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Abstract

We propose a static relation extraction task to
complement biomedical information extrac-
tion approaches. We argue that static re-
lations such as part-whole are implicitly in-
volved in many common extraction settings,
define a task setting making them explicit, and
discuss their integration into previously pro-
posed tasks and extraction methods. We fur-
ther identify a specific static relation extrac-
tion task motivated by the BioNLP’09 shared
task on event extraction, introduce an anno-
tated corpus for the task, and demonstrate the
feasibility of the task by experiments showing
that the defined relations can be reliably ex-
tracted. The task setting and corpus can serve
to support several forms of domain informa-
tion extraction.

1 Introduction

Relation Extraction (RE) is a key task in biomedi-
cal Information Extraction (IE). The automatic de-
tection of relevant types of relations — for various
definitions of relevant — between entities has been
one of the primary focus points for significant do-
main research efforts over the past decade, and a
substantial number of biomedical RE methods and
annotated corpora have been published (Zweigen-
baum et al., 2007). Motivated by the needs of biolo-
gists and e.g. database curation efforts, most domain
RE efforts target relations involving biologically rel-
evant changes in the involved entities, commonly to
the complete exclusion of static relations. However,
static relations such as entity membership in a fam-
ily and one entity being a part of another are not only

relevant IE targets in themselves but can also play an
important supporting role in IE systems not primar-
ily targeting them.

In this paper, we investigate the role of static re-
lations in causal RE and event extraction. Here,
we use relation extraction in the MUC and ACE
(Sundheim, 1995; Doddington et al., 2004) sense to
refer to the task of extracting binary relations, or-
dered pairs of entities, where both participating enti-
ties must be specified and their roles (agent, patient,
etc.) are fixed by the relation. By contrast, event ex-
traction is understood to involve events (things that
happen) and representations where the number and
roles of participants may vary more freely. We re-
fer to relations where one one entity causes another
to change as causal relations; typical domain exam-
ples are phosphorylation and activation. Static rela-
tions, by contrast, hold between two entities without
implication of change or causality: examples from
the ACE IE task include Physical.Located and Part-
Whole.Artifact.

2 Task definition

In the following, we argue that static relations are
relevant to much of current biomedical IE work,
present a task setting making these relations explicit,
and discuss applications of static relation annotation
and extraction methods.

2.1 Named entity-driven IE and static relations

Named entities (NEs) provide a simple anchor con-
necting text to entities in the real world and thus a
natural starting point for IE. Named entity recog-
nition (NER) is well studied and several biomed-
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ical NER systems are available (see e.g. (Wilbur
et al., 2007; Leaman and Gonzalez, 2008)), and
most domain IE approaches are NE-driven: a typi-
cal way to cast the RE task is as deciding for each
pair of co-occurring NEs whether a relevant rela-
tion is stated for them in context. Like the previ-
ous LLL and BioCreative2-PPI relation extraction
tasks (Nédellec, 2005; Krallinger et al., 2007), the
BioNLP’09 shared task on event extraction (Kim et
al., 2009) similarly proceeds from NEs, requiring
participants to detect events and determine the roles
given NEs play in them.

Any domain IE approach targeting nontrivial
causal NE relations or events necessarily involves
decisions relating to static relations. Consider, for
example, the decision whether to extract a relation
between NE1 and NE2 in the following cases (affects
should here be understood as a placeholder for any
relevant statement of causal relation):

1) NE1 affects NE2 gene
2) NE1 affects NE2 promoter
3) NE1 affects NE2 mutant
4) NE1 affects NE2 antibody
5) NE1 affects NE2 activator

The decision here depends on the interpretation of
the noun compounds (NCs) NE2 gene, NE2 pro-
moter, etc. Depending on the IE setting, one might,
for example, judge that statements (1)–(3) justify the
extraction of an (NE1, NE2) relation, while (4) and
(5) do not. This question is rarely formalized as
a separate (sub)task in domain studies, and meth-
ods targeting e.g. the LLL, BioCreative2-PPI and
BioNLP’09 shared task relations and events must
learn to resolve this question together with the sep-
arate issue of which words and syntactic structures
express relevant causal relations.

2.2 Task setting

The relation extraction problems represented by ex-
amples (1)–(5) above are closely related to the well-
studied issue of NC semantics. However, the prob-
lem extends past simple binary NCs to include judg-
ments on the relations of arbitrary base NPs (nouns
with premodifiers) to contained NEs,

NE1 affects truncated NE2

NE1 affects NE2/NE3 complexes
NE1 affects NE2-dependent phosphatase

and further to relations of NPs with NEs that are syn-
tactically less immediately attached:

NE1 affects first exon of NE2

NE1 affects an element in the NE2 promoter
NE1 affects members of the immediate-early acti-

vation genes family such as NE2

The problem thus encompasses also more general
relations between nominals.

While these different cases could also be studied
as separate tasks, in the current IE context they can
be seen as presenting a continuum of different syn-
tactic realizations of similar relations that also carry
the same implications for further processing. We
propose to treat them together, formulating the spe-
cific task studied in this paper as follows:

Given: named entity NE and another entity E
with their context in text,
Determine: whether there is a relevant static re-
lation R(NE, E) and its type.

Here, relevant relations are defined as those that jus-
tify an inference of some role for the NE in causal re-
lations/events involving E. Additionally, the level of
granularity chosen for typing is chosen according to
the need to determine the role of the NE in the rela-
tions/events. These choices are intentionally depen-
dent on the IE context: we do not expect to be able
to formulate a universally accepted set of relevance
criteria or relations. Our choice of relation scope
and types here follows the perspective of a currently
highly relevant IE problem, the BioNLP’09 shared
task on event extraction. We aim to recognize a set
of relations sufficient to capture the relevant rela-
tionships of the NEs provided as given information
in the shared task (all of protein/gene/RNA type)
and the terms annotated in the GENIA Event corpus
(Kim et al., 2008) as participants in events.

We note that this task setting excludes the recog-
nition of candidate NEs and other entities. The as-
sumption that they are given is analogous to the
common NE-NE causal relation extraction setting.
Further, requiring their recognition would, in our
view, unnecessarily complicate the task with aspects
of NER and NP chunking, well-studied separate
tasks.

We next sketch a formulation of an causal rela-
tion/event extraction task incorporating static rela-
tions and briefly present one possible way in which
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static relation extraction could be applied in IE set-
tings not explicitly targeting such relations.

2.3 Applications of static relations

In the following, we assume that NEs are detected in
a prior processing step. Consider, then, the task of
extracting relevant information from the following
sentence:

NE1 is a subunit of the complex that inhibits the
expression of mutant forms of NE2

An example causal relation extraction target here
could be

Inhibit(NE1,NE2)

while an event extraction task might aim to recog-
nize the events

E1:Expression(NE2)
E2:Inhibit(NE1, E1)

An IE system directly targeting either representa-
tion will need to simultaneously address issues re-
lating to the causal statements and static relations.
Static relation annotation makes this explicit (square
brackets are used to mark non-NE entities):

Part-Whole.Component-Object(NE1, [complex])
Variant(NE2, [mutant forms])

This type of static relation detection as prior step to
causal relation or event extraction could be applied
in at least two different ways: primarily augment-
ing the extracted information, or alternatively assist-
ing in the extraction of the information considered
above. Assuming the successful extraction of the
above static relations, the input can be reformulated
as

NE1 is a subunit of the [complex] that inhibits the
expression of [mutant forms] of NE2

Then, under the augmented extraction model, the
causal relation and event extraction targets would be,
respectively,

Inhibit([complex],[mutant forms])

and

E1:Expression([mutant forms])
E2:Inhibit([complex], E1)

Taken together with the static relations, this provides

a more detailed representation of the information
stated in the example sentence. Further, simple rules
would suffice to derive the simplified representations
involving only the NEs, and such rules would have
the further benefit of making explicit which inter-
vening static relations are taken to support the infer-
ence that an NE is involved in a stated causal relation
or event.

Alternatively, under the assisted extraction model,
with the assumption that the static relations are taken
to allow the inference that any relation or event hold-
ing of the other entities holds for the NEs, the input
to the causal relation or event extraction system can
be recast as

NE1 is a subunit of the NE′1 that inhibits the ex-
pression of NE′2 of NE2

where NE′1 and NE′2 should be understood as
aliases for NE1 and NE2, respectively. Now, un-
der the causal relation extraction model, each of
the (NE1,NE2), (NE′1, NE2), (NE1,NE′2), (NE′1,NE′2)
pairs can serve as an example of the desired rela-
tion, both for the purposes of training and actual
extraction (the event extraction case can be treated
analogously). By increasing the number of positive
cases, this application of information on static rela-
tions would be expected to have a positive effect on
the performance of the primary causal relation/event
extraction method.

While these two alternatives are only rough
sketches of possible uses of static relation annota-
tion, we expect either could be developed into a
practical implementation. Further, these examples
by no means exhaust the possibilities of this class
of annotation. As static relation extraction can thus
be seen to have multiple potential benefits for both
causal relation and event extraction, we believe the
efforts to pursue static relations as a separate task
and to develop resources specific to this task are jus-
tified.

3 Relations

Based on an analysis of the shared task data (see
Section 4.1), we recognize the static relations illus-
trated in Table 1. In the following, we briefly discuss
the types and their selection.
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Name Examples
Variant Bcl-6 gene, IL-1 mRNA, wild-type SHP1, TRADD mutant, human IL-1beta,

[cell-surface isoforms] of CD43, phosphorylated CREB protein
PW.Object-Component IL-6 promoter, GR N-terminal transactivation domain, SAA promoter sequence,

proximal IL-2 promoter-enhancer, [transcriptional enhancers] including IFNB
PW.Component-Object NF-kappa B1/RelA heterodimer, p65 homodimer, p50-p65 complex,

STAT1-containing [DNA-binding complex], [heterodimer] of p50 and p65
PW.Member-Collection CREB/ATF family, p21ras small GTP binding proteins,

[non-heat shock genes] such as IL1B, [cellular genes] including GM-CSF
PW.Place-Area beta-globin locus

Table 1: Relations. In examples, NEs are underlined and square brackets are used to mark the extent of non-NE entities
that do not span the entire example text.

3.1 Selection criteria

Relations could be recognized and split into differ-
ent types at a number of different granularities. Mo-
tivated by practical IE applications, we aimed to de-
fine a static relation extraction subtask that fits natu-
rally into existing IE frameworks and to create an-
notation that supplements existing annotation and
avoids overlap in annotated information. The practi-
cal goals also motivate our aim to recognize a min-
imal set of different relation types that can satisfy
other goals, fewer distinctions implying an easier
task and more reliable extraction.

To decide whether to use a single relation type or
introduce several subtypes to annotate a given set of
cases, we aimed to introduce coherent relation types,
each implying consistent further processing. More
specifically, we required that each relation R(NE,
entity) must uniquely and consistently define the re-
lation and roles of the participants, and that in the
relevant IE context the relation alone is sufficient to
decide how to interpret the role of the NE in other
relations/events. Specific examples are given in the
introduction of the chosen relation types below.

In the following, we follow in part the relation
taxonomy and relation definitions of (Winston et al.,
1987). However, we recognize that there is no clear
agreement on how to subdivide these relations and
do not suggest this to be the only appropriate choice.

3.2 Part-whole relations

Part-whole, or meronymic, relations are, not surpris-
ingly, the most common class of static relations in
our data: a single generic Part-Whole relation could
capture more than half of the relevant relations in
the corpus. However, although the relations be-

tween the NE and entity in, for example, [complex]
containing NE and [site] in NE are both types of
Part-Whole (below PW) relations, the roles of par-
ticipants are not consistently defined: in PW(NE,
[site]) the entity is a component of the NE, while
in PW(NE, [complex]) the roles are reversed. We
thus recognize separate PW.Object-Component and
PW.Component-Object relations. By contrast, while
the relation between a NE representing a gene and a
site on that gene is is arguably different from the re-
lation between a protein NE and a site on the protein,
we do not distinguish these relations as the annota-
tion would duplicate information available in as part
of the entity typing in the corpus and would further
imply a static relation extraction task that incorpo-
rates aspects of NE recognition.

Also frequent in the data are relations such as
that between a protein and a protein family it be-
longs to. While many cases are clearly identifiable
as PW.Member-Collection relations, others could al-
ternatively be analysed as Class-Member. As in our
context the relations in e.g. P, a member of the [type
F protein family] and P, a [type F protein] imply
the same processing, we will apply the PW.Member-
Collection label to both, as well as to ad hoc col-
lections such as [cellular genes] such as NE, even
if this requires a somewhat relaxed interpretation of
the relation label. Finally, there are a few cases in
our data (e.g. NE locus) that we view as instances of
the PW.Place-Area relation.

3.3 Variant relations

To avoid unnecessary division of relations that im-
ply in our context similar interpretation and process-
ing, we define a task-specific Variant relation that
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encompasses a set of possible relation types holding
between an NE and its variants along multiple dif-
ferent axes. One significant class of cases annotated
as Variant includes expressions such as NE gene and
NE protein, under the interpretation that NE refers
to the abstract information that is “realized” as ei-
ther DNA, RNA or protein form, and the entity to
one of these realizations (for alternative interpreta-
tions, see e.g. (Rosario and Hearst, 2001; Heimonen
et al., 2008)).

The Variant relation is also used to annotate NE-
entity relations where the entity expresses a different
state of the NE, such as a phosphorylated or mutated
state. While each possible post-translational modifi-
cation, for example, could alternatively be assigned
a specific relation type, in the present IE context
these would only increase the difficulty of the task
without increasing the applicability of the resulting
annotation.

3.4 Other/Out annotation

We apply a catch-all category, Other/Out, for anno-
tating candidate (NE, entity) pairs between which
there is no relevant static relation. This label is thus
applied to a number of quite different cases: causal
relations, both implied (e.g. NE receptors, NE re-
sponse element) and explicitly stated (NE binds the
[site]), relations where the entity is considered too
far removed from the NE to support reliable infer-
ence of a role for the NE in causal relations/events
involving the entity (e.g. [antibodies] for NE), and
cases where no relation is stated (e.g. NE and other
[proteins]). The diversity of this generic category
of irrelevant cases is a necessary consequence of the
aim to avoid annotation involving decisions directly
relating to other tasks by creating distinctions be-
tween e.g. causal and no relation.

3.5 Sufficiency of the setting and relation types

We have cast the static relation extraction task as al-
ways involving an NE, which in the present context
is further always of a protein, gene or RNA type.
This restriction considerably simplifies the task con-
ceptually and reduces annotation effort as well as ex-
pected extraction difficulty, as the type of only one
of the entities involved in the relation can vary sig-
nificantly. However, it is not obvious that the restric-
tion allows coherent relations types to be defined. If

the corpus contained frequent cases where the stated
relationship of the NE to the entity involved different
types of relevant relations (e.g. collections of parts
of an NE), it would be necessary to either recog-
nized “mixed” or combined relations or extend the
task to include general entity-entity relations.

Interestingly, during annotation we encountered
only two cases (less than 0.1% of those annotated)
involving two of the recognized relation types at
once: mutant NE promoter and 5’ truncation mu-
tants of the NE promoter1. While this result is likely
affected by a number of complex factors (annota-
tion criteria, NE and entity types, granularity of re-
lations, etc.), we find the outcome — which was nei-
ther planned for nor forced on the data — a very en-
couraging sign of the sufficiency of the task setting
for this and related domain IE tasks.

4 Data

We created the data set by building on the annota-
tion of the GENIA Event corpus (Kim et al., 2008),
making use of the rich set of annotations already
contained in the corpus: term annotation for NEs
and other entities (Ohta et al., 2002), annotation of
events between these terms, and treebank structure
closely following the Penn Treebank scheme (Tateisi
et al., 2005).

4.1 Annotation

The existing GENIA annotations served as the basis
of the new annotation. We initially selected as can-
didates entities annotated as participating in events
considered in the BioNLP’09 shared task.

As the term annotation includes nesting of en-
tities, NEs contained within these relevant entities
were used as the starting point for the annotation.
We first performed a preliminary study of the rele-
vant static relations occurring between the entities
and NEs occurring within them to determine the
set of relations to annotate. Next, all unique cases
where a selected entity contained an NE were anno-
tated with the appropriate relation based on the con-
tained text of the entity, with the text of the contained
NE normalized away. For the present study, we ex-
cluded from consideration cases where the annota-

1To resolve these cases, we simply ignored the implied Vari-
ant relation.
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tion indicated simple aliasing (e.g. [CREB/ATF]), a
relation irrelevant to our purpose and found in the
selected data only due to the annotation specifying
one entity but two NEs in these cases. In this step,
830 unique cases representing a total of 1601 entities
containing NEs were annotated.

The nesting structure of the term annotation does
not, however, capture all relevant static relations:
the term annotation scheme disallows discontinuous
terms and annotation of terms with structure more
complex than base NPs. Thus, the possible relations
of NEs to entities to which they were connected e.g.
by a prepositional phrase cannot be directly derived
from the existing annotation. As an example, the
nesting in [NE region] directly suggest the existence
of a relation, while no such connection appears in
[region] of NE. To annotate relations for entities for
which the term annotation does not identify a can-
didate related NE, it is necessary to form (NE, en-
tity) pairs with co-occurring NEs. Even when the
candidate NEs were restricted to those occurring in
the same sentence, the number of such pairs in the
corpus was over 17,000, beyond the scope of what
could be annotated as part of this effort. Further, as
the great majority of co-occurring (NE, entity) pairs
will have no relevant static relation, we used heuris-
tics to increase the proportion of relevant and near-
miss cases in the annotated data.

We first converted the gold standard annotation of
the GENIA treebank (Tateisi et al., 2005) into a de-
pendency representation using the Stanford parser
tools (de Marneffe et al., 2006) and then deter-
mined the shortest paths in the dependency analy-
ses connecting each relevant entity with each NE.
The (NE, entity) pairs were then ordered according
to the length of these paths, on the assumption that
syntactically more closely related entities are more
likely to have a relevant static relation. Annotation
then proceeded on the ordered list of pairs. Dur-
ing the annotation, we further developed more or-
dering heuristics, such as giving higher ranking to
candidate pairs connected by a path that contains
a subpath known to connect pairs with relevant re-
lations. Such known paths were first derived from
the BioInfer static relation annotation (Pyysalo et al.,
2007) and later extracted from previously annotated
cases. In this annotation process, judgments were
performed with reference to the full sentence con-

Annotated instances
Relation cont. nonc. total
PW.Object-Component 394 133 527
PW.Component-Object 299 44 343
Variant 253 20 273
PW.Member-Collection 25 124 149
PW.Place-Area 4 1 5
Other/Out 626 778 1404
total 1601 1100 2701

Table 2: Statistics for annotated data. Number of in-
stances given separately for relations annotated between
entities with contained (cont.) and non-contained (nonc.)
NEs.

text. In total, 1100 cases were annotated in this way.
All stages of the annotation process involved only
lists formatted as simple text files for markup and
custom-written software for processing.

Table 2 contains statistics for the annotated data,
showing separately the number of annotated re-
lations of entities to contained and non-contained
NEs. There are interesting differences in the rela-
tion type distribution between these two categories,
reflecting the different ways in which relations are
typically stated. This difference in distribution sug-
gests that it may be beneficial to give the two cases
different treatment in extraction.

4.2 Representation

For simplicitly of use, we provide the annotated data
in two equivalent representations: a simple inline
XML format and a standoff format. The XML for-
mat closely resembles the representation used for the
SemEval-2007 Semantic Relations between Nomi-
nals task (Girju et al., 2007). Here, each NE-Entity
pair is given its own entry with its sentence con-
text in which only the pair is marked. In the alter-
nate standoff representation, all entities appearing in
each sentence are tagged, and the annotated relations
given separately. These representations are easily
processed and should be usable with little modifica-
tion with many existing relation extraction methods.

We further split the data into training,
development-test and test sets according to the
same division applied in the BioNLP’09 shared
task on event extraction. This division allows the
dataset to be easily integrated into settings using the
shared task data, combining static relation and event
extraction approaches.
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5 Experiments

The selected task setting and representation form a
natural basis for two alternative classification prob-
lems: a binary classification problem for detecting
the presence of any relevant relation, and a multi-
class classification problem where the correct rela-
tion type must also be determined. In the following,
we describe experiments using the dataset in these
two settings. While we apply a state-of-the-art ma-
chine learning method and a fairly expressive repre-
sentation, the aim of the experiments is only to de-
termine the relative difficulty of the relation extrac-
tion task and to establish a moderately competitive
baseline result for the newly created dataset.

We use a linear Support Vector Machine (SVM)
classifier (Chang and Lin, 2001) with N-gram fea-
tures defined over token sequences delimited by the
beginning and end of the entity and the position of
the NE. The NE is treated as a single token and
its text content blinded from the classifier to avoid
overfitting on specific names. Features are gener-
ated from two sequences of tokens: those inside
the entity and, when the NE is not contained in the
entity, those between the entity and the NE (inclu-
sive of the entity and NE at the sequence bound-
aries). In preliminary experiments on the develop-
ment test set we found no clear benefit from includ-
ing N-gram features extracted from a broader con-
text, supporting an assumption that the problem can
be mostly addressed on the basis of local features.
By contrast, preliminary experiments supported the
use of the simple Porter algorithm (Porter, 1980) for
stemming, the inclusion of uni-, bi- and trigram fea-
tures, and normalization of the feature vectors to unit
length; these were adopted for the final experiment.
The SVM regularization parameter was optimized
using a sparse search with evaluation on the devel-
opment test set.

We first reduced the annotated data into a binary
classification problem with the Other/Out class rep-
resenting negative (irrelevant) and the other rela-
tions positive (relevant) cases. The results for this
experiment were very encouraging, giving both a
high classification accuracy of 86.8% and an F-score
of 84.1%. The test set contains 179 positive and
269 negative cases, giving a majority baseline ac-
curacy of 60.0% and an all-true baseline F-score of

P R F
Relevant 81.2 87.2 84.1
PW.Object-Component 94.2 75.4 83.8
PW.Component-Object 60.0 71.2 65.1
Variant 88.0 57.9 69.8
PW.Member-Collection 54.5 37.5 44.4

Table 3: Classification results with (P)recision, (R)ecall
and (F)-score for the binary Relevant/Irrelevant exper-
iment and classwise results for the relevant classes
(PW.Place-Area excluded for lack of data).

57.1%. The classifier notably and statistically sig-
nificantly (McNemar’s test, p < 0.01) outperforms
these simple baselines. We then performed a sep-
arate multiclass classification experiment, predict-
ing the specific type of the relation, also including
the Other/Out type. In this experiment, accuracy re-
mained relatively high at 81.9%, while per-class pre-
cision and recall results (considering each class in
turn positive and all others negative, see Table 3) in-
dicate some remaining challenges. The results vary
somewhat predictably with the number of exam-
ples per relation type (Table 2): while PW.Object-
Component relations can be predicted at high pre-
cision and fair recall, performance for PW.Member-
Collection relations falls behind expectations for a
local relation extraction problem.

To briefly relate these results to domain causal RE
results, we note that the recently proposed state-of-
the-art method of (Airola et al., 2008) was reported
to achieve F-scores ranging between 56.4–76.8% on
five different causal RE corpora in a binary classi-
fication setting. As our relatively simple method
achieves a notably higher 84.1% F-score at the bi-
nary static RE task, we can conclude that this static
RE task is not as difficult as the causal RE tasks.
This is encouraging for the prospects of static RE in
support of domain causal RE and event extraction.

6 Related work

Relations of types that we have here termed static
have figured prominently in the MUC and ACE se-
ries of events that have largely defined the “gen-
eral domain” IE research program (Sundheim, 1995;
Doddington et al., 2004). In this line of research,
event-type annotation is used (as the name implies)
to capture events, defined as “[...] something that
happens [...] [that] can frequently be described as a
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change of state” (LDC, 2005) and relation-type an-
notation is applied for relevant non-causal relation-
ships. General static relations have been studied ex-
tensively also in broader, non-IE contexts (see e.g.
(Girju et al., 2007)).

In the biomedical domain, static relations have re-
ceived relatively little attention. Domain noun com-
pound semantics, including static relations, have
been considered in studies by (Rosario and Hearst,
2001) and (Nakov et al., 2005), but in IE settings
static relations tend to appear only implicitly, as in
the RelEx causal RE system of (Fundel et al., 2007),
or through the causal relations they imply: for ex-
ample, in the AIMed corpus (Bunescu et al., 2005)
statements such as NE1/NE2 complex are annotated
as a binding relation between the two NEs, not Part-
Whole relations with the broader entity. By contrast,
there has been considerable focus on the extraction
of “things that happen,” dominantly making use of
relation-type corpus annotation and extraction ap-
proaches: a study of five corpora containing primar-
ily causal relation annotation is found in (Pyysalo et
al., 2008); more complete lists of domain corpora
are maintained by Kevin Cohen2 and Jörg Haken-
berg3. For a thorough review of recent work in do-
main RE, we refer to (Zweigenbaum et al., 2007).

BioInfer (Pyysalo et al., 2007), to the best of our
knowledge the first domain corpus to include event-
type annotation, also includes annotation for a set
of static relation types. The design of the BioIn-
fer corpus and relationship type ontology as well as
work applying the corpus in jointly targeting event
extraction and static relation extraction (Heimonen
et al., 2008; Björne et al., 2008) have considerably
influenced the present study. A key difference in fo-
cus is that BioInfer primarily targets NE-NE rela-
tions, while our concern here has been the relations
of NEs with other, non-NE entities, specifically fo-
cusing on the requirements of the BioNLP’09 shared
task. A class of static relations, connecting Mu-
tants and Fragments with their parent proteins, is
annotated in the recently introduced ITI TXM cor-
pora (Alex et al., 2008). While somewhat limited
in the scope of static relations, this annotation cov-
ers an extensive number of instances, over 20,000,

2http://compbio.uchsc.edu/ccp/corpora/obtaining.shtml
3http://www2.informatik.hu-

berlin.de/∼hakenber/links/benchmarks.html

and could likely support the development of high-
reliability methods for the extraction extraction of
these specific static relations. As discussed in detail
in Section 4.1, previously published versions of the
GENIA corpus (Kim et al., 2008) contain NE, term
and event annotation, but no static relations have
been annotated in GENIA prior to this effort.

While previously introduced corpora thus cover
aspects of the annotation required to address the
static relation extraction task considered in this pa-
per, we are not aware of previously published re-
sources that would address this task specifically or
contain annotation supporting the entire task as en-
visioned here.

7 Conclusions and future work

In this paper, we have argued for a position for static
relations in biomedical domain IE, specifically
advancing the subtask of extracting static relations
between named entities and other entities appearing
in their context. We explored this subtask in the
specific IE context of the BioNLP’09 shared task on
event extraction, identifying possible instances of
static relations relevant to the task setting. We then
studied these instances of detail, defining a minimal
set of basic static relations argued to be sufficient
to support the type of IE envisioned in the shared
task. We annotated 2701 instances of candidate
static relations, creating the first domain corpus
of static relations explicitly designed to support
IE, and performed experiments demonstrating that
the static relation extraction task can be performed
accurately, yet retains challenges for future work.
The newly annotated corpus is publicly available at
www-tsujii.is.s.u-tokyo.ac.jp/GENIA
to encourage further research on this task.
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