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Abstract 

c-rater® is the Educational Testing Service technol-
ogy for automatic content scoring for short free-text 
responses. In this paper, we contend that an Agile 
and test-driven development environment optimizes 
the development of an NLP-based technology. 

1 Introduction 

c-rater (Leacock and Chodorow, 2003) is the Edu-
cational Testing Service technology for the auto-
matic content scoring of short free-text responses 
for items whose rubrics are concept-based. This 
means that a set of concepts or main points are pre-
specified in the rubric (see the example in Table 1). 
We view c-rater’s task as a textual entailment 
problem that involves the detection of whether a 
student’s answer entails a particular concept (with 
the additional challenge that the students’ data con-
tains misspellings and grammatical errors). Our 
solution depends on a combination of rule-based 
and statistically-based NLP modules (Sukkarieh 
and Blackmore, 2009). In addition to databases, a 
JBOSS server (www.jboss.org), and two user inter-
faces, c-rater consists of 10 modules–eight of 
which are Natural Language Processing (NLP) 
modules. Figure 1 depicts the system’s architec-
ture. The c-rater engine is where all the linguistic 
processing and concept detection takes place. Sec-
tion 2 lists some of the major problems we face 
while developing such a complex NLP-based ap-
plication and how our adoption of Agile and test-
driven development is helping us.  

Example Item (Full Credit 2) 

Figures are given 
 
Prompt:  
 
The figures show three poly-
gons. Is the polygon in Figure 1 
an octagon, hexagon, or paral-
lelogram? Explain your answer. 

Concepts or main/key points: 

C1: The polygon/it is a quadri-
lateral with two sets of par-
allel sides OR the opposite 
sides are of equal length OR 
opposite angles are equal  

C2: The polygon/it has four/4 
sides 

Scoring rules:  
2 points for C1 (only if C2 is not present) 

1 point for C1 and C2  
Otherwise 0 

Table 1. Example item for c-rater scoring 

 
Figure 1. c-rater’s System Architecture 

2 Major Concerns and Solutions  

2.1 Communication 

In the past, the implementation of each module 
was done in isolation and communication among 
team members was lacking.  When a team member 
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encountered a problem, it was only then that s/he 
would be aware of some logic or data structure 
changes by another member. This is not necessar-
ily an NLP-specific problem, however due to the 
particularly frequent modifications in NLP-based 
applications (see Section 2.2), communication is 
more challenging and updates are even more cru-
cial. The adoption of Scrum within Agile 
(Augustine, 2005) has improved communication 
tremendously. Although both the task backlog and 
the choice of tasks within each sprint is done by 
the product owner, throughout the sprint the plan-
ning, requirement analysis, design, coding, and 
testing is performed by all of the team members. 
This has been effecting in decreasing the number 
of logic design errors. 

2.2 Planning and Frequent Modification 

Very frequent modifications and re-prioritizing are, 
to a great extent, due to the nature of NL input and 
constant re-specification, extension, and customi-
zation of NLP modules. This could also be due to 
changes in business requirements, e.g. to tailor the 
needs of the application to a particular client’s 
needs. Further, this could be a response to emerg-
ing research, following a sudden intuition or per-
forming a heuristic approach. Agile takes care of 
all these issues. It allows the development to adapt 
to changes more quickly and retract/replace the last 
feature-based enhancement(s) when the need 
arises. It allows for incorporating research time and 
experimental studies into the task backlog; hence 
the various sprints. The nature of the Agile envi-
ronment allows us also to add tasks driven by the 
business needs and consider them highest in value.  

2.3 Metrics for Functionality and Progress 

Metrics for functionality includes measuring pro-
gress, comparing one version to another and moni-
toring the effect of frequent modifications. This 
particularly proves challenging due to the nature of 
c-rater’s tasks and the NLP modules. In most soft-
ware, the business value is a working product. In c-
rater, it is not only about producing a score but 
producing one for the “right” reasons and not due 
to errors in the linguistic features obtained.  

Until recently, comparing versions meant compar-
ing holistic scores without a sense of the effect of 
particular changes. Evaluating the effect of a 

change often meant hand-checking hundreds and 
hundreds of cases. To improve monitoring, we 
have designed an engine test suite (each is a pair 
<model-sentence, answer> where model-sentence 
is a variant of a concept) and introduced automated 
testing. The suite is categorized according to the 
linguistic phenomenon of interest (e.g., passive, 
ergative, negation, appositive, parser output, co-
reference output). Some categories follow the phe-
nomena in Vanderwende and Dolan (2006). Some 
RTE data was transformed for engine tests. This 
produced a finer-grained view of the NLP modules 
performance, decreased the amount of hand-
checking, and increased our confidence about the 
“correctness” of our scores. 

2.4 Maintenance and Debugging 

Until very recently maintaining and debugging 
the system was very challenging. We faced many 
issues including the unsystematic scattering of 
common data structures, making it hard to manage 
dependencies; long functions making it difficult to 
track bugs; and late integration or lack of regular 
updates causing, at times, the system to crash or 
not compile. Although this may not be deemed 
NLP-specific, the need to modify NLP modules 
more frequently than anticipated has made this par-
ticularly challenging. To face this challenge, we 
introduced unit tests (UT) and continuous integra-
tion. We usually select some representative or 
“typical” NL input for certain phenomena, create 
an expected output, create a failed UT, and make it 
pass.  An additional challenge is that since stu-
dents’ responses are noisy, sometimes choosing 
“typical” text is hard. Ideally, unit tests are sup-
posed to be written before or at the same time as 
the code; we were able to do that for approxi-
mately 40% of the code. The rest of the unit testing 
was being written after the code was written. For 
legacy code, we have covered around 10-20% of 
the code.  
 
In conclusion, we strongly believe like Degerstedt 
and Jönsson (2006), Agile and Test-Driven Devel-
opment form a most-suitable environment for 
building NLP-based applications.   
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