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Abstract

Our paper presents the comparison of a
machine-learnt and a manually constructed
expert-rule-based biological event extraction
system and some preliminary experiments to
apply a negation and speculation detection
system to further classify the extracted events.
We report results on the BioNLP’09 Shared
Task on Event Extraction evaluation datasets,
and also on an external dataset for negation
and speculation detection.

1 Introduction

When we consider the sizes of publicly available
biomedical scientific literature databases for re-
searchers, valuable biological knowledge is acces-
sible today in enormous amounts. The efficient pro-
cessing of these large text collections is becoming
an increasingly important issue in Natural Language
Processing. For a survey on techniques used in bio-
logical Information Extraction, see (Tuncbag et al.,
2009).

The BioNLP’09 Shared Task (Kim et al., 2009)
involved the recognition of bio-molecular events in
scientific abstracts. In this paper we describe our
systems submitted to the event detection and charac-
terization (Taskl) and the recognition of negations
and speculations (Task3) subtasks. Our experiments
can be regarded as case studies on i) how to define
a framework for a hybrid human-machine biological
information extraction system, ii) how the linguis-
tic scopes of negation/speculation keywords relate
to biological event annotations.
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2 Event detection

We formulated the event extraction task as a classifi-
cation problem for each event-trigger-word/protein
pair. A domain expert collected 140 keywords
which he found meaningful and reliable by manual
inspection of the corpus. This set of high-precision
keywords covered 69.8% of the event annotations in
the training data.

We analysed each occurrence of these keywords
in two different approaches. We used C4.5 deci-
sion tree classifier to predict one of the event types
considered in the shared task or the keyword/protein
pair being unrelated; and we also developed a hand-
crafted expert system with a biological expert. We
observed that the two systems extract markedly dif-
ferent sets of true positive events. Our final submis-
sion was thus the union of the events extracted by
the expert-rule-based and the statistical systems (we
call this hybrid system later on).

2.1 The statistical event classifier

The preprocessing of the data was performed us-
ing the UltraCompare (Kano et al., 2008) repository
provided by the organizers of the challenge: Genia
sentence splitter, Genia tagger for POS coding and
NER.

The statistical system classified each key-
word/protein pair into 9 event and 2 non-event
classes. A pair was either labeled according to
the predicted event type (the keyword as an event
trigger and the protein name as the theme of the
event), non—-event (keyword not an event trigger)
or wrong-protein (the theme of the event is a
different protein). We chose to use two non-event
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classes to make the decision tree more human read-
able (the negative cases being separated). This made
the comparison of the statistical model and the rule-
based system easier.

The features we used were the following: 1) the
words and POS codes in a window (+ 3 tokens)
around the keyword, preserving position informa-
tion relative to the keyword; 2) the distances be-
tween the keyword and the two nearest annotated
proteins (left and right) and the theme candidate as
numeric features'. The protein annotations were re-
placed by the term $protein, Genia tagger anno-
tations by $Sgenia-protein (mainly complexes),
to enable the classifier to learn the difference be-
tween events involved in the shared task, and events
out of the scope of the task. Events with protein
complexes and families often had the same linguistic
structure as events with annotated proteins. As com-
plexes did not form events in the shared task, they
sometimes misled our local-context-based classifier.
For example ’the binding of ISGF3’ was not anno-
tated as an event because the theme is not a ’protein”
(as defined by the shared task guidelines), while ’the
binding of TRAF2’ was (TRAF2 being a protein,
and not a complex as in the former example).

We trained a C4.5 decision tree classifier using
Weka (Witten and Frank, 2005). The human read-
able models and fast training time motivated our
selection of a learning algorithm which allowed a
straightforward comparison with the expert system.

2.2 Expert-rule-based system

The expert system was constructed by a biologist
who had over 4 years of experience in similar tasks.
The main idea was to define rules — which have a
very high precision — in order to compare them with
the learnt decision trees and to increase the cover-
age of the final system by adding these annotations
to the output of the statistical system. We only man-
aged to prepare expert rules for the Phosphorylation
and Gene_expression classes due to time constraints
(a total of 46 patterns). The expert was asked to
construct high-precision rules (they were tested on
the train set to keep the false positive rate near zero)
in order to gain insight into the structure of reliable

features
found at

"More information on the
parameters used can be
www.inf.u-szeged.hu/rgai/BioEventExtraction
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rules.

Here each rule is bound to a specific keyword. Ev-
ery rule is a sequence of “word patterns” (with or
without a suffix). A word pattern can match a pro-
tein, an arbitrary word, an exact word or the key-
word. Every pattern can have a Regular Expression
style suffix:

Table 1: Word pattern types and suffixes

<keyword> | matching the keyword of the event
"word" matching regular words

- matching any token

Sprotein matching any annotated protein

? zero or one of the word pattern

* zero or more of the word pattern
+ one or more of the word pattern
{a, b} definite number of word patterns

For example the ' <expression> _? "of"
_? Sprotein’ pattern recognizes an event with
the keyword expression, followed by an arbitrary
word and then the word of, or immediately by of and
then a protein (or immediately by the protein name).
An obvious drawback of this system is that nega-
tion is not allowed, so the expert was unable to de-
fine a word pattern like !"of" to match any to-
ken besides of. This extension would have been a
straightforward way of improving the system.

2.3 Experimental results

We expected the recall of the hybrid system to be
near the sum of the recalls of the individual systems,
meaning that they had recognized different events,
as the pattern matching was mainly based on the
order of the tokens, while the statistical classifier
learned position-oriented contextual clues. Thanks
to the high precision of the rule-based system, the
overall precision also increased. The two event
classes which were included in the expert system
had a significantly better precision score. The cov-
erage of the Phosphorylation class was lower than
that for the Gene_expression class because its pat-
terns were still incomplete?.

2A discussion on comparing the contribution of the
two approaches and individual rules can be found at
www.inf.u-szeged.hu/rgai/BioEventExtraction



Table 2: Results of rule based-system compared to the
statistical and combined systems (R/P/fscore)

All Event Gene_exp. Phosph.
stat. 16/31/21 | 36/41/38 | 73/37/49
rule 5/80/10 | 20/85/33 | 17/58/26
hybrid | 22/37/27 | 56/51/54 | 81/40/53

3 Recognition of negations and
speculations

For negation and speculation detection, we applied
a model trained on a different dataset (Vincze et al.,
2008) of scientific abstracts, which had been spe-
cially annotated for negative and uncertain keywords
and their linguistic scope. Due to time constraints
we used our model to produce annotations for Task3
without any sort of fine tuning to the shared task gold
standard annotations.

The only exception here was a subclass of specu-
lative annotations that were not triggered by a word
used to express uncertainty, but were judged to be
speculative because the sentence itself reported on
some experiments performed, the focus of the in-
vestigations described in the article, etc. That is,
it was not the meaning of the text that was uncer-
tain, but — as saying that something has been exam-
ined does not mean it actually exists — the sentence
implicitly contained uncertain information. Since
such sentences were not covered by our corpus, for
these cases we collected the most reliable text cues
from the shared task training data and applied a
dictionary-lookup-based approach. We did this so
as to get a comprehensive model for the Genia nega-
tion and speculation task.

As for the explicit uncertain and negative state-
ments, we applied a more sophisticated approach
that exploited the annotations of the BioScope cor-
pus (Vincze et al., 2008). For each frequent and am-
biguous keyword found in the approximately 1200
abstracts annotated in BioScope, we trained a sepa-
rate classifier to discriminate keyword/non-keyword
uses of each term, using local contextual patterns
(neighbouring lemmas, their POS codes, etc.) as
features. In others words, for the most common
uncertain and negative keywords, we attempted a
context-based disambiguation, instead of a simple
keyword lookup. Having the keywords, we pre-
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dicted their scope using simple heuristics (Cfo the
end of the sentence’, ’to the next punctation mark
in both directions’, etc.). In the shared task we ex-
amined each extracted event and they were said to
be negated or hedged when some of their arguments
(trigger word, theme or clause) were within a lin-
guistic scope.

3.1 Experimental results

First we evaluated our negation and speculation
keyword/non-keyword classification models on the
BioScope corpus by 5-fold cross-validation. We
trained models for 15 negation and 41 speculative
keywords. We considered different word forms of
the same lemma to be different keywords because
they may be used in a different meaning/context.
For instance, different keyword/non-keyword deci-
sion rules must be used for appear, appears and ap-
peared. We trained a C4.5 decision tree using word
uni- and bigram features and POS codes to discrim-
inate keyword/non-keyword uses and compared the
results with the most frequent class (MFC) baseline.

Overall, our context-based classification method
outperformed the baseline algorithm by 3.7% (giv-
ing an error reduction of 46%) and 3.1% (giving an
error reduction of 27%) on the negation and specula-
tion keywords, respectively. The learnt models were
typically very small decision trees i.e. they repre-
sented very simple rules indicating collocations (like
“hypothesis is a keyword if and only if followed by
that, etc.). More complex rules (e.g. *clear is a key-
word if and only if not is in 3 environment’) were
learnt just in a few cases.

Our second set of experiments focused on Task3
of the shared task (Kim et al., 2009). As the offi-
cial evaluation process of Task3 was built upon the
detected events of Taskl, it did not provide any use-
ful feedback about our negation and speculation de-
tection approach. Thus instead of our Taskl out-
put, we evaluated our model on the gold standard
Taskl annotation of the training and the develop-
ment datasets. The statistical parts of the system
were learnt on the BioScope corpus, thus the train
set was kept blind as well. Table 3 summarises the
results obtained by the explicit negation, speculation
and by the full speculation (both explicit and implicit
keywords) detection methods.

Analysing the errors of the system, we found that



Table 3: Negation and speculation detection results

Train (R/P/F) Dev. (R/P/F)
negation | 46.9/61.3/52.8 | 42.8/57.9/49.2
exp. spec. | 15.4/39.5/23.6 | 15.4/32.6/20.1
full spec. | 25.5/71.1/37.5| 27.9/65.3/39.1

most of the false positives came from the different
approaches of the BioScope and the Genia annota-
tions (see below for a detailed discussion). Most of
the false negative predictions were a consequence of
the incompleteness of our keyword list.

3.2 Discussion

We applied this negation and speculation detection
model more as a case study to assess the usability
of the BioScope corpus. This means that we did not
fine-tune the system to the Genia annotations. Our
experiments revealed some fundamental and inter-
esting differences between the Genia-interpretation
of negation and speculation, and the corpus used by
us. The chief difference is that the BioScope corpus
was constructed following more linguistic-oriented
principles than the Genia negation and speculation
annotation did, which sought to extract biological
information. These differences taken together ex-
plain the relatively poor results we got for the shared
task.

There are significant differences in the interpreta-
tion of both at the keyword level (i.e. what triggers
negation/uncertainty and what does not) and in the
definition of the scope of keywords. For example,
in a sentence like ’have NO effect on the inducibil-
ity of the IL-2 promoter’, Genia annotation just con-
siders the effect to be negated. This means that the
inducibility of IL-2 is regarded as an assertive event
here. In BioScope, the complements of effect are
also placed within the scope of no, thus it would also
be annotated as a negative one. We argue here that
the above example is not a regular sentence to ex-
press the fact: IL-2 is inducible. We rather think
that if the paper has some result (evidence) regard-
ing this event, it should be stated elsewhere in the
text, and we should not retrieve this information as a
fact just based on the above sentence. Thus we argue
that more sophisticated guidelines are needed for the
consistent annotation and efficient handling of nega-
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tion and uncertainty in biomedical text mining.

4 Conclusions

We described preliminary experiments on two dif-
ferent approaches which take us beyond the “take-
goldstandard-data, extract-some-features, train-a-
classifier” approach for biomedical event extraction
from scientific texts (incorporating rule-based sys-
tems and linguistic negation/uncertainty detection).
The systems introduced here participated in the Ge-
nia Event annotation shared task. They achieved rel-
atively poor results on this dataset, mainly due to
1) the special annotation guidelines of the shared
task (like disregarding events with protein complex
or family arguments, and treating subevents as as-
sertive information) and 2) the limited resources we
had to allocate for the task during the challenge
timeline. We consider that the lessons learnt here
are still useful and we also plan to improve our sys-
tem in the near future.
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