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Abstract The AL process takes as input a set of labeled in-

stances and a larger set of unlabeled instances, and
As supervised ma_chine learning methods are  produces a classifier and a relatively small set of
increasingly used in language technology, the  newly labeled data. The overall goal is to obtain
Eeed for h,'gh-qua":y T?_Otatled Ianguaglc_a data 55 good a classifier as possible, without having to
ecomes imminent. Active ‘earning (AL) 1S mark-up and supply the learner with more than nec-
a means to alleviate the burden of annotation. . . .
essary data. The learning process aims at keeping

This paper addresses the problem of knowing ; >
When to Stop the AL process W|thout hav|ng the human annotation effOI't toa minimum, 0n|y aSk'

the human annotator make an explicit deci- ing for advice where the training utility of the result
sion on the matter. We propose and evaluate  of such a query is high.

an intrinsic criterion for committee-based AL The approaches taken to AL in this paper are
of named entity recognizers. based on committees of classifiers with access to

pools of data. Figure 1 outlines a prototypical
committee-based AL loop. In this paper we focus
on the question when AL-driven annotation should
With the increasing popularity of supervised mabe stopped (Item 7 in Figure 1).
chine learning methods in language processing, the Usually, the progress of AL is illustrated by
need for high-quality labeled text becomes immimeans of a learning curve which depicts how the
nent. On the one hand, the amount of readily avaiklassifier's performance changes as a result of in-
able texts is huge, while on the other hand the leereasingly more labeled training data being avail-
beling and creation of corpora based on such texts&ble. A learning curve might be used to address
tedious, error prone and expensive. the issue of knowing when to stop the learning pro-
Active learning (AL) is one way of approaching cess — once the curve has leveled out, that is, when
the challenge of classifier creation and data annotadditional training data does not contribute (much)
tion. Examples of AL used in language engineeringo increase the performance of the classifier, the AL
include named entity recognition (Shen et al., 2004rocess may be terminated. While in a random se-
Tomanek et al., 2007), text categorization (Lewisection scenario, classifier performance can be esti-
and Gale, 1994; Hoi et al., 2006), part-of-speecmated by cross-validation on the labeled data, AL
tagging (Ringger et al., 2007), and parsing (Thomprequires a held-out annotated reference corpus. In
son et al., 1999; Becker and Osborne, 2005). AL, the performance of the classifier cannot be re-
AL is a supervised machine learning technique ifiably estimated using the data labeled in the pro-
which the learner is in control of the data used focess since sampling strategies for estimating per-
learning — the control is used to query an oracle, tydormance assume independently and identically dis-
ically a human, for the correct label of the unlabeledributed examples (Schiitze et al., 2006). The whole
training instances for which the classifier learned spoint in AL is to obtain a distribution of instances
far makes unreliable predictions. that is skewed in favor of the base learner used.

1 Introduction
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. . . bestclassifier for a scenario is yielded. However, de-
1. Initialize the process by applyingnsembleGeneration- . . B i -
Methodusing base learnd on labeled training data set P€Nding on the scenario at hand, the “best” classifier

Dy, to obtain a committee of classifiefs could have different interpretations. In many papers
2. Have each classifier il predict a label for every instance ON AL and stopping criteria, the best (or optimal)
in the unlabeled data s&, obtain labeled seby’. classifier is the one that yields the highest perfor-
3. From Dy, select the most informative instances to mance on a test set. It is assumed that AL-based
learn from, obtainingDy " annotation should be stopped as soon as this per-
4. Ask the teacher for classifications of the instantés  formance is reached. This could be generalized as
Dy". stopping criteria based on maximal classifier perfor-
5. MovelI, with supplied classifications, froiy to Dr.. mance. In practice, the trade-off between annota-

6. Re-train usingEnsembleGenerationMethodnd base tion effort and classifier performance is related to the
learnerB3 on the newly extendef),, to obtainanew com-  gchjevable performance given the learner configura-
mittee,C tion and data under scrutiny: For instance, would we

7. Repeat steps 2 through 6 urltll, is empty or some stop- jnest many hours of additional annotation effort just
ping criterion Is met. . . g

to possibly increase the classifier performance by a
fraction of a percent? In this context, a stopping cri-
terion may be based on classifier performance con-
vergence, and consequently, we can define the best

Figure 1: A prototypical query by committee algorithm. POSSible classifier to be one which cannot learn more

from the remaining pool of data.
The intrinsic stopping criterion (ISC) we propose
In practice, however, an annotated reference cokere focuses on the latter aspect of the ideal stop-
pus is rarely available and its creation would be inping point described above — exhaustiveness of the
consistent with the goal of creating a classifier withAL pool. We suggest to stop the annotation process
as little human effort as possible. Thus, other waysf the data from a given pool when the base learner
of deciding when to stop AL are needed. In this pacannot learn (much) more from it. The definition of
per, we propose an intrinsic stopping-criterion folour intrinsic stopping criterion for committee-based
committee-based AL of named entity recognizersAL builds on the notions of Selection Agreement

It is intrinsic in that it relies on the characteristics of(Tomanek et al., 2007), and Validation Set Agree-

the data and the base learheather than on exter- ment (Tomanek and Hahn, 2008).

nal parameters, i.e., the stopping criterion does not The Selection Agreement (SA) is the agreement

require any pre-defined thresholds. among the members of a decision committee re-
The paper is structured as follows. Section @arding the classification of thmost informativen-

sketches interpretations of ideal stopping points argtance selected from the pool of unlabeled data in
describes the idea behind our stopping criterioreach AL round. The intuition underlying the SA is

Section 3 outlines related work. Section 4 describeat the committee will agree more on the hard in-

the experiments we have conducted concerning stances selected from the remaining set of unlabeled

named entity recognition scenario, while Section Bata as the AL process proceeds. When the mem-
presents the results which are then discussed in Séxers of the committee are in complete agreement,

8. Output classifier learned usingnsembleGeneration-
Methodand base learndB on Dy..

tion 6. Section 7 concludes the paper. AL shouldbe aborted since it no longer contributes
to the overall learning process — in this case, AL is
2 A stopping criterion for active learning but a computationally expensive counterpart of ran-

, _ _ _ , dom sampling. However, as pointed out by Tomanek
What is the ideal stopping point for AL? Obviously, ot g1 (2007), the SA hardly ever signals complete

annotation should be stopped at the latest when ”&%reement and can thus not be used as the sole in-

~ The termbase learner (configuratiorefers to the combi- dicator of AL having reached the point at which it

nation of base learner, parameter settings, and data espees Should be aborted.
tion. The Validation Set Agreement (VSA) is the agree-
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ment among the members of the decision commitf the most informative instance is no closer to the
tee concerning the classification of a held-out, unarmdecision hyperplane than any of the support vectors,
notated data set (the validation set). The validatiothe margin has been exhausted and AL is terminated.
set stays the same throughout the entire AL process.Vlachos (2008) suggests to use classifier confi-
Thus, the VSA is mainly affected by the perfor-dence to define a stopping criterion for uncertainty-
mance of the committee, which in turn, is groundedbased sampling. The idea is to stop learning when
in the information contained in the most informativethe confidence of the classifier, on an external, pos-
instances in the pool of unlabeled data. Tomanesibly unannotated test set, remains at the same level
and colleagues argue that the VSA is thus a goaaot drops for a number of consecutive iterations dur-
approximation of the (progression of the) learningng the AL process. Vlachos shows that the criterion
curve and can be employed as decision support fordeed is applicable to the tasks he investigates.
knowing when to stop annotating — from the slope of Zhu and colleagues (Zhu and Hovy, 2007
the VSA curve one can read whether further annot&hu et al., 2008a; Zhu et al., 2008b) introduce
tion will result in increased classifier performance. max-confidengemin-error, minimum expected er-

We combine the SA and the VSA into a singleror strategy overall-uncertainty andclassification-
stopping criterion by relating the agreement of thehangeas means to terminate AL. They primar-
committee on a held-out validation set with that orily use a single-classifier approach to word sense
the (remaining) pool of unlabeled data. If the SAdisambiguation and text classification in their ex-
is larger than the VSA, it is a signal that the deciperiments. Max-confidenceseeks to terminate AL
sion committee is more in agreement concerning thence the classifier is most confident in its predic-
most informative instances in the (diminishing) untions. In themin-error strategy, the learning is halted
labeled pool than it is concerning the validation setwhen there is no difference between the classifier's
This, in turn, implies that the committee would learrpredictions and those labels provided by a human
more from a random samplérom the validation set annotator. Theminimum expected error strategy
(or from a data source exhibiting the same distribuinvolves estimating the classification error on fu-
tion of instances), than it would from the unlabeledure unlabeled instances and stop the learning when
data pool. Based on this argument, a stopping critéhe expected error is as low as possibleverall-
rion for committee-based AL can be formulated asuncertaintyis similar to max-confidence, but unlike
the latter, overall-uncertainty takes into account all
data remaining in the unlabeled pool when estimat-
ing the uncertainty of the classifieClassification-
changebuilds on the assumption that the most in-

In relation to the stopping criterion based solelyqrmative instance is the one which causes the clas-
on SA proposed by Tomanek et al. (2007), the abovgsier to change the predicted label of the instance.
defined criterion comes into effect earlier in theCIassification-change-based stopping is realized by
AL process. Furthermore, while it was claimed inzp, and colleagues such that AL is terminated once
(Tomanek and Hahn, 2008) that one can observe thg yredicted label of the instances in the unlabeled
classifier convergence from the VSA curve (as it 400l change during two consecutive AL iterations.
proximated the progression of the learning curve), | 5vs and Schiitze (2008) investigate three ways
that requires a threshold to be specified for the ag;; terminating uncertainty-based AL for named en-
tual stopping point. The ISC is completely intrinsictity recognition —minimal absolute performange
and does thus not require any thresholds to be set,avimum possible performancand convergence
3 Related work The minimal absolut(_e performa_mcef the system

is set by the user prior to starting the AL process.

Schohn and Cohn (2000) report on document claghe classifier then estimates its own performance
sification using AL with Support Vector Machines.using a held-out unlabeled data set. Once the per-
~ 2The sample has to be large enough to mimic the distributiofPrmance is reached, the learning is terminated. The
of instances in the original unlabeled pool. maximum possible performanctrategy refers to

Active learning may be terminated when
the Selection Agreement is larger than, or
equal to, the Validation Set Agreement.
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the optimal performance of the classifier given thef experiment is on creating classifiers (classifier-
data. Once the optimal performance is achieved, tleentric), while the second type is concerned with the
process is aborted. Finally, thmnvergencecrite- creation of annotated documents (data-centric). In
rion aims to stop the learning process when the poall experiments, the agreement among the decision
of available data does not contribute to the classcommittee members is quantified by the Vote En-
fier's performance. The convergence is calculatetiopy measure (Engelson and Dagan, 1996):
as the gradient of the classifier's estimated perfor- 1 V(,e) V(e
mance or uncertainty. Laws and Schiitze conclude VE(e) = Z k; log k’ (1)
that both gradient-based approaches, that is, conver- !
gence, can be used as stopping criteria relative to thgherek is the number of members in the committee,
optimal performance achievable on a given pool cindV (I, e) is the number of members assigning la-
data. They also show that while their method lendgel to instancee. If an instance obtains a low Vote
itself to acceptable estimates of accuracy, it is mucBntropy value, it means that the committee members
harder to estimate the recall of the classifier. Thusire in high agreement concerning its classification,
the stopping criteria based on minimal absolute aind thus also that it is less a informative one.
maximum possible performance are not reliable.
The work most related to ours is that of Tomane
and colleagues (Tomanek et al., 2007; Tomanek atld common AL scenarios, the main goal of us-
Hahn, 2008) who define and evaluate ®eection ing AL is to create a good classifier with min-
Agreemeni(SA) and theValidation Set Agreement imal label complexity. To follow this idea, we
(VSA) already introduced in Section 2. Tomanekselect sentences that are assumed to be useful
and Hahn (2008) conclude that monitoring thdor classifier training. We decided to select
progress of AL should be based on a separate vafiomplete sentences — instead of, e.g., single to-
dation set instead of the data directly affected by thkens — as in practice annotators must see the
learning process — thus, VSA is preferred over SAcontext of words to decide on their entity labels.
Further, they find that the VSA curve approximates Our experimental setting is based on the AL ap-
the progression of the learning curve and thus clagroach described by Tomanek et al. (2007): The
sifier performance convergence could be estimatedommittee consists of = 3 Maximum Entropy
However, to actually find where to stop the annotakME) classifiers (Berger et al., 1996). In each AL
tion, a threshold needs to be set. iteration, each classifier is trained on a randomly
Our proposed intrinsic stopping criterion isdrawn (sampling without replacement) subsétC
unique in several ways: The ISC is intrinsic, relyingL With |L’| = 3L, L being the set of all instances la-
only on the characteristics of the base learner arfégled so far (cfEnsembleGenerationMethaa Fig-
the data at hand in order to decide when the AL prdire 1). Usefulness of a sentence is estimated as the
cess may be terminated. The ISC does not requiRverage token Vote Entropy (cf. Equation 1). In each
the user to set any external parameters prior to infL iteration, the 20 most useful sentences are se-
tiating the AL process. Further, the ISC is designetected ¢ = 20 in Step 3 in Figure 1). AL is started
to work with committees of classifiers, and as sucHrom a randomly chosen seed of 20 sentences.
it is independent of how the disagreement between While we made use of ME classifiers during the
the committee members is quantified. The ISC doesglection, we employed an NE tagger based on Con-
neither rely on a particular base learner, nor on a paglitional Random Fields (CRF) (Lafferty et al., 2001)

ticular way of creating the decision committee. ~ during evaluation time to determine the learning
curves. CRFs have a significantly higher tagging

4 Experiments performance, so the final classifier we are aiming

at should be a CRF model. We have shown be-
To challenge the definition of the ISC, we conductedore (Tomanek et al., 2007) that MEs are well apt as
two types of experiments concerning named entitgelectors with the advantage of much shorter train-
recognition. The primary focus of the first typeing times than CRFs. For both MEs and CRFs the

_log k

g1 Classifier-centric experimental settings
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same features were employed which comprised oand features based on predictions concerning the
thographical (based mainly on regular expressionsypntext of the token (e.@;lass of previous tokén

lexical and morphological (suffixed/prefixed, word The decision committee is made up from 10
itself), syntactic (POS tags), as well as contextuadoosted decision trees using MultiBoostAB (Webb,
(features of neighboring tokens) ones. 2000) (cf.EnsembleGenerationMethdr Figure 1).
The experiments on classifier-centric AL havezach classifier is created by the REPTree decision
been performed on the English data set of cofree learner described by Witten and Frank (2005).
pus used in the CoNLL-2003 shared task (Tjonghe informativeness of a document is calculated by
Kim Sang and Meulder, 2003). This corpus conmeans of average token Vote Entropy (cf. Equa-
sists of newspaper articles annotated with respect {gn 1). The seed set of the AL process consists of
person, location, and organisation entities. As Alye randomly selected documents. In each AL iter-
pool we took the training set which consists of aboubtion, one document is selected for annotation from
14,000 sentences( 200,000 tokens). As valida- the corpus# = 1 in Step 3 in Figure 1).
tion set and as gold standard for plotting the learn-
ing curve we used CoNLL's evaluation corpus which
sums up to 3,453 sentences. > Results

4.2 Data-centric experimental settings Two different scenarios were used to illustrate the
While AL is commonly used to create as goooapplicability of the proposed intrinsic stopping cri-

classifiers as possible, with the amount of humalgrion. In the first scenario, we assumed that the
effort kept to a minimum, it may result in frag- pool of unlabeled data was static and fairly large.

mented and possibly non re-usable annotations (e.4?, e second scenario, we assumed that the unla-
a collection of documents in which only some ofP€led data would be collected in smaller batches as

the names are marked up). This experiment cof.was made available on a stream, for instance, from
cerns a method of orchestrating AL in a way ben@ News feed. Both the classifier-centric and the data-
eficial for the bootstrapping of annotated data (O|Sgentr|c experiments were carried out within the first
son, 2008). The bootstrapping proper is realized b§/:enario. iny the classifier-centric experiment was
means of AL for selectingocumentso annotate, as conducted in the stream-based scenario.

opposed tsentences This way the annotated data In the classifier-centric setting, the SA is defined
set is comprised of entire documents thus promogas (1— Vote Entropy) for the most informative in-
ing data creation. As in the classifier-centric settinggtances in the unlabeled pool, that is, the per-token
the task is to recognize names — persons, organizaverage Vote Entropy on the most informative sen-
tions, locations, times, dates, monetary expressiorignces. Analogously, in the data-centric setting, the
and percentages — in news wire texts. The texfSA is defined as (1 Vote Entropy) for the most in-
used are part of the MUC-7 corpus (Linguistic Datdormative document — here too, the informativeness
Consortium, 2001) and consists of 100 documentss calculated as the per-token average Vote Entropy.
3,480 sentences, and 90,790 tokens. The task is dp-both settings, the VSA is the per-token average
proached using the 10B tagging scheme proposédte Entropy on the validation set.

by, e.g., Ramshaw and Marcus (1995), turning the

original 7-class task into a 15-class task. Each t& 1 AL on static pools

ken is represented using a fairly standard menagerie

of features, including such stemming from the surThe intersection of the SA and VSA agreement
face appearance of the token (e@ontains dollar? curves indicates a point at which the AL process
Length in charactefs calculated based on linguis- may be terminated without (a significant) loss in
tic pre-processing made with the English Functionatlassifier performance. For both AL scenarios (data-
Dependency Grammar (Tapanainen and Jarvineand classifier-centric) we plot both the learning
1997) (e.g.Case, Part-of-speeghfetched from pre- curves for AL and random selection, as well as the
compiled lists of information (e.gls first name}®, SA and VSA curve for AL. In both scenarios, these
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Figure 2: Classifier-centric AL experiments on theFigure 3: Data-centric AL experiments on the MUC-7
CoNLL corpus. The intersectiorg;, corresponds to the corpus. The intersectiorG, corresponds to a point at
point where (almost) no further improvement in termsvhich the AL curve has almost leveled out. The base-
of classifier performance can be expected. The baselifine learning curve shows the results of learning from ran-
learning curve shows the results of learning from randomly sampled data.
domly sampled data.

sponds to a plausible place to abort the learning. The

curves are averages over several rins. optimal performance i$" ~ 83.5%, while the ISC
The results from the classifier-centric experimengorresponds td" ~ 82%.

on the CoNLL corpus are presented in Figure 2. Keep in mind that the learning curves with which

AL clearly outperforms random selection. The ALthe ISC are compared are not available in a practical

curve converges at a maximum performancé’'of  situation, they are included in Figures 2 and 3 for the

84% after about 125,000 tokens. As expected, theake of clarity only.

SA curve drops from high values in the beginning

down to very low values in the end where hardlyp.2 AL on streamed data

any interesting instances are left in the pool. Th&ne way of paraphrasing the ISC is: Once the in-
intersection C) with the VSA curve is very close t0 tersection between the SA and VSA curves has been
the point (125,000 tokens) where no further increasgached, the most informative instances remaining
of performance can be reached by additional anngn the pool of unlabeled data are less informative to
tation making it a good stopping point. the classifier than the instances in the held-out, unla-
The results from the data-centric experiment argeled validation set are on average. This means that
available in Figure 3. The bottom part shows thghe classifier would learn more from a sufficiently
SA and VSA curves. The ISC occurs at the intertarge sample taken from the validation set than it
section of the SA and VSA curve€}, which corre- \ould if the AL process continued on the remain-
sponds to a point well beyond the steepest part of theg unlabeled poot.
learning curve. While stopping the learning@te-  As an illustration of the practical applicability of

sults in a classifier with performance inferior what igshe |SC consider the following scenario. Assume

maximally achievable, stopping @targuably corre-
“Note however, that the classifier might still learn from the

3The classifier-centric experiments are averages over thréestances in the unlabeled pool — applying the ISC only means
independent runs. The data-centric experiments are a&raghat the classifier would learn more from a validation Sed-li
over ten independent runs. distribution of instances.
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that we are collecting data from a stream, for in-

stance items taken from a news feed. Thus, the datlff'agure o: The SA and VSA curves for the four data par-
itions used in the experiment on streamed data. Each

is not available on the form of a closed set, but rath&fersection - ISC — corresponds to a point where AL is
an open one which grows over time. To make th@rminated.
most of the human annotators in this scenario, we

want them to operate on batches of data instead of o
annotating individual news items as they are pughis pool was split into batches of about 500 con-

lished. The purpose of the annotation is to mark u5ecutive sentences. Classifier-centric AL was now
names in the texts in order to train a named entit{n taking the first batch as pool to select from. At
recognizer. To do so, we wait until there has apth€ point where the SA and VSA curve crossed, we
peared a given number of sentences on the Streaﬁq{ntinued AL selection from the next batch and so
and then collect those sentences. The problem {@rth. Figure 4 shows the learning curve for a simu-
how do we know when the AL-based annotationation of the scenario described above. The inter-
process for each such batch should be terminate§§ction between the SA and VSA curves for par-
We clearly do not want the annotators to annotatition 1 as depicted in Figure 5 corresponds to the
all sentences, and we cannot have the annotatdfst “step” (ending inC1) in the stair-like learning
set new thresholds pertaining to the absolute pef4rve in Figure 4. The step occurs after 4,641 to-
formance of the named entity recognizer for eackens. Analogously, the other steps (endingiand
new batch of data available. By using the ISC, w&3, respectively) in the learning curve corresponds
are able to automatically issue a halting of the Althe intersection between the SA and VSA curves for
process (and thus also the annotation process) apgrtitions 2 and 3 in Figure 5. The intersection for
proceed to the next batch of data without losing togartition 4 corresponds to the point were we would
much in performance, and without having the anndlave turned to the next partition. This experiment
tators mark up too much of the available data. T¥/aS Stopped after 4 partitions.

this end, the 1SC seems like a reasonable trade-off 1able 1 shows the accumulated number of sen-
between annotation effort and performance gain. t€nces and tokens (center columns) that required an-

To carry out this experiment we took a sub Samplgotation in order to reach the ISC for each patrtition.

of 10% (1,400 sentences) from the original AL poof" addition, the last column in the table shows the

of the CONLL corpus as validation sefThe rest of number of sentences (of the 500 collected for inclu-

- experiment, thus the F-score reported in Figure 4 cannot be
®Note that the original CoNLL test set was not used in thisompared to that in Figure 2.
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Paf;ition Ssezfg)ts 4Tg‘|1<13 Sentencesszger partition  and theminimal absolute performanciatroduced
5 580 7932 260 by Laws and Schutze (2008).
3 840 13,444 260
4 1070 16,751 230 7 Conclusions and Future Work

Table 1: The number of tokens and sentences requiredyge have defined and empirically tested an intrinsic
reach the ISC for each partition. stopping criterion (ISC) for committee-based AL.
The results of our experiments in two named en-

sion in each partition) needed to reach the ISC — eadlly recognition scenarios show that the stopping cri-

new partition contributes less to the increase in pef€1on IS indeed a viable one, which represents a
formance than the preceding ones. fair trade-off between data use and classifier perfor-

mance. In a setting in which the unlabeled pool of
data used for learning is static, terminating the learn-
ing process by means of the ISC results in a nearly
We have argued that one interpretation of the ISGptimal classifier. The ISC can also be used for de-
is that it constitutes the point where the informaciding when the pool of unlabeled data needs to be
tiveness on the remaining part of the AL pool isrefreshed.
lower than the informativeness on a different and We have focused on challenging the ISC with re-
independent data set with the same distribution. Igpect to named entity recognition, approached in
the first AL scenario where there is one static poalo very different settings; future work includes ex-
to select from, reaching this point can be interperiments using the ISC for other tasks. We be-
preted as an overall stopping point for annotationieve that the I1SC is likely to work in AL-based ap-
Here, the ISC represents a trade-off between thgoaches to, e.g., part-of-speech tagging, and chunk-
amount of data annotated and the classifier perfoing as well. It should be kept in mind that while
mance obtained such that the resulting classifier the types of experiments conducted here concern
nearly optimal with respect to the data at hand. lthe same task, the ways they are realized differ in
the second, stream-based AL scenario where sevepaany respects: the ways the decision committees
smaller partitions are consecutively made availablgre formed, the data sets used, the representation of
to the learner, the ISC serves as an indicator that thestances, the relation between the sample size and
annotation of one batch should be terminated, artle instance size, as well as the pre-processing tools
that the mark-up should proceed with the next batclysed. Despite these differences, which outnumbers
The ISC constitutes an intrinsic way of determinthe similarities, the ISC proves a viable stopping cri-
ing when to stop the learning process. It does nagrion.
require any external parameters such as pre-definedan assumption underlying the ISC is that the ini-
thresholds to be set, and it depends only on the chayal distribution of instances in the pool of unlabeled
acteristics of the data and base learner at hand. Th&ta used for learning, and the distribution of in-
ISC can be utilized to relate the performance of thetances in the validation set are the same (or at least
classifier to the performance that is possible to obsery similar). Future work also includes investiga-
tain by the data and learner at hand. tions of automatic ways to ensure that this assump-
The ISC can not be used to estimate the perfotion is met.
mance of the classifier. Consequently, it can not be
used to relate the classifier's performance to an exxcknowledgements
ternally set level, such as a particular F-score pro-
vided by the user. In this sense, the ISC may serve abe first author was funded by the EC project
a complement to stopping criteria requiring the clasSCOMPANIONS (IST-FP6-034434), the second au-
sifier to achieve absolute performance measures bbor was funded by the EC projects BOOTStrep
fore the learning process is aborted, for instance tH&P6-028099) and CALBC (FP7-231727).
max-confidenceroposed by Zhu and Hovy (2007),

6 Discussion
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