
Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 5–13,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Context-Dependent Regression Testing for Natural Language Processing

Elaine Farrow
Human Communication Research Centre

School of Informatics
University of Edinburgh

Edinburgh, UK
Elaine.Farrow@ed.ac.uk

Myroslava O. Dzikovska
Human Communication Research Centre

School of Informatics
University of Edinburgh

Edinburgh, UK
M.Dzikovska@ed.ac.uk

Abstract

Regression testing of natural language sys-
tems is problematic for two main reasons:
component input and output is complex, and
system behaviour is context-dependent. We
have developed a generic approach which
solves both of these issues. We describe our
regression tool, CONTEST, which supports
context-dependent testing of dialogue system
components, and discuss the regression test
sets we developed, designed to effectively iso-
late components from changes and problems
earlier in the pipeline. We believe that the
same approach can be used in regression test-
ing for other dialogue systems, as well as in
testing any complex NLP system containing
multiple components.

1 Introduction

Natural language processing systems, and dialogue
systems in particular, often consist of large sets of
components operating as a pipeline, including pars-
ing, semantic interpretation, dialogue management,
planning, and generation. Testing such a system can
be a difficult task for several reasons. First, the com-
ponent output may be context-dependent. This is
particularly true for a dialogue system – reference
resolution, ellipsis, and sometimes generation typi-
cally have to query the system state to produce their
output, which depends both on the state of the world
(propositions defined in a knowledge base) and on
the dialogue history (object salience). Under these
conditions, unit testing using the input and output of
a single component in isolation is of limited value

– the entire system state needs to be preserved to
check that context-dependent components are func-
tioning as expected.

Second, the inputs and outputs of most system
components are usually very complex and often
change over time as the system develops. When
two complex representations are compared it may
be difficult to determine what impact any change is
likely to have on system performance (far-reaching
or relatively trivial). Further, if we test components
in isolation by saving their inputs, and these inputs
are reasonably complex, then it will become difficult
to maintain the test sets for the components further
along the pipeline (such as diagnosis and generation)
as the output of the earlier components changes dur-
ing development.

The simplest way to deal with both of these is-
sues would be to save a set of test dialogues as a
gold standard, checking that the final system out-
put is correct given the system input. However, this
presents another problem. If a single component
(generation, for example) malfunctions, it becomes
impossible to verify that a component earlier in the
pipeline (for example, reference resolution) is work-
ing properly. In principle we could also save the
messages passing between components and compare
their content, but then we are faced again with the
problems arising from the complexity of component
input and output which we described above.

To solve these problems, we developed a regres-
sion tool called CONTEST (for CONtext-dependent
TESTing). CONTEST allows the authors of individ-
ual system components to control what information
to record for regression testing. Test dialogues are

5



saved and replayed through the system, and individ-
ual components are tested by comparing only their
specific regression output, ignoring the outputs gen-
erated by other components. The components are
isolated by maintaining a minimal set of inputs that
are guaranteed to be processed correctly.

To deal with issues of output complexity we ex-
tend the approach of de Paiva and King (2008) for
testing a deep parser. They created test sets at dif-
ferent levels of granularity, some including detailed
representations, but some just saving very simple
output of a textual entailment component. They
showed that, given a carefully selected test set, test-
ing on the final system output can be a fast and effec-
tive way to discover problems in the interpretation
pipeline.

We show how the same idea can be used to test
other dialogue system components as well. We de-
scribe the design of three different test sets that
effectively isolate the interpretation, tutorial plan-
ning and generation components of our system. Us-
ing CONTEST allows us to detect system errors and
maintain consistent test sets even as the underlying
representations change, and gives us much greater
confidence that the results of our testing are relevant
to the performance of the system with real users.

The rest of this paper is organised as follows. In
Section 2 we describe our system and its compo-
nents in more detail. The design of the CONTEST

tool and the test sets are described in Sections 3 and
4. Finally, in Section 5 we discuss how the inter-
active nature of the dialogue influences the design
of the test sets and the process of verifying the an-
swers; and we discuss features that we would like to
implement in the future.

2 Background

This work has been carried out to support the devel-
opment of BEETLE (Callaway et al., 2007), a tuto-
rial dialogue system for basic electricity and elec-
tronics. The goal of the BEETLE system is to teach
conceptual knowledge using natural language dia-
logue. Students interact with the system through a
graphical user interface (GUI) which includes a chat
interface,1 a window to browse through slides con-

1The student input is currently typed to avoid issues with
automated speech recognition of complex utterances.

taining reading material and diagrams, and an inter-
face to a circuit simulator where students can build
and manipulate circuits.

The system consists of twelve components alto-
gether, including a knowledge base representing the
state of the world, a curriculum planner responsible
for the lesson structure, and dialogue management
and NLP components. We developed CONTEST so
that it could be used to test any system component,
though our testing focuses on the natural language
understanding and generation components.2

BEETLE uses a standard natural language pro-
cessing pipeline, starting with a parser, lexical in-
terpreter, and dialogue manager. The dialogue man-
ager handles all input from the GUI (text, button
presses and circuits) and also supports generic di-
alogue processing, such as dealing with interpreta-
tion failures and moving the lesson along. Student
answers are processed by the diagnosis and tuto-
rial planning components (discussed below), which
function similarly to planning and execution com-
ponents in task oriented dialogue systems. Finally,
a generation subsystem converts the semantic repre-
sentations output by the tutorial planner into the final
text to be presented to the student.

The components communicate with each other
using the Open Agent Architecture (Martin et al.,
1998). CONTEST is implemented as an OAA agent,
accepting requests to record messages. However,
OAA is not essential for the system design – any
communication architecture which supports adding
extra agents into a system would work equally well.

BEETLE aims to get students to support their rea-
soning using natural language, since explanations
and contentful talk are associated with learning gain
(Purandare and Litman, 2008). This requires de-
tailed analyses of student answers in terms of cor-
rect, incorrect and missing parts (Dzikovska et al.,
2008; Nielsen et al., 2008). Thus, we use the TRIPS
parser (Allen et al., 2007), a deep parser which pro-
duces detailed analyses of student input. The lexical
interpreter extracts a list of objects and relationships
mentioned, which are checked against the expected
answer. These lists are fairly long – many expected
answers have ten or more relations in them. The

2All our components are rule-based, but we expect the same
approach would work for components of a statistical nature.

6



diagnoser categorises each of the objects and rela-
tionships as correct, contradictory or irrelevant. The
tutorial planner makes decisions about the remedi-
ation strategy, choosing one strategy from a set of
about thirteen depending on the question type and
tutorial context. Finally, the generation system uses
the FUF/SURGE (Elhadad, 1991) deep generator to
generate feedback automatically.

Obviously, the output from the deep parser and
the input to the tutorial planner and generator are
quite complex, giving rise to the types of problems
that we discussed in the introduction. We already
had a tool for unit-testing the parser output (Swift et
al., 2004), plus some separate tools to test the diag-
noser and the generation component, but the com-
plexity of the representations made it impractical to
maintain large test sets that depended on such com-
plex inputs and outputs. We also wanted a unified
way to test all the components in the context of the
entire system. This led to the creation of CONTEST,
which we describe in the rest of the paper.

3 The CONTEST Tool

Figure 1: The regression testing process.

In this section we describe the process for creat-
ing and using test cases, illustrated in Figure 1. The
first step in building a useful regression tool is to
make it possible to run the same dialogue through
the system many times without retyping the student
answers. We added a wrapper around the GUI to in-
tercept and record the user actions and system calls
for later playback, thus creating a complete record

of the session. Every time our system runs, a new
saved session file is automatically created and saved
in a standard location. This file forms the basis for
our test cases. It uses an XML format, which is
human-readable and hand-editable, easily extensible
and amenable to automatic processing. A (slightly
simplified) example of a saved session file is shown
in Figure 2. Here we can see that a slide was dis-
played, the tutor asked the question “Which compo-
nents (if any) are in a closed path in circuit 1?” and
the student answered “the battery and the lightbulb”.

Creating a new test case is then a simple matter of
starting the system and performing the desired ac-
tions, such as entering text and building circuits in
the circuit simulator. If the system is behaving as it
should, the saved session file can be used directly as
a test case. If the system output is not as desired, the
file can be edited in any text editor.

Of course, this only allows the final output of the
system to be tested, and we have already discussed
the shortcomings of such an approach: if a com-
ponent late in the pipeline has problems, there is
no way to tell if earlier components behaved as ex-
pected. To remedy this, we added a mechanism for
components other than the GUI to record their own
information in the saved session file.

Components can be tested in effective isolation by
combining two mechanisms: carefully designed test
sets which focus on a single component and (impor-
tantly) are expected to succeed even if some other
component is having problems; and a regression tool
which allows us to test the output of an individual
component. Our test sets are discussed in detail in
Section 4. The remainder of this section describes
the design of the tool.

CONTEST reads in a saved session file and re-
produces the user actions (such as typing answers
or building circuits), producing a new saved ses-
sion file as its output. If there have been changes to
the system since the test was created, replaying the
same actions may lead to new slides and tutor mes-
sages being displayed, and different recorded output
from intermediate components. For example, given
the same student answers, the diagnosis may have
changed, leading to different tutor feedback. We
compare the newly generated output file against the
input file. If there are no differences, the test is con-
sidered to have passed. As the input and output files

7



<test>
<action agent="tutor" method="showSlide">
lesson1-oe/exercise/img1.html

</action>
<action agent="tutor" method="showOutput">
Which components (if any) are in a closed path in circuit 1?

</action>
<action agent="student" method="submitText">
the battery and the lightbulb

</action>
</test>

Figure 2: A saved session file showing a single interaction between tutor and student.

are identical in format, the comparison can be done
using a ‘diff’ command.

With each component recording its own output, it
can be the case that there are many differences be-
tween old and new files. It is therefore important to
be able to choose the level of detail we want when
comparing saved session files, so that the output of
a single component can be checked independently
of other system behaviour. We solved this problem
by creating a set of standard XSLT filters. One fil-
ter picks out just the dialogue between student and
tutor to produce a transcript of the session. Other
filters select the output from one particular compo-
nent, for example the tutorial planner, with the tutor
questions included to provide context. In general,
we wrote one filter for each component.

CONTEST creates a test report by comparing the
expected and actual outputs of the system on each
test run. We specify which filter to use (based on
which component we are testing). If the test fails,
we can examine the relevant differences using the
‘ediff’ mode in the emacs text editor. More sophis-
ticated approaches are possible, such as using a fur-
ther XSL transform to count all the errors of a partic-
ular type, but we have found ediff to be good enough
for our purposes. With the filters in place we only
see the differences for the component we are testing.
Since component regression output is designed to be
small and human-readable, checking the differences
is a very quick process.

Test cases can be run individually or in groups.3

3Test cases are usually grouped by directory, but symbolic
links allow us to use the same case in several groups.

Using CONTEST, we can create a single report for a
group of test cases: the individual outputs are com-
bined to create a new output file for the group and
this is compared to the (combined) input file, with
filters applied in the usual way. This is a very use-
ful feature, allowing us to create a report for all the
‘good answer’ cases (for example) in one step.

Differences do not always indicate errors; some-
times they are simply changes or additions to the
recorded information. After satisfying ourselves that
the reported differences are intentional changes, we
can update the test cases to reflect the output of the
latest run. Subsequent runs will test against the new
behaviour. CONTEST includes an update tool which
can update a group of cases with a single command.
This is simpler and less error-prone than editing po-
tentially hundreds of files by hand.

4 Test Cases

We have built several test sets for each component,
amounting to more than 400 individual test cases.
We describe examples of the test sets for three of our
components in more detail below, to demonstrate
how we use CONTEST.

4.1 Interpretation Test Cases

We have a test set consisting of ‘good answers’ for
each of the questions in our system which we use to
test the interpretation component. The regression in-
formation recorded by the interpretation component
includes the internal ID code of the matched answer
and a code indicating whether it is a ‘best’, ‘good’ or
‘minimal’ answer. This is enough to allow us to de-

8



<test name="closed_path_discussion">
<action agent="tutor" method="showOutput">
What are the conditions that are required to make a bulb light up?

</action>
<action agent="student" method="submitText">
a bulb must be in a closed path with the battery

</action>
<action agent="simpleDiagnosis" method="logForRegression">
student-act: answer atype: diagnosis consistency: []
code: complete subcode: best
answer_id: conditions_for_bulb_to_light_ans1

</action>
</test>

Figure 3: A sample test case from our ‘good answers’ set showing the diagnosis produced for the student’s answer.

tect many possible errors in interpretation. We can
run this test set after every change to the parsing or
interpretation components.

A (slightly simplified) example of our XML test
case format is shown in Figure 3, with the tutor ques-
tion “What are the conditions that are required to
make a bulb light up?” and the student answer “a
bulb must be in a closed path with the battery”. The
answer diagnosis shows that the system recognised
that the student was attempting to answer the ques-
tion (rather than asking for help), that the answer
match was complete, with no missing or incorrect
parts, and the answer was consistent with the state of
the world as perceived by the system.4 The matched
answer is marked as the best one for that question.

While the recorded information does not supply
the full interpretation, it can suggest the source of
various possible errors. If interpretation fails, the
student act will be set to uninterpretable,
and the code will correspond to the reason
for failed interpretation: unknown input
if the parse failed, unknown mapping or
restriction failure if lexical interpretation
failed, and unresolvable if reference resolution
failed. If interpretation worked, but took incorrect
scoping or attachment decisions, the resulting
proposition is likely to be inconsistent with the

4Sometimes students are unable to interpret diagrams, or
are lacking essential background knowledge, and therefore say
things that contradict the information in the domain model. The
system detects and remediates such cases differently from gen-
eral errors in explanations (Dzikovska et al., 2006).

current knowledge base, and an inconsistency code
will be reported. In addition, verifying the matched
answer ID provides some information in case only
a partial interpretation was produced. Sometimes
different answer IDs correspond to answers that are
very complete versus answers that are acceptable
because they address the key point of the question,
but miss some small details. Thus if a different
answer ID has matched, it indicates that some
information was probably lost in interpretation.

The codes we report were not devised specifically
for the regression tests. They are used internally to
allow the system to produce accurate feedback about
misunderstandings. However, because they indicate
where the error is likely to originate (parsing, lexi-
cal interpretation, scoping and disambiguation), they
can help us to track it down.

We have another test set for ‘special cases’, such
as the student requesting a hint or giving up. An ex-
ample is shown in Figure 4. Here the student gives
up completely on the first question, then asks for
help with the second. We use this test case to check
that the set phrases “I give up” and “help” are un-
derstood by the system. The ‘special cases’ test set
includes a variety of help request phrasings observed
in the corpora we collected. Note that this example
was recorded while using a tutorial policy that re-
sponds to help requests by simply providing the an-
swer. This does not matter for testing interpretation,
since the information recorded in the test case will
distinguish help requests from give ups, regardless

9



T: Which components (if any) are in a closed path
in circuit 1?

S: I give up
T: The answer is the battery and the bulb in 1.
T: Which components (if any) are in a closed path

in circuit 2?
S: help
T: Here’s the answer. The bulb in 2.

Figure 4: The transcript of a test case for “I give up” and
“help”. T: is the tutor, S: is the student.

of the specific tutorial policy used by the system.
Finally, we have a test set for detection of un-

interpretable utterances. In a tutoring system, stu-
dents often use incorrect terminology or unex-
pected phrasings which the system cannot under-
stand. While we expect coverage and robustness of
parsing and interpretation components to improve
as the system develops, some percentage of errors
is to be expected simply because even state-of-the-
art parsers are not 100% accurate. Thus the sys-
tem needs to detect problems whenever possible,
and produce useful help messages. We have col-
lected a set of student utterances that correspond
to typical interpretation problems – failed parses,
unknown words, sentences that are parsed but the
parser makes an incorrect attachment decision, sen-
tences where the student used terminology incor-
rectly (violating sortal constraints encoded in the
knowledge base), a pronominal referent that could
not be resolved. Identifying the problem type cor-
rectly is important because it affects later processing
in the dialogue manager and tutorial planner. Thus
we have a set of test cases using the collected sen-
tences, which we use to ensure that the problems are
flagged correctly.

4.2 Tutoring Test Cases

The BEETLE tutorial planner makes decisions on
system behaviour and corresponds to planning and
execution components in other dialogue systems.
Here, we are attempting to test that the tutorial plan-
ner selected the right system action. Therefore, since
we are not testing the interpretation component, we
don’t vary the form of the language we use. Instead,

T: Predict the state (on, off) of each bulb in dia-
gram 1.

S: all bulbs are off
T: OK, we’ll check your prediction in a moment.
T: Predict the state (on, off) of each bulb in dia-

gram 2.
S: all bulbs are off
T: OK, we’ll check your prediction in a moment.
T: Test your prediction for diagram 1 by opening

both switches and observing the bulbs.
T: Test your prediction for diagram 2 by closing

both switches and observing the bulbs.
T: Did the bulbs behave the way you expected?
S: no
T: Right. In your second prediction, you said that

Bulb A, Bulb B and Bulb C would be off. But
Bulb A, Bulb B and Bulb C are lit.

Figure 5: A tutorial planner test case transcript. T: is the
tutor, S: is the student.

we vary the combination of good and bad student an-
swers, and record the action chosen by the system.

The tutorial planner chooses feedback in 2 stages.
First, a general algorithm is chosen depending on the
exercise type and student input type: there are sepa-
rate algorithms for addressing, for example, what to
do if the student input was not interpreted, and for
correct and incorrect answers. Choosing the algo-
rithm requires some computation depending on the
question context. Once the main algorithm is cho-
sen, different tutorial strategies can be selected, and
this is reflected in the regression output: the system
records a keyword corresponding to the chosen algo-
rithm, and then the name of the strategy along with
key strategy parameters.

For example, Figure 5 shows the transcript from
a test case for a common exercise type from our
lessons: a so called predict-verify-evaluate se-
quence. In this example, the student is asked to
predict the behaviour of three light bulbs in a cir-
cuit, test it by manipulating the circuit in the simu-
lation environment, and then evaluate whether their
predictions matched the circuit behaviour. The sys-
tem reinforces the point of the exercise by producing
a summary of discrepancies between the student’s

10



<action agent="tutor" method="showOutput">
Did the bulbs behave the way you expected?

</action>
<action agent="student" method="submitText">
no

</action>
<action agent="tc-bee" method="logForRegression">
EVALUATE (INCORRECT-PREDICTION NO_NO)

</action>

Figure 6: An excerpt from a tutorial planner test case showing the recorded summary output.

predictions and the observed outcomes.
An excerpt from the corresponding test case is

shown in Figure 6. Here we can see the tutor ask
the evaluation question “Did the bulbs behave the
way you expected?” and the student answer “no”.
The EVALUATE algorithm was chosen to handle the
student answer, and from the set of available strate-
gies the INCORRECT-PREDICTION strategy was
chosen. That strategy takes a parameter indicating
if there was a discrepancy when the student evalu-
ated the results (here NO NO, corresponding to the
expected and actual evaluation result inputs).

In contrast, in the first example in Figure 4, where
the student gives up and doesn’t provide an an-
swer, the tutorial planner output is REMEDIATE
(BOTTOM-OUT Q IDENTIFY). This shows that
the system has chosen to use a REMEDIATE algo-
rithm, and a ‘bottom-out’ (giving away the answer)
strategy for remediation. The strategy parameter
Q IDENTIFY (which depends on the question type)
determines the phrasing to be used in the generator
to verbalise the tutor’s feedback.

The saved output allows us to see that the cor-
rect algorithm was chosen to handle the student in-
put (for example, that the REMEDIATE algorithm
is correctly chosen after an incorrect student answer
to an explanation question), and that the algorithm
chooses a strategy appropriate for the tutorial con-
text. Certain errors can still go undetected here, for
example, if the algorithm for verbalising the chosen
strategy in the generator is broken. Developing sum-
mary inputs to detect such errors is part of planned
future work.

In order to isolate the tutorial planner from inter-
pretation, we use standard fixed phrasings for stu-

dent answers. The answer phrasings in the ‘good
answers’ test set for interpretation (described in Sec-
tion 4.1) are guaranteed to be understood correctly,
so we use only these phrasings in our tutorial planner
test cases. Thus, we are able to construct tests which
will not be affected by problems in the interpretation
pipeline.

4.3 Generation Test Cases

To test generation, we have a set of test cases where
the student immediately says “I give up” in response
to each question. This phrase is used in our system
to prevent the students getting stuck – the tutorial
policy is to immediately stop and give the answer to
the question. The answers given are generated by
a deep generator from internal semantic representa-
tions, so this test set gives us the assurance that all
relevant domain content is being generated properly.
This is not a complete test for the generation capabil-
ities of our system, since each explanation question
can have several possible answers of varying degrees
of quality (suggested by experienced human tutors
(Dzikovska et al., 2008)), and we always choose
the best possible answer when the student gives up.
However, it gives us confidence that the student can
give up at any point and receive an answer which can
be used as a template for future answers.

5 Discussion and Future Work

We have created more than 400 individual test cases
so far. There are more than 50 for the interpretation
component, more than 150 for the tutorial planner
and more than 200 for the generation component.
We are developing new test sets based on other sce-
narios, such as responding to each question with a

11



help request. We are also refining the summary in-
formation recorded by each component.

An important feature of our testing approach is
the use of short summaries rather than the inter-
nal representations of component inputs and outputs.
Well-designed summaries provide key information
in an easy-to-read format that can remain constant as
internal formats change and develop over time. We
believe that this approach would be useful for other
language processing systems, since at present there
are few standardised formats in the community and
representations are typically developed and refined
together with the algorithms that use them.

The decision about what information to include in
the summary is vital to the success and overall use-
fulness of the regression tool. If too much detail is
recorded, there will be many spurious changes and
it will be burdensome to keep a large regression set
updated. If too little detail is recorded, unwanted
changes in the system may go undetected. The con-
tent of the test cases we discussed in Section 4 rep-
resents our approach to such decisions.

Interpretation was perhaps the most difficult, be-
cause it has a particularly complex output. In deter-
mining the information to record, we were following
the solution of de Paiva and King (2008) who use the
decision result of the textual entailment system as a
way to efficiently test parser output. For our sys-
tem, the information output by the diagnoser about
answer correctness proved to have a similar function
– it effectively provides information about whether
the output of the interpretation component was us-
able, without the need to check details carefully.

The main challenge for our tutorial planner and
generation components (corresponding to planning
and execution components in a task-oriented dia-
logue system) was to ensure that they were suffi-
ciently isolated so as to be unaffected by errors in in-
terpretation. We achieve this by maintaining a small
set of known phrasings which are guaranteed to be
interpreted correctly; this ensures that in practice,
the downstream components are isolated from un-
wanted changes in interpretation.

Our overall methodology of recording and test-
ing summary information for individual components
can be used with any complex NLP system. The spe-
cific details of what information to record obviously
depends on the domain, but our experience suggests

some general principles. For testing the interpreta-
tion pipeline, it is useful to record pre-existing error
codes and a qualitative summary of the information
used to decide on the next system action. Where we
record the code output by the diagnoser, an informa-
tion seeking system could record, for example, the
number of slots filled and the number of items re-
trieved from a database. It is also useful to record
decisions taken by the system, or actions performed
in response to user input; so, just as we record infor-
mation about the chosen tutorial policy, other sys-
tems can record the action taken – whether it is to
search the database, query a new slot, or confirm a
slot value.

One major improvement that we have planned for
the future is adding another layer of test case man-
agement to CONTEST, to enable us to produce sum-
maries and statistics about the total number of test
cases that have passed and failed, instead of check-
ing reports individually. Such statistics can be im-
plemented easily using another XSL transform on
top of the existing filters to count the number of
test cases with no differences and produce summary
counts of each type of error detected.

6 Conclusion

The regression tool we developed, CONTEST, solves
two of the major issues faced when testing dia-
logue systems: context-dependence of component
behaviour and complexity of component output. We
developed a generic approach based on running
saved dialogues through the system, and checking
summary information recorded by different compo-
nents against separate gold standards. We demon-
strated that test sets can be designed in such a way as
to effectively isolate downstream components from
changes and problems earlier in the pipeline. We be-
lieve that the same approach can be used in regres-
sion testing for other dialogue systems, as well as in
testing any complex NLP system containing multi-
ple components.

Acknowledgements

This work has been supported in part by Office of
Naval Research grant N000140810043. We thank
Charles Callaway for help with generation and tu-
toring tests.

12



References
James Allen, Myroslava Dzikovska, Mehdi Manshadi,

and Mary Swift. 2007. Deep linguistic processing
for spoken dialogue systems. In Proceedings of the
ACL-07 Workshop on Deep Linguistic Processing.

Charles B. Callaway, Myroslava Dzikovska, Elaine Far-
row, Manuel Marques-Pita, Colin Matheson, and Jo-
hanna D. Moore. 2007. The Beetle and BeeDiff tutor-
ing systems. In Proceedings of the SLaTE-2007 Work-
shop, Farmington, Pennsylvania, USA, September.

Valeria de Paiva and Tracy Holloway King. 2008. De-
signing testsuites for grammar-based systems in appli-
cations. In Coling 2008: Proceedings of the workshop
on Grammar Engineering Across Frameworks, pages
49–56, Manchester, England, August. Coling 2008 Or-
ganizing Committee.

Myroslava O. Dzikovska, Charles B. Callaway, and
Elaine Farrow. 2006. Interpretation and generation in
a knowledge-based tutorial system. In Proceedings of
EACL-06 workshop on knowledge and reasoning for
language processing, Trento, Italy, April.

Myroslava O. Dzikovska, Gwendolyn E. Campbell,
Charles B. Callaway, Natalie B. Steinhauser, Elaine
Farrow, Johanna D. Moore, Leslie A. Butler, and
Colin Matheson. 2008. Diagnosing natural language
answers to support adaptive tutoring. In Proceed-
ings 21st International FLAIRS Conference, Coconut
Grove, Florida, May.

Michael Elhadad. 1991. FUF: The universal unifier user
manual version 5.0. Technical Report CUCS-038-91,
Dept. of Computer Science, Columbia University.

D. Martin, A. Cheyer, and D. Moran. 1998. Building
distributed software systems with the open agent ar-
chitecture. In Proceedings of the Third International
Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology, Blackpool, Lan-
cashire, UK.

Rodney D. Nielsen, Wayne Ward, and James H. Martin.
2008. Learning to assess low-level conceptual under-
standing. In Proceedings 21st International FLAIRS
Conference, Coconut Grove, Florida, May.

Amruta Purandare and Diane Litman. 2008. Content-
learning correlations in spoken tutoring dialogs at
word, turn and discourse levels. In Proceedings 21st
International FLAIRS Conference, Coconut Grove,
Florida, May.

Mary D. Swift, Joel Tetreault, and Myroslava O.
Dzikovska. 2004. Semi-automatic syntactic and se-
mantic corpus annotation with a deep parser. In Pro-
ceedings of LREC-2004.

13


