to implement.
All of them make decisions based on thet weight
wl?g = w;; — Wy

These algorithms step through the nodes of the
graph according to a permutatian We try 100 ran-
dom permutations for each algorithm and report the

run which attains the best objective value (typically

k < 0 // number of clusters created so far
fore=1...ndo

forc=1...kdo
if BESTthen
Quality. < max;ecy( wl-j;-
eseif FIRST then
Quality,. «— max
dseif VOTE then
Qualitye — 3 icc wiij
c* « argmaxi<.<j Quality.
if Quality.~ > 0then
Clc*] < Cle*] U {i}
else
Clk++] < {i} /l form a new cluster

jEC[c}:w$>0 J

Figure 1: BEST/FIRST/VOTE algorithms

this is slightly better than the average run; we dis-
cuss this more in the experimental sections). To sim-
plify the pseudocode we label the verticeg, ... n
in the order specified byt. After this relabeling
(1) = i sow need not appear explicitly in the al-
gorithms.

Three of the algorithms are given in Figure 1. All
three algorithms start with the empty clustering and Figure 2: RVOT algorithm by Ailon et al. (2008)
add the vertices one by one. The&®r algorithm
adds each vertekto the cluster with the strongest _
w* connecting ta, or to a new singleton if none of (2008). The allowedone element movesonsist
thew* are positive. The RsT algorithm adds each of re_mO\_/ing one vertex from a cluster an_d either
vertexi to the cluster containing the most recentlyoVing it to another cluster or to a new singleton
considered vertex with wiﬂ; > 0. The VOTE algo- clugter. The best one element move (B_OEM) al-
rithm adds each vertex to the cluster that minimize80rithm repeatedly makes the most profitable best
the correlation clustering objective, i.e. to the clustePN€ €lement move until a local optimum is reached.

maximizing the total net weight or to a singleton ifSimulated AnnealingSA) makes a random single-
no total is positive. element move, with probability related to the dif-

Ailon et al. (2008) introduced the PoT algo- ference in objective i't causes and. the current tem-
rithm, given in Figure 2, and proved that it is a 5-Perature. Our annealing schedule is exponential and
approximation ifw;; +wy; = 1foralli,j and q§§|g_ned to attemp000n moves f_orn nodes. We
7 is chosen randomly. Unlike BT, VOTE and initialize the local search elther.W|th all nodes clus-
FIRST, which build clusters vertex by vertex, thel€red together, or at the clustering produced by one
PIvoT algorithm creates each new cluster in its fiOf our greedy algorithms (in our tables, the latter is
nal form. This algorithm repeatedly takes an unclug?ritien, eg. RvoT/BOEM, if the greedy algorithm
tered pivot vertex and creates a new cluster contai® Pivor).
ing 'that vertex and all unclustered neighbors Wltf}1 Bounding with SDP
positive weight.

k < 0 /[ number of clusters created so far
fori=1...ndo
P «— Uj<.< Clc] Il Vertices already placed
if i ¢ Pthen
Clk++]  —  {i} U {i<j<n
j ¢ Pandw;; >0}

Although comparing different algorithms to one an-
3.2 Local Search other gives a good picture of relative performance, it
We use the straightforward local search previouslis natural to wonder how well they do in an absolute
used by Gionis et al. (2007) and Goder and Filkogense—how they compare to the optimal solution.
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For very small instances, we can actually find thand Schudy, 2008)):
optimum using ILP, but since this does not scale be-

yond a few hundred points (see Section 5.1), for re- ming 33, ey iy + (1= zig)w)
alistic instances we must instead bound the optimal Ty =1 Vi
value. Bounds are usually obtained by solvinga st 25 >0 Vi, j
laxation of the original problem: a simpler problem X = {w;;}i; PSD

with the same objective but fewer constraints. This SDP has been studied theoretically by a
‘The bound used in previous work (Goder anty mper of authors; we mention just two here.
F|I_kov, 2008; qunls et al., 200?; _Bertolacm_andCharikar et al. (2005) give an approximation al-
Wirth, 2007), which we call therivial bound, is gorithm based on rounding the SDP which is a
obtained by ignoring the transitivity constraints eng 7664 approximation for the problem of maximiz-
tirely. To optimize, we link ¢;; = 1) all the pairs  jng agreements. Mathieu and Schudy (2008) show
wh_erewg is larger thanw,;; since this solution is hat if the input is generated by corrupting the

quite far from pelng a clustering, the bound tend%dges of a ground truth clusteririgindependently,
not to be very tight. then the SDP relaxation value is within an additive

To get a better idea of how good a real clustering)(n./n) of the optimum clustering. They further
can be, we use a semi-definite programming (SDRhow that using the IROT algorithm to round the
relaxation to provide a better bound. Here we motiSDP yields a clustering with value at ma@gtn./n)
vate and define this relaxation. more than optimal.

One can picture a clustering geometrically by asé E .
sociating clusterc with the standard basis vector Xperiments
ec = (0,0,...,0,1,0,...,0) € R". If objectiis 51 Scalability

——— S——

: el 0 onec . Using synthetic data, we investigate the scalability
in clusterc then it 1S n_atural t(.) assomatamth '_[he of the linear programming solver and SDP bound.
vectorr; — Ce Thls gves ,a nlcg_geometnc IOICtureTo find optimal solutions, we pass the completedLP
ofa_clusterlng,_wnh objectsandy in the same clus- to CPLEX. This is reasonable for 100 points and
ter if and only ifr; = r;. Note that the dot product g, 110 o 200; beyond this point it cannot be
ri o 7; 1S 1if i andj are in the same cluster and Oc 0 16 1o memory exhaustion. As noted below,
otherwise. Th_ese ideas yleld a5|mp!e reformulatloaespite our inability to compute the LP bound on
of the correlation clustering problem: large instances, we can sometimes prove that they
must be worse than SDP bounds, so we do not in-
min, Y, o (rierj)w; +(L—rje rj)w;; vestigate LP-solving techniques further.
stVi Je:r = e, The SDP has fewer constraints than the ILP
(O(n?) vs O(n?)), but this is still more than many
SDP solvers can handle. For our experiments we
To get an efficiently computable lower-bound weysed one of the few SDP solvers that can handle such
relax the constraints that thes are standard basisa|arge number of constraints: Christoph Helmberg's
vectors, replacing them with two sets of constraintsgnicBundle library (Helmberg, 2009; Helmberg,
rier; =1foralliandr; er; > 0foralli,j. 2000). This solver can handle several thousand data-
Since ther; only appear as dot products, we carpoints. It produces loose lower-bounds (off by a few
rewrite in terms ofz;; = r; e r;. However, we percent) quickly but converges to optimality quite
must now constrain the;; to be the dot products slowly; we err on the side of inefficiency by run-
of some set of vectors iR™. This is true if and ning for up to 60 hours. Of course, the SDP solver
only if the symmetric matrixX = {x;;};; is posi- is only necessary to bound algorithm performance;
tive semi-definite We now have the standard semi-our solvers themselves scale much better.
definite programming (SDP) relaxation of correla-  2consisting of the objective plus constraifts< zi; < 1
tion clustering (e.g. (Charikar et al., 2005; Mathieland triangle inequality (Ailon et al., 2008).
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5.2 Twenty Newsgroups Logarithmic Weights

Obj | Rand| F | 1-1
SDP bound 51.1%| - - -
VoTE/BOEM | 55.8%] 93.80| 33 | 41
56.3% | 93.56 | 31| 36
PivoT/BOEM | 56.6% | 93.63| 32 | 39
BESTTBOEM | 57.6% | 93.57| 31 | 38

In this section, we test our approach on a typi-
cal benchmark clustering dataset, 20 Newsgroups
which contains posts from a variety of Usenet
newsgroups such asec. notorcycl es and
al t.athei sm Since our bounding technique
does not scale to the full dataset, we restrict our at-

tention to a subsample of 100 messaddgesm each FIRSTTBOEM | 57.9%/ 93.65| 30 | 36
newsgroup for a total of 2000—still a realistically VOTE 59.0%/ 93.411 29| 35

large-scale problem. Our goal is to cluster message OEM 60.1%| 93.51| 30 | 35
by their newsgroup of origin. We conduct exper- ~'VOT 100% | 90.85| 17 | 27
iments by holding out four newsgroups as a train- BEST 138% | 87.111 20| 29
ing set, learning a pairwise classifier, and applying it "'RST 619% | 40.97| 11| 8
to the remaining 16 newsgroups to form our affinity N _

matrix4 Additive Weights

Obj [ Rand| F [ 11
SDP bound 59.0% - - -
SA 63.5% | 93.75| 32| 39

Our pairwise classifier uses three types of fea-
tures previously found useful in document cluster-
ing. First, we bucket all wordsby their log doc-
ument frequency (for an overview of TF-IDF see VOTE/BOEM | 63.5%| 93.75| 32| 39
(Joachims, 1997)). For a pair of messages, we creat8!VOT/BOEM | 63.7%/ 93.70| 32 | 39
a feature for each bucket whose value is the proporBESTBOEM | 63.8% | 93.73| 31 | 39
tion of shared words in that bucket. Secondly, we FIRSTBOEM | 63.9% | 93.58| 31 | 37
run LSA (Deerwester et al., 1990) on the TF-IDF BOEM 64.6%) 93.65| 31 37
matrix for the dataset, and use the cosine distance/ ©TE 67.3% 93.35| 28| 34
between each message pair as a feature. Finally, wB'VOT 109% | 90.63| 17| 26
use the same type of shared words features for termBEST 165% | 87.06| 20 | 29
in message subjects. We make a training instance fof'RST 761% | 40.46| 11| 8

each pair of documents in the training set and IearFable 1: Score of the solution with best objective for each

via logistic regression. solver, averaged over newsgroups training sets, sorted by
The classifier has an average F-score of 29% amfjective.

an accuracy of 88%—not particularly good. We

should emphasize that the clustering task for 20

newsgroups is much harder than the more Conﬁpetrlcs (see Meila (2007) for an overview of cluster-

. . . ing metrics). Th ndm r nts the number
mon classification task—since our training set is ennd Me cs) gRandmeasure counts the numbe

tirely disjoint with the testing set, we can only IearnOf pairs of points for which the proposed clustering

weights on feature categories, not term weights. ogierees with .ground truth. This is Fhe _metrlc which
aim is to create realistic-looking data on which tdS mathematically closest to the objective. However,

test our clustering methods, not to motivate correl s_|?ce m'(‘;)st pmﬂtslarte n tdlffzrept cILf[ste;Tc,,hany S0-
tion clustering as a solution to this specific problem.uhIon ]:N' smal clus ers{ tﬁn sloge aﬁlfg score.
In fact, Zhong and Ghosh (2003) report better result-g_tﬁre ore V\;etatsho repor i € Inore se|n5|t ?co:e
using generative models. with respect to the minority (“same c us'er) class.
. . . \(Ve also report thene-to-onescore, which mea-
We evaluate our clusterings using three differen . ) . :
sures accuracy over single points. For this metric,
®Available asri ni _newsgr oups. t ar. gz fromthe UCI  we calculate a maximum-weight matching between

machine learning repository. proposed clusters and ground-truth clusters, then re-

p . o
trainiTnhgeS(;(spenments below are averaged over four d|510|nb0rt the overlap between the two.

SWe omit the message header, except the subject line, and_\/\/_hen presenting objective V?-'_Uesv we locate th.em
also discard word types with fewer than 3 occurrences. within the range between the trivial lower bound dis-
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cussed in Section 4 and the objective value of th o 44
singletons clusteringr(; = 0,7 # j). On this scale,
lower is better; 0% corresponds to the trivial bounc + —
and 100% corresponds to the singletons clusterin 0.42 T ]
It is possible to find values greater than 100%, sinc T I
I
I

some particularly bad clusterings have objective 0.40} T
worse than the singletons clustering. Plainly, how
ever, real clusterings will not have values as low a _El
0%, since the trivial bound is so unrealistic. 0.38

Our results are shown in Table 1. The best re I
sults are obtained using logarithmic weights witr
VOTE followed by BOEM; reasonable results are '
also found using additive weights, and annealing :
VoTE or PivoT followed by BOEM. On its own, 0.34 +
the best greedy scheme i©VE, but all of them are F
substantially improved by BOEM. First-link is by L, 4
far the worst. Our use of the SDP lower bound rathe 0.32 & ]
than the trivial lower-bound of 0% reduces the ga| O&@ ~S}</<9 QS\( “‘% o)
between the best clustering and the lower bound t
over a factor of ten. It is easy to show that the LP
relaxation can obtain a bound of at most $8%he  Figure 3: Box-and-whisker diagram (outliers a3 for
SDP beats the LP in both runtime and quality! one-to-one scores obtained by the best few solvers on a

We analyze the correlation between objective VaparticuIar_newsgroup.dataset. L means using log weights.
ues and metric values, averaging Kendall'Staver B means improved with BOEM.
the four datasets (Table 2). Over the entire dataset,

0.36

correlations are generally good (large and negative), Rand F 1-1
showing that optimizing the objective is indeed a LOg-wt | -.60 -73 -.71
useful way to find good results. We also examine TOP 10%| -.14 -22 -24
correlations for the solutions with objective values Add-wt | -.60 -.67 -.65
within the top 10%. Here the correlation is much Top 10 %/ -.13 -15 -.14

poorer; selecting the solution with the best ObJeCtlverable 2: Kendall's tau correlation between objective and

value will not necessarily optimize the metric, al-neic values, averaged over newsgroup datasets, for all
though the correspondence is slightly better for thgoutions and top 10% of solutions.

log-weights scheme. The correlations do exist, how-
ever, and so the solution with the best objective value
is typically slightly better than the median. score plot, which is similar, for space reasons.

In Figure 3, we show the distribution of one-to-
one scores obtained (for one specific dataset) by ti3 Chat Disentanglement
best solvers. From this diagram, it is clear that log-
weights and WTE/BOEM usually obtain the best In the disentanglement task, we examine data from a
scores for this metric, since the median is highe$hared discussion group where many conversations
than other solvers’ upper quartile scores. All solver@re occurring simultaneously. The task is to partition
have quite high variance, with a range of about ooghe utterances into a set of conversations. This task

between quartiles and 4% overall. We omit the Fdiffers from newsgroup clustering in that data points
- (utterances) have an inherent linear order. Ordering

6 o — 11 (= > ) for i < 4 i : ORI : : :
_ thThLePSO'U“O”fEm = 31 (wy; >wyj) fori < jis feasible g tynjcal in discourse tasks including topic segmen-
In the f . .

"The standard Pearson correlation coefficient is less robug?tlon and coreference resolution.

to outliers, which causes problems for this data. We use the annotated dataset and pairwise classi-
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fier made available by Elsner and Charniak (2008):shown in the table) are 41% one-to-one, 73% local
this study represents a competitive baseline, a&nd .44% F-scor®.Our improvement on the global
though more recently Wang and Oard (2009) havenetrics (12% relative improvement in one-to-one,
improved it. Since this classifier is ineffective atl3% in F-score) is modest, but was achieved with
linking utterances more than 129 seconds apart, vieetter inference on exactly the same input.

treat all decisions for such utterances as abstentions,Since the objective function fails to distinguish
p = .5. For utterance pairs on which it does makeyood solutions from bad ones, we examine the types
a decision, the classifier has a reported accuracy of solutions found by different methods in the hope
75% with an F-score of 71%. of explaining why some perform better than others.

As in previous work, we run experiments on thdn this setting, some methods (notably local search
800-utterance test set and average metrics over 6 tegh on its own or from a poor starting point) find far
annotations. We evaluate using the three metrics reewer clusters than others (Table 4; log weights not
ported by previous work. Two node-counting metshown but similar to additive). Since the classifier
rics measure global accuracgne-to-one matchs abstains for utterances more than 129 seconds apart,
explained above, anBhen’s F(Shen et al., 2006): the objective is unaffected if very distant utterances
F = %, ™max;(F(i,j)). Hereiis a gold con- are linked on the basis of little or no evidence; this
versation with sizen; andj is a proposed conver- is presumably how such large clusters form. (This
sation with sizen;, sharingn,; utterances;F'(i,j) raises the question of whether abstentions should
is the harmonic mean of precisioﬁ}]{) and recall be given weaker links withh < .5. We leave this
(%1). A third metric, thelocal agreementcounts for future work.) Algorithms which find reasonable
edgewise agreement for pairs of nearby utteranced/mbers of clusters (T&, PIvoT, BEST and lo-
where nearby means “within three utterances.”  cal searches based on these) all achieve good metric

In this dataset, the SDP is a more moderate inCOres, although there is still no reliable way to find
provement over the trivial lower bound, reducingth® Pest solution among this set of methods.
the gap between the best clustering and best Iowgr
bound by a factor of about 3 (Table 3).

Optimization of the objective does not correspondt is clear from these results that heuristic methods
to improvements in the global metrics (Table 3)can provide good correlation clustering solutions on
for instance, the best objectives are attained witbatasets far too large for ILP to scale. The particular
FIRST/BOEM, but VOTE/BOEM yields better one- solver chosel has a substantial impact on the qual-
to-one and F scores. Correlation between the olity of results obtained, in terms of external metrics
jective and these global metrics is extremely wealks well as objective value.

(Table 5). The local metric is somewhat correlated. For general problems, our recommendation is to
Local search does improve metric results for eachse log weights and run & e/BOEM. This algo-
particular greedy algorithm. For instance, whenithm is fast, achieves good objective values, and
BOEM is added to WTE (with log weights), one- yields good metric scores on our datasets. Although
to-one increases from 44% to 46%, local from 72%bjective values are usually only weakly correlated
to 73% and F from 48% to 50%. This represents with metrics, our results suggest that slightly bet-
moderate improvement on the inference scheme der scores can be obtained by running the algorithm
scribed in Elsner and Charniak (2008). They useany times and returning the solution with the best
voting with additive weights, but rather than per-objective. This may be worth trying even when the

forming multiple runs over random permutationsdatapoints are inherently ordered, as in chat.

they process Utt?rances n t.he qrder they oceur. ( ®The F-score metric is not used in Elsner and Charniak
experimented with prqcessmg in order; the reSUIt&OOS);we compute it ourselves on the result produced kiy the
are unclear, but there is a slight trend toward worsgware.

performance, as in this case.) Their results (also®Our C++ correlation clustering software and SDP
bounding package are available for download from
8Downloaded fronts. br own. edu/ ~nmel sner cs. brown. edu/ ~nel sner.

Conclusions

25



Log Weights Num clusters

Obj 1-1 Locs ShenF Max human annotator 128

SDP bound 13.0% - - - PivoT 122
FIRST/BOEM | 19.3% 41 74 44 VOTE 99
VOTE/BOEM | 20.0% 46 73 50 PIivOoT/BOEM 89
SA 203% 42 73 45 VOTE/BOEM 86
BEST/BOEM | 21.3% 43 73 47 Mean human annotator 81
BOEM 215% 22 72 21 BEST 70
PIivOT/BOEM | 22.0% 45 72 50 FIRST 70
VOTE 26.3% 44 72 48 Elsner and Charniak (2008 63
BEST 37.1% 40 67 44 BEST/BOEM 62
PivoT 44.4% 39 66 44 SA 57
FIRST 583% 39 62 41 FIRST/BOEM 54
Min human annotator 50

Additive Weights BOEM 7

Obj 1-1 Locg ShenF
SDP bound 16.2% - - -
FIRST/BOEM | 21.7% 40 73 44

Table 4: Average number of clusters found (using addi-
tive weights) for chat test data.

BOEM 22.3% 22 73 20 1-1 Locs ShenF

BESTTBOEM | 22.7% 44 74 49 Log-wt -40 -.68 -.35

VOTE/BOEM | 23.3% 46 73 50 Top10%| .14 -.15 .15

SA 23.8% 41 72 46 Add-wt | -31 -.67 -.25

PivoT/BOEM | 24.8% 46 73 50 Top10%| -.07 -.22 .13

VOTE 30.5% 44 71 49

EC'08 _ 41 73 44 Table 5: Kendall's tau correlation between objective and
BEST 421% 43 69 47 rlnoe(;:gf\/sétlft?c:‘g;the chat test set, for all solutions and top
PivoT 48.4% 38 67 44 '

FIRST 69.0% 40 59 41

tighter varies with dataset (about 12 times smaller
Table 3: Score of the solution with best objective founggr newsgroups, 3 times for chat). This bound can
by each solver on the chat test dataset, averaged ovep ysed to evaluate the absolute performance of our
annotations, sorted by objective. solvers: the \WTE/BOEM solver whose use we rec-
ommend is within about 5% of optimality. Some of

Whatever algorithm is used to provide an initialthis 5% represents the difference between the bound
solution, we advise the use of local search as a pogtnd optimality; the rest is the difference between the
process. BOEM always improves both objectivé@ptimum and the solution found. If the bound were
and metric values over its starting point. exactly optimal, we could expect a significant im-

The objective value is not always sufficient to seprovement on our best results, but not a very large
lect a good solution (as in the chat dataset). If pogne—especially since correlation between objective
sible, experimenters should check statistics like thend metric values grows weaker for the best solu-
number of clusters found to make sure they conforrfions. While it might be useful to investigate more
roughly to expectations. Algorithms that find farsophisticated local searches in an attempt to close
too many or too few clusters, regardless of objedhe gap, we do not view this as a priority.
tive, are unlikely to be useful. This type of problem
can be especially dangerous if the pairwise C|aSSifié
abstains for many pairs of points. We thank Christoph Helmberg, Claire Mathieu and

SDP provides much tighter bounds than the triviajhree reviewers.
bound used in previous work, although how much
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