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Abstract

Identifying hedged information in biomedical
literature is an important subtask in informa-
tion extraction because it would be mislead-
ing to extract speculative information as fac-
tual information. In this paper we present a
machine learning system that finds the scope
of hedge cues in biomedical texts. The sys-
tem is based on a similar system that finds the
scope of negation cues. We show that the same
scope finding approach can be applied to both
negation and hedging. To investigate the ro-
bustness of the approach, the system is tested
on the three subcorpora of the BioScope cor-
pus that represent different text types.

1 Introduction

Research on information extraction of biomedical
texts has grown in the recent years. Most work
concentrates on finding relations between biologi-
cal entities, like genes and proteins (Krauthammer
et al., 2002; Mitsumori et al., 2006; Krallinger et
al., 2008a; Krallinger et al., 2008b). Determining
which information has been hedged in biomedical
literature is an important subtask of information ex-
traction because extracted information that falls in
the scope of hedge cues cannot be presented as fac-
tual information. It should be discarded or presented
separately with lower confidence. The amount of
hedged information present in texts cannot be un-
derstimated. Vincze et al. (2008) report that 17.70%
of the sentences in the abstracts section of the Bio-
Scope corpus and 19.44% of the sentences in the
full papers section contain hedge cues. Light et al.

(2004) estimate that 11% of sentences in MEDLINE
abstracts contain speculative fragments. Szarvas
(2008) reports that 32.41% of gene names men-
tioned in the hedge classification dataset described
in Medlock and Briscoe (2007) appears in a specu-
lative sentence.

In this paper we present a machine learning sys-
tem that finds the scope of hedge cues in biomedical
texts. Finding the scope of a hedge cue means deter-
mining at sentence level which words in the sentence
are affected by the hedge cue. The system combines
several classifiers and works in two phases: in the
first phase hedge cues (i.e., words indicating spec-
ulative language) are identified, and in the second
phase the full scope of these hedge cues is found.
This means that for a sentence like the one in Ex-
ample (1) taken from the BioScope corpus (Szarvas
et al., 2008), the system performs two actions: first,
it detects that suggest, might, and or are hedge sig-
nals; second, it detects that suggest has as its scope
expression of c-jun, jun B and jun D genes might be
involved in terminal granulocyte differentiation or in
regulating granulocyte functionality, that might has
as its scope be involved in terminal granulocyte dif-
ferentiation or in regulating granulocyte functional-
ity, and that or has as its scope in regulating granu-
locyte functionality.
(1) These results <xcope id=“X7.5.3” ><cue type= “spec

ulation” ref=“X7.5.3”> suggest </cue> that <xcope
id= “X7.5.2”>expression of c-jun, jun B and jun D
genes <cue type= “speculation” ref= “X7.5.2”> might
</cue> be involved <xcope id=“X7.5.1”>in terminal
granulocyte differentiation <cue type= “speculation”
ref=“X7.5.1” >or</cue> in regulating granulocyte
functionality </xcope></xcope></xcope>.
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Contrary to current practice to only detect modal-
ity, our system also determines the part of the sen-
tence that is hedged. We are not aware of other sys-
tems that perform this task. The system is based on a
similar system that finds the scope of negation cues
(Morante and Daelemans, 2009). We show that the
system performs well for this task and that the same
scope finding approach can be applied to both nega-
tion and hedging. To investigate the robustness of
the approach, the system is tested on three subcor-
pora of the BioScope corpus that represent different
text types. Although the system was developed and
tested on biomedical text, the same approach can
also be applied to text from other domains.

The paper is organised as follows. In Section 2,
we summarise related work. In Section 3, we de-
scribe the corpus on which the system has been de-
veloped. In Section 4, we introduce the task to be
performed by the system, which is described in Sec-
tion 5. Results are presented and discussed in Sec-
tion 6. Finally, Section 7 puts forward some conclu-
sions.

2 Related work

Hedging has been broadly treated from a theoretical
perspective. The term hedging is originally due to
Lakoff (1972), who introduces it in relation to pro-
totype theory. Palmer (1986) defines a term related
to hedging, epistemic modality, which expresses the
speaker’s degree of commitment to the truth of a
proposition. Saurı́ et al. (2006) research the modal-
ity of events, which “expresses the speaker’s degree
of of commitment to the events being referred to in
a text”. They treat a wide spectrum of modal types
and present the codification of modality information
with the specification language TimeML, which al-
lows to mark modality cues at a lexical level and at
a syntactic level.

As for research that focuses specifically on scien-
tific texts with descriptive purposes, Hyland (1998)
describes hedging in scientific research articles,
proposing a pragmatic classification of hedge ex-
pressions based on an exhaustive analysis of a cor-
pus. The catalogue of hedging cues includes modal
auxiliaries, epistemic lexical verbs, epistemic ad-
jectives, adverbs, and nouns. Additionally, it in-
cludes also a variety of non–lexical cues. Light et

al. (2004) analyse the use of speculative language
in MEDLINE abstacts. They studied the expression
of levels of belief (hypothesis, tentative conclusions,
hedges, and speculations) and annotated a corpus
of abstracts in order to check if the distinction be-
tween high speculative, low speculative and definite
sentences could be made reliably. They found that
the speculative vs. definite distinction was reliable,
but the distinction between low and high speculative
was not. Thompson et al. (2008) report on a list of
words and phrases that express modality in biomed-
ical texts and put forward a categorisation scheme.
The list and the scheme are validated by annotating
202 MEDLINE abstracts.

Some NLP applications incorporate modality in-
formation. Friedman et al. (1994) develop a med-
ical text processor “that translates clinical informa-
tion in patient documents into controlled vocabulary
terms”. The system uses a semantic grammar that
consists of rules that specify well-formed semantic
patterns. The extracted findings are assigned one
of five types of modality information: no, low cer-
tainty, moderate certainty, high certainty and cannot
evaluate. Di Marco and Mercer (2005) use hedging
information to classify citations. They observe that
citations appear to occur in sentences marked with
hedging cues.

Work on hedging in the machine learning field
has as a goal to classify sentences into speculative
or definite (non speculative). Medlock and Briscoe
(2007) provide a definition of what they consider to
be hedge instances and define hedge classification
as a weakly supervised machine learning task. The
method they use to derive a learning model from
a seed corpus is based on iteratively predicting la-
bels for unlabeled training samples. They report ex-
periments with SVMs on a dataset that they make
publicly available1. The experiments achieve a re-
call/precision break even point (BEP) of 0.76. They
apply a bag-of-words (BOG) approach to sample
representation. Medlock (2008) presents an exten-
sion of this work by experimenting with more fea-
tures (part-of-speech (PoS), lemmas, and bigrams).
Experiments show that the PoS representation does
not yield significant improvement over the results in

1Available at
http://www.benmedlock.co.uk/hedgeclassif.html.
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Medlock and Briscoe (2007), whereas with a lemma
representation the system achieves a peak perfor-
mance of 0.8 BEP, and with bigrams of 0.82 BEP.
Szarvas (2008) follows Medlock and Briscoe (2007)
in classifying sentences as being speculative or non-
speculative. Szarvas develops a MaxEnt system that
incorporates bigrams and trigrams in the feature rep-
resentation and performs a complex feature selection
procedure in order to reduce the number of keyword
candidates. It achieves up to 0.85 BEP and 85.08
F1 by using an external dictionary. Kilicoglu and
Bergler (2008) apply a linguistically motivated ap-
proach to the same clasification task by using knowl-
edge from existing lexical resources and incorpo-
rating syntactic patterns. Additionally, hedge cues
are weighted by automatically assigning an informa-
tion gain measure and by assigning weights semi–
automatically depending on their types and central-
ity to hedging. The system achieves results of 0.85
BEP.

As mentioned earlier, we are not aware of re-
search that has focused on learning the scope of
hedge signals inside or outside of the biomedical do-
main, which makes a direct comparison with the ap-
proaches described here impossible.

3 Hedge cues in the BioScope Corpus

The system has been developed using the BioScope
corpus (Szarvas et al., 2008; Vincze et al., 2008)2,
a freely available resource that consists of medical
and biological texts. In the corpus, every sentence is
annotated with information about negation and spec-
ulation. The annotation indicates the boundaries of
the scope and the keywords, as shown in (1) above.
In the annotation, scopes are extended to the biggest
syntactic unit possible, so that scopes have the max-
imal length, and the speculation cue is always in-
cluded in the scope.

The BioScope corpus consists of three parts: clin-
ical free-texts (radiology reports), biological full pa-
pers and biological paper abstracts from the GENIA
corpus (Collier et al., 1999). Table 1 shows statistics
about the corpora. Hedge cues are represented by
one or more tokens, as (2) shows, where the hedge
cues that appear in the three corpora are listed. The
complete list of all hedge cues comprises 176 cues.

2Web page: www.inf.u-szeged.hu/rgai/bioscope.

In the same corpora the number of negation cues is
lower, 38.
(2) apparent, apparently, appear, assume, can, consider,

consistent with, could, either, indicate, likely, may, no
evidence, not, or, perhaps, possible, possibly,
presumably, probable, probably, should, suggestion,
support, think, unclear, whether, would

35 hedge cues that occur in the clinical reports
subcorpus do not occur in the abstracts subcorpus,
and 34 hedge cues that appear in the papers subcor-
pus do not appear in the abstracts subcorpus. Only
15.90% of the total of hedge cues appear in the three
subcorpora. The most frequent hedge cues in the ab-
stracts subcorpus are may (19.15 %), appear (5.30
%), and or (4.45 %); in the papers subcorpus, sug-
gest (10.26 %), may (9.97 %), and might (5.86 %);
and in the clinical subcorpus, or (24.27 %), suggest
(5.62 %), and evaluate for (5.27 %).

Clinical Papers Abstracts
#Documents 1954 9 1273
#Sentences 6383 2670 11871
#Words 41985 60935 282243
#Lemmas 2320 5566 14506
Av. length sentences 7.73 26.24 26.43
%Hedge sentences 13.39 19.44 17.70
# Hedge cues 1189 714 2769
Av. length scopes 5.92 14.37 16.27
Av. length scopes 5.15 13.00 15.44
to the right
Av. length scopes 2.46 5.94 5.60
to the left
% Scopes to the right 73.28 76.55 82.45
% Scopes to the left 26.71 23.44 17.54

Table 1: Statistics about the subcorpora in the BioScope
corpus and the hedge scopes (“Av”. stands for average).

The texts have been processed with the GENIA
tagger (Tsuruoka and Tsujii, 2005; Tsuruoka et al.,
2005), a bidirectional inference based tagger that an-
alyzes English sentences and outputs the base forms,
part-of-speech tags, chunk tags, and named entity
tags in a tab-separated format. Additionally, we con-
verted the annotation about scope of negation into a
token-per-token representation, following the stan-
dard format of the 2006 CoNLL Shared Task (Buch-
holz and Marsi, 2006), where sentences are sepa-
rated by a blank line and fields are separated by a
single tab character. A sentence consists of a se-
quence of tokens, each one starting on a new line.
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4 Finding the scope of hedge cues

We model this task in the same way that we mod-
elled the task for finding the scope of negation
(Morante and Daelemans, 2009), i.e., as two con-
secutive classification tasks: a first one that consists
of classifying the tokens of a sentence as being at the
beginning of a hedge signal, inside or outside. This
allows the system to find multiword hedge cues. The
second classification task consists of classifying the
tokens of a sentence as being the first element of the
scope, the last, or neither. This happens as many
times as there are hedge cues in the sentence.

5 System description

The two classification tasks (identifying hedge cues
and finding the scope) are implemented using super-
vised machine learning methods trained on part of
the annotated corpus.

5.1 Identifying hedge cues
In this phase, a classifier predicts for all tokens in a
sentence whether a token is the first token of a hedge
cue (B-cue), inside a hedge cue (I-cue), or outside of
it (O-cue). For sentence (3) the system assigns the
B-cue class to indicate, the I-cue class to that and
the O-cue class to the rest of tokens.

(3) These results indicate that a component or
components of NF–AT have the potential to
reconstitute NF(P)

The instances represent all tokens in the corpus
and they have features about the token: lemma,
word, part-of-speech (POS) and IOB3 chunk tag;
and features about the token context: Word, POS
and IOB chunk tag of 3 tokens to the right and 3 to
the left.

We use IGTREE as implemented in TiMBL (ver-
sion 6.1.2) (Daelemans et al., 2007). We also ex-
perimented with IB1, but it produced lower results.
The classifier was parameterised by using gain ratio
for feature weighting. According to the gain ratio
scores, the most informative features are the lemma
and word of the token in focus, followed by the word
of the token to the right and of the token to the left.

We performed two experiments. In one, the test
file is preprocessed using a list of hedge cues ex-

3I stands for ‘inside’, B for ‘beginning’, and O for ‘outside’.

tracted from the training corpus. The list comprises
the following hedge cues listed in (4). Instances with
these hedge cues are directly assigned their class.
The classifier predicts the class of the rest of tokens.
In the other experiment we don’t preprocess the test
file.
(4) appear, apparent, apparently, believe, either, estimate,

hypothesis, hypothesize, if, imply, likely, may, might, or,
perhaps, possible, possibly, postulate, potential,
potentially, presumably, probably, propose, putative,
should, seem, speculate, suggest, support, suppose,
suspect, think, uncertain, unclear, unkwown, unlikely,
whether, would

5.2 Scope finding
In this phase three classifiers predict for all tokens
in the sentence whether a token is the first token in
the scope sequence (F-scope), the last (L-scope), or
neither (NONE). For the sentence in 3, the classi-
fiers assign the class F-scope to indicate, L-scope to
NF(P), and NONE to the rest of tokens. A fourth
classifier is a metalearner that uses the predictions
of the three classifiers to predict the scope classes.
An instance represents a pair of a hedge cue and a
token from the sentence. This means that all tokens
in a sentence are paired with all hedge cues that oc-
cur in the sentence. Hedge cues are those that have
been classified as such in the previous phase. Only
sentences that have hedge cues are selected for this
phase. The three object classifiers that provide input
to the metalearner were trained using the following
machine learning methods:

• Memory-based learning as implemented in
TiMBL (Daelemans et al., 2007), a supervised
inductive algorithm for learning classification tasks
based on the k-nearest neighbor classification
rule (Cover and Hart, 1967). In this lazy learning
approach, all training data is kept in memory
and classification of a new item is achieved by
extrapolation from the most similar remembered
training items.

• Support vector machines (SVM) as implemented in
SVMlightV6.01 (Joachims, 1999). SVMs are de-
fined on a vector space and try to find a decision
surface that best separates the data points into two
classes. This is achieved by using quadratic pro-
gramming techniques. Kernel functions can be used
to map the original vectors to a higher-dimensional
space that is linearly separable.
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• Conditional random fileds (CRFs) as implemented
in CRF++-0.51 (Lafferty et al., 2001). CRFs de-
fine a conditional probability distribution over label
sequences given a particular observation sequence
rather than a joint distribution over label and ob-
servation sequences, and are reported to avoid the
label bias problem of HMMs and other learning ap-
proaches.

The memory-based learning algorithm was pa-
rameterised in this case by using overlap as the sim-
ilarity metric, gain ratio for feature weighting, using
7 k-nearest neighbors, and weighting the class vote
of neighbors as a function of their inverse linear dis-
tance. The SVM was parameterised in the learning
phase for classification, cost factor of 1 and biased
hyperplane, and it used a linear kernel function. The
CRFs classifier used regularization algorithm L2 for
training, the hyper-parameter and the cut-off thresh-
old of features were set to 1.

We have used the same features used for the sys-
tem that finds the scope of negation. The features of
the first three classifers are:

• Of the hedge signal: Chain of words.

• Of the paired token: Lemma, POS, chunk IOB tag,
type of chunk; lemma of the second and third tokens
to the left; lemma, POS, chunk IOB tag, and type of
chunk of the first token to the left and three tokens
to the right; first word, last word, chain of words,
and chain of POSs of the chunk of the paired token
and of two chunks to the left and two chunks to the
right.

• Of the tokens between the hedge cue and the token
in focus: Chain of POS types, distance in number
of tokens, and chain of chunk IOB tags.

• Others: A feature indicating the location of the to-
ken relative to the hedge cue (pre, post, same).

The fourth classifier, a metalearner, is also a CRFs
as implemented in CRF++. The features of this clas-
sifier are:

• Of the hedge signal: Chain of words, chain of POS,
word of the two tokens to the right and two tokens to
the left, token number divided by the total of tokens
in the sentence.

• Of the paired token: Lemma, POS, word of two to-
kens to the right and two tokens to the left, token
number divided by the total of tokens in the sen-
tence.

• Of the tokens between the hedge cue and the to-
ken in focus: Binary features indicating if there are
commas, colons, semicolons, verbal phrases or one
of the following words between the hedge cue and
the token in focus: Whereas, but, although, nev-
ertheless, notwithstanding, however, consequently,
hence, therefore, thus, instead, otherwise, alterna-
tively, furthermore, moreover.

• About the predictions of the three classifiers: pre-
diction, previous and next predictions of each of
the classifiers, full sequence of previous and full se-
quence of next predictions of each of the classifiers.

• Others: A feature indicating the location of the to-
ken relative to the hedge cue (pre, post, same).

Hedge cues in the BioScope corpus always scope
over a consecutive block of tokens, including the cue
token itself. However, the classifiers only predict
the first and last element of the scope. We need to
process the output of the classifers in order to build
the complete sequence of tokens that constitute the
scope. We apply the following postprocessing:

(5) - If one token has been predicted as FIRST and one
as LAST, the sequence is formed by the tokens
between first and last.

- If one token has been predicted as FIRST and
none has been predicted as LAST, the sequence is
formed by the token predicted as FIRST.

- If one token has been predicted as LAST and
none as FIRST, the sequence will start at the hedge
cue and it will finish at the token predicted as
LAST.

- If one token has been predicted as FIRST and
more than one as LAST, the sequence will end with
the first token predicted as LAST after the token
predicted as FIRST, if there is one.

- If one token has been predicted as LAST and
more than one as FIRST, the sequence will start at
the hedge signal.

- If no token has been predicted as FIRST and
more than one as LAST, the sequence will start at
the hedge cue and will end at the first token
predicted as LAST after the hedge signal.

6 Results

The results provided for the abstracts part of the cor-
pus have been obtained by performing 10-fold cross
validation experiments, whereas the results provided
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for papers and clinical reports have been obtained by
training on the full abstracts subcorpus and testing
on the papers and clinical reports subcorpus. The
latter experiment is therefore a test of the robustness
of the system when applied to different text types
within the same domain. The evaluation is made us-
ing the precision and recall measures (Van Rijsber-
gen, 1979), and their harmonic mean, F-score. We
report micro F1.

In the hedge finding task, a hedge token is cor-
rectly classified if it has been classified as being at
the beginning or inside the hedge signal. We also
evaluate the percentage of hedge cues that have been
correctly identified. In the scope finding task, a to-
ken is correctly classified if it has been correctly
classified as being inside or outside of the scope of
all the hedge cues that there are in the sentence. This
means that when there is more than one hedge cue
in the sentence, the token has to be correctly as-
signed a class for as many hedge signals as there
are. Additionally, we evaluate the percentage of cor-
rect scopes (PCS). A scope is correct if all the tokens
in the sentence have been assigned the correct scope
class for a specific hedge signal. The evaluation in
terms of precision and recall measures takes as unit a
token, whereas the evaluation in terms of PCS takes
as unit a scope.

6.1 Hedge cue finding
An informed baseline system has been created by
tagging as hedge cues the tokens with the words
listed in (4) above. The list has been extracted from
the training corpus. The results are shown in Table 2.

Corpus Prec. Recall F1 % Correct
Abstracts 55.62 71.77 62.67 70.91
Papers 54.39 61.21 57.60 64.46
Clinical 66.55 40.78 50.57 51.38

Table 2: Baseline results of the hedge finding system.

The fact that the results are lower for the papers
and clinical subcorpora can be explained by the fact
that the list of cues has been extracted from the train-
ing corpus.

Table 3 shows the results of the system. The
results of the system for abstracts and papers are
higher than baseline, but for clinical they are lower.
This is due to the fact that in the baseline system the

hedge cue or that accounts for 24.53 % of the hedge
cues is 100 % correct, whereas the system achieves
only 0.72 % of correct predictions. The score ob-
tained by or is also the reason why the system pro-
duces lower results for the clinical subcorpus.

Corpus Prec. Recall F1 % Correct
Abstracts 90.81 79.84 84.77 78.67
Papers 75.35 68.18 71.59 69.86
Clinical 88.10 27.51 41.92 33.36

Table 3: Results of the hedge finding system without pre-
processing.

Table 4 shows the results of the system with pre-
processing. In terms of % of correct cues, the system
that uses a preprocessed test set gets higher scores,
but in terms of F1 it gets lower results, except for the
clinical subcorpus. The drop in F1 of this system is
caused by a drop in precision due to the excess of
false positives.

Corpus Prec. Recall F1 % Correct
Abstracts 60.74 94.83 74.05 96.03
Papers 56.56 84.03 67.61 88.60
Clinical 71.25 52.33 60.34 64.49

Table 4: Results of the hedge finding system with prepro-
cessing.

In the abstracts subcorpus the hedge cue that has
the biggest proportion of false positives is or. Of the
1062 accurrences of or, in 88.32% of the cases or is
not a hedge cue. The system that uses preprocessing
produces 938 false positives and 4 false negatives,
whereas the other system produces 21 false positives
and 108 false negatives. In the papers subcorpus, the
hedge cues if, or, can, indicate and estimate cause
67.38% of the false positives. In the clinical subcor-
pus the hedge cues evidence, evidence of, no and ap-
pear cause 88.27% of the false positives. In contrast
with the abstracts subcorpus, the hedge cue or has
only 5 false positives and scores an F1 of 99.10. So,
in the clinical corpus or is not ambiguous, whereas
in the abstracts subcorpus it is very ambiguous. An
example of or as hedge cue in the clinical subcorpus
is shown in (6). An example of or as hedge cue in
the abstracts subcorpus is shown in (7), and as a non
cue in (8).
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(6) Findings compatible with reactive airway disease
or viral lower respiratory tract infection.

(7) Nucleotide sequence and PCR analyses
demonstrated the presence of novel duplications or
deletions involving the NF-kappa B motif.

(8) In nuclear extracts from monocytes or
macrophages, induction of NF-KB occurred only if
the cells were previously infected with HIV-1.

Compared to negation cues, hedge cues are more
varied and more ambiguous. Both the system with-
out and with preprocessing for negation finding per-
formed better than the hedge finding system.

6.2 Scope finding
An informed baseline system has been created by
calculating the average length of the scope to the
right of the hedge cue in each corpus and tagging
that number of tokens as scope tokens. We take the
scope to the right for the baseline because it is much
more frequent than the scope to the left, as is shown
by the statistics contained in Table 1 of Section 3.
Baseline results are presented in Table 5. The low
PCS for the three subcorpora indicates that finding
the scope of hedge cues is not a trivial task. The fact
that, despite a very low PCS, precision, recall and
F1 are relatively high indicates that these measures
are in themselves not reliable to evaluate the perfor-
mance of the system.

Corpus Prec. Recall F1 PCS
Abstracts 78.92 62.19 69.56 3.15
Papers 72.03 50.43 59.33 2.19
Clinical 64.92 25.10 36.20 2.72

Table 5: Baseline results of the scope finding system.

The upper-bound results of the metalearner sys-
tem assuming gold standard identification of hedge
cues are shown in Table 6.

Corpus Prec. Recall F1 PCS PCS-2
Abstracts 89.71 89.09 89.40 77.13 78.21
Papers 77.78 77.10 77.44 47.94 58.21
Clinical 79.16 78.13 78.64 60.59 63.94

Table 6: Results of the scope finding system with gold-
standard hedge signals.

The percentage of correct scopes has been mea-
sured in two ways: PCS measures the proportion

of correctly classified tokens in the scope sequence,
whereas PCS-2 measures the proportion of nouns
and verbs that are correctly classifed in the scope
sequence. This less strict way of computing correct-
ness is motivated by the fact that being able to deter-
mine the concepts and relations that are speculated
(indicated by content words) is the most important
use of the hedge scope finder.

Results show that the system achieves a high per-
centage of fully correct scopes, and that, although
performance is lower for the papers and clinical cor-
pora, the system is portable. Table 7 shows the re-
sults of the negation scope finding system also with
gold standard negation cues. The comparison of re-
sults shows that for abstracts and papers the scores
are higher for the hedge system, which means that
the system can be used for finding both types of
scope.

Corpus Prec. Recall F1 PCS PCS-2
Abstracts 90.68 90.68 90.67 73,36 74.10
Papers 84.47 84.95 84.71 50.26 54.23
Clinical 91.65 92.50 92.07 87.27 87.95

Table 7: Results of the negation scope finding system
with gold-standard negation signals.

The results of the hedge system with predicted
hedge cues are presented in Table 8. The hedge cues
have been predicted by the system without the pre-
processing step presented in Subsection 6.1.

Corpus Prec. Recall F1 PCS PCS-2
Abstracts 85.77 72.44 78.54 65.55 66.10
Papers 67.97 53.16 59.66 35.92 42.37
Clinical 68.21 26.49 38.16 26.21 27.44

Table 8: Results of the scope finding system with pre-
dicted hedge signals.

In terms of PCS, which is a scope based measure,
results are considerably higher than baseline results,
whereas in terms of precision, recall and F1, which
are token based measures, results are lower. Eval-
uating the system in terms of a more relaxed mea-
sure (PCS-2) does not reflect a significant increase
in its performance. This suggests that when a scope
is incorrectly predicted, main content tokens are also
incorrectly left out of the scope or added.

Results also show that the system based on pre-
dicted hedge cues performs lower for all corpora,
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which is also a trend observed for the negation scope
finding system. The difference in performance for
abstracts and papers follows the same trends as in
the negation system, whereas the drop in perfor-
mance for the clinical subcorpus is bigger. This
can be explained by the results obtained in the cues
finding phase, where the clinical subcorpus obtained
only 41.92% F1. However, gold standard results
show that if the hedge cues are identified, then the
system is portable.

Abstracts Papers Clinical
# PCS # PCS # PCS

appear 143 58.04 39 28.20 - -
can 48 12.5 25 0.00 22 0.00
consistent with - - - - 67 0.00
could 67 11.94 28 14.28 36 22.22
either 28 0.00 - - - -
evaluate for - - - - 86 3.84
imply 21 90.47 - - - -
indicate 23 73.91 - - - -
indicate that 276 89.49 - - - -
likely 59 59.32 36 30.55 63 66.66
may 516 81.39 68 54.41 107 80.37
might 72 73.61 40 35.00 - -
or 120 0.00 - - 276 0.00
possible 50 66.00 24 54.16 26 80.76
possibly 25 52.00 - - - -
potential 45 28.88 - - - -
potentially 21 52.38 - - - -
propose 38 63.15 - - - -
putatitve 39 17.94 - - - -
rule out - - - - 61 0.00
suggest 613 92.33 70 62.85 64 90.62
think 35 31.42 - - - -
unknown 26 15.38 - - - -
whether 96 72.91 - - - -
would - - 21 28.57 - -

Table 9: PCS per hedge cue for hedge cues that occur
more than 20 times in one of the subcorpus.

Table 9 shows the PCS results per hedge cue. The
cues that get better scores in the clinical and papers
subcorpora are cues that appear in the abstracts sub-
corpus and get a good score. Cues that occur in the
clinical subcorpus and do not occur in the abstracts
(training) subcorpus, get 0.00 score or close to 0.00,
whereas cues that appear in both subcorpora tend to
get a similar or better score in the clinical subcor-
pus. This is a trend that we also observed in the
negation scope finding system. As with that system,
we also observed that the papers subcorpus tends to
get lower scores than the abstracts subcorpus.

The results of the system based on gold standard
hedge cues showed that the system can be applied

to negation scope finding and hedge scope finding,
but these results show that the results of the second
phase of the system depend on the results of the first
phase of the system, and that finding hedge cues
is a domain dependent task. The cues that are not
present in the training data cannot be learned in the
test data and the same applies to their scope. This
observation is consistent with the observation that
the portability of hedge classifiers is limited, made
by Szarvas (Szarvas, 2008).

7 Conclusions

In this paper we have presented a metalearning ap-
proach to processing the scope of hedge cues, based
on a system that finds the scope of negation cues. We
have shown that the same system can find both the
scope of negation and hedge cues. The performance
of the system is evaluated in terms of percentage of
correct scopes on three text types.

In the hedge finding phase, the system achieves
an F1 of 84.77% in the abstracts subcorpus. Ex-
isting systems that classify sentences as speculative
or not reach an 85.00 BEP. Although the tasks are
different, we consider that the results of our system
are competitive. In the scope finding phase, the sys-
tem that uses predicted hedge cues achieves 65.55%
PCS in the abstracts corpus, which is very similar
to the result obtained by the negation scope finding
system with predicted negation cues (66.07% PCS).
However, the results for the papers and clinical sub-
corpora are considerably lower than the results for
the abstracts subcorpus in the two phases. In the
case of the negation scope finding system, the evalu-
ation on the clinical subcorpus yielded a 4.23% PCS
higher result, whereas in the case of the hedge scope
finding system the results are almost 30.00% PCS
lower, confirming the observation that the portabil-
ity of hedge classifers is limited. Future research
will focus on trying to improve the first phase of the
system and anlysing errors in depth in order to get
insights into how to get a better performance.
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