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Abstract

Georeferenced data sets are often large and
complex. Natural Language Generation
(NLG) systems are beginning to emerge that
generate texts from such data. One of the
challenges these systems face is the gener-
ation of geographic descriptions referring to
the location of events or patterns in the data.
Based on our studies in the domain of me-
teorology we present a two staged approach
to generating geographic descriptions. The
first stage involves using domain knowledge
based on the task context to select a frame
of reference, and the second involves using
constraints imposed by the end user to select
values within a frame of reference. Because
geographic concepts are inherently vague our
approach does not guarantee a distinguish-
ing description. Our evaluation studies show
that NLG systems, because they can analyse
input data exhaustively, can produce more
fine-grained geographic descriptions that are
more useful to end users than those generated
by human experts.

1 Introduction

Disciplines such as environmental studies, geography,
geology, planning and business marketing make exten-
sive use of Geographical Information Systems (GIS);
however, despite an explosion of available mapping
software, GIS remains a specialist tool with special-
ist skills required to analyse and understand the infor-
mation presented using map displays. Complement-
ing such displays with textual summaries therefore pro-
vides an immediate niche for NLG systems.

Recently, research into NLG systems that gener-
ate text from georeferenced data has begun to emerge
(Dale et al., 2005; Turner et al., 2006; Turner et al.,
2008b; Thomas and Sripada, 2008). These systems are
required to textually describe the geographic distribu-
tion of domain variables such as road surface temper-
ature and unemployment rates. For example, descrip-
tions such as ’road surface temperatures will fall below
zero in some places in the southwest’ and ’unemploy-
ment is highest in the rural areas’ need to be generated

by these systems. One of the main challenges such sys-
tems face is the generation of geographic descriptions
such as ’in some places in the southwest’ and ’in the
rural areas’. Such a task is challenging for a number of
reasons:

• many geographic concepts are inherently vague
(see for example (Varzi, 2001) for a discussion on
this topic);

• often the underlying data sets contain little explicit
geographic information for a generation system to
make use of (Turner et al., 2008b);

• as input to a generation system, georeferenced
data is often complex, constraints imposed on the
output text (such as length) may make the tradi-
tional approach to the Referring Expression Gen-
eration (REG) problem in NLG of finding a dis-
tinguishing description implausible (Turner et al.,
2008b).

This paper looks at the problem in the context of
work the authors have carried out on summarising geo-
referenced data sets in the meteorology domain. The
main feature of our approach is that geographic de-
scriptions perform the dual function of referring to
a specific geographic locations unambiguously (tradi-
tional function of REG) and also communicate the re-
lationship between the domain information and the ge-
ography of the region (novel function of geographic de-
scriptions).

We present a two staged approach to generating ge-
ographic descriptions that involve regions. The first
stage involves using domain knowledge (meteorolog-
ical knowledge in our case) to select a frame of ref-
erence and the second involves using constraints im-
posed by the end user to select values within a frame
of reference. While generating geographic descriptions
it is not always possible to produce a distinguishing
description because of the inherent vagueness in ge-
ographic concepts. Therefore, in our case we aim to
produce a distinguishing description wherever possi-
ble, but more often allow non-distinguishing descrip-
tions in the output text, which approximate the location
of the event being described as accurately as possible.

After a short overview of the background in §2,
some empirical observations on geographic descrip-
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tions from knowledge acquisition (KA) studies we have
carried out are discussed in §3. Taking these observa-
tions into account, in §4 we describe how this problem
is approached using examples from RoadSafe (Turner
et al., 2008b), which generates spatial references to
events in georeferenced data in terms of regions that
approximate their location. It pays particular attention
to the use of different perspectives to describe the same
situation and how factors that affect what makes a good
reference in this domain are taken into account by the
system. In §5 we present a qualitative discussion of as-
pects of geographic description from the evaluations of
RoadSafe that were carried out, and how this relates to
future possible work on this topic.

2 Background

Much work on generation of spatial descriptions has
concentrated on smaller scale spaces that are imme-
diately perceivable. For example, spatial descriptions
have been studied from the perspective of robot com-
munication (Kelleher and Kruijff, 2006), 3D anima-
tion (Towns et al., 1998) and basic visual scenes (Vi-
ethen and Dale, 2008; Ebert et al., 1996). In a more
geographical context route description generation sys-
tems such as (Dale et al., 2005) and (Moulin and Ket-
tani, 1999) have had wide appeal to NLG researchers.
(Varges, 2005) also generate landmark based spatial de-
scriptions using maps from the map task dialogue cor-
pus.

RoadSafe is an NLG system that has been opera-
tionally deployed at Aerospace and Marine Interna-
tional (AMI) to produce weather forecast texts for win-
ter road maintenance. It generates forecast texts de-
scribing various weather conditions on a road network
as shown in Figure 1.

The input to the system is a data set consisting of
numerical weather predictions (NWP) calculated over
a large set of point locations across a road network. An
example static snapshot of the input to RoadSafe for
one parameter is shown in Figure 2. The complete in-
put is a series of such snapshots for a number of param-
eters (see (Turner et al., 2008b) for details).

In applications such as RoadSafe, the same geo-
graphical situation can be expressed in a variety of dif-
ferent ways dependent upon the perspective employed,
henceforth termed as a frame of reference. Space (ge-
ographic or otherwise) is inherently tied to a frame of
reference that provides a framework for assigning dif-
ferent values to different locations in space. For ex-
ample, locations on Earth’s surface can be specified by
latitude and longitude which provide an absolute frame
of reference for geographic space. Cardinal directions
such as {North, East, West and South} provide an alter-
native frame of reference for geographic space. As was
noted in (Turner et al., 2008b), characterising the data
in terms of frames of reference is important because
often the only geographic information input data con-
tains are coordinates (latitude and longitude), while the

Overview: Road surface temperatures will fall
below zero on all routes during the late evening until
around midnight.

Wind (mph): NE 15-25 gusts 50-55 this afternoon
in most places, backing NNW and easing 10-20
tomorrow morning, gusts 30-35 during this evening
until tomorrow morning in areas above 200M.

Weather: Snow will affect all routes at first,
clearing at times then turning moderate during
tonight and the early morning in all areas, and
persisting until end of period. Ice will affect
all routes from the late evening until early morn-
ing. Hoar frost will affect some southwestern
and central routes by early morning. Road surface
temperatures will fall slowly during the evening
and tonight, reaching zero in some far southern
and southwestern places by 21:00. Fog will af-
fect some northeastern and southwestern routes dur-
ing tonight and the early morning, turning freezing
in some places above 400M.

Figure 1: RoadSafe forecast text showing geographic
descriptions underlined

output texts are required to employ a wider choice of
frames of reference such as altitude, direction, coastal
proximity and population. In RoadSafe the frames of
reference employed are always absolute according to
Levinson’s terminology (Levinson, 2003).

Because the geographic descriptions in RoadSafe do
not fit the traditional formulation of the REG problem
as finding the most distinguishing description, the most
pressing question to address is what makes an adequate
reference strategy in this case? This is of course a dif-
ficult question and is reliant to a large extent on the
communication goal of the system. This paper looks
into this problem in the context of the RoadSafe appli-
cation, that uses a simple spatial sublanguage to gener-
ate the types of descriptions required in this application
domain.

3 Observations on geographic
descriptions from the weather domain

In this section we summarise some empirical observa-
tions on how meteorologists use geographic descrip-
tions in weather forecasts. It describes work carried
out over the course of the RoadSafe project involving
knowledge acquisition (KA) studies with experts on
summarising georeferenced weather data, observations
from data-text corpora (one aimed at the general pub-
lic and one aimed at experts) and a small study with
people from the general public. During RoadSafe we
built two prototype georeferenced data-to-text systems
that summarised georeferenced weather data: one that
produces pollen forecasts based on very simple data
(Turner et al., 2006), and the RoadSafe system, which
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Figure 2: Input data for ‘reaching zero in some far southern and southwestern places’ in Figure 1

generates road ice forecasts based on complex data.
Small corpora consisting of forecast texts and their un-
derlying NWP data were collected in both application
domains. Using techniques described in (Reiter et al.,
2005) these corpora have been analysed to understand
the experts’ strategies to describe georeferenced data.

The major finding from our studies is the fact that
experts tailor their geographic descriptions to the task
context. Not only does the geographic knowledge of
the end user have to be taken into account in their de-
scriptions, but also how the geography of the region
causes events and patterns in the data. The latter con-
sideration has a large affect on the frame of reference
experts employ to describe particular geographic situ-
ations. §3.1 looks at these observations from the point
of view of end users of weather forecasts, while §3.2
looks at the descriptive strategies of experts.

3.1 End users’ geographic knowledge

It is a well known and accepted fact that geographic
knowledge varies greatly between individuals. To il-
lustrate this point 24 students of a further education
college in Scotland were asked a geography question,
without reference to a map. Which of four major place
names in Scotland (Ayr, Glasgow, Isle of Arran and
Stirling) did they consider to be in the south west of
the country? The responses showed a great variation
in the subjects’ geographic knowledge. Half of all sub-

jects considered Glasgow and Ayr to be in the south
west, one third considered Stirling to be in the south
west and most surprisingly only four considered this to
be true of the Isle of Arran. The results of this study
are surprising because Stirling is the least south west-
erly place in the list while Isle of Arran is the most
south westerly. This study actually agrees well with
the studies in psychology on variation in individuals’
mental representation of their geographic environment
(Tversky, 1993).

Contrast this with the detailed knowledge of a road
engineer who the RoadSafe texts are intended for. Road
engineers rely upon a large amount of local geographic
knowledge and experience when treating roads. In-
deed, their spatial mental models are specified at a
much finer detail. For example, they get to know
where frost hollows tend to form and also come to learn
of particular unexpected black spots, such as where
garages allow hose water to cover part of a road during
winter. This is an important point to be taken into ac-
count when communicating georeferenced data as geo-
graphic descriptions should be sensitive to that knowl-
edge because it dictates how accurately they will be in-
terpreted by the end user.

Both task context and structural features of data (e.g.
number of observations, granularity of measurement),
as well as functional features of data (how the entities
being described function in space) influence how it is
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described geographically. Analysis of a small pollen
forecast corpus (Turner et al., 2006) revealed that fore-
cast texts, contain a rich variety of spatial descrip-
tions for a location despite the data containing only six
data points for the whole of Scotland. In general, the
same region could be referred to by its proper name
e.g. Sutherland and Caithness, by its relation to a well
known geographical landmark e.g. North of the Great
Glen, or simply by its geographical location on the map
e.g. the far North and Northwest. In other words, ex-
perts characterise the limited geographic information
contained within the data according to the task context.
As the consumers of such forecasts are the general pub-
lic, there is a greater onus on the expert to make the
texts more interesting, unlike more restricted domains
such as marine (see (Reiter et al., 2005)) or road ice
forecasts that require consistent terminology.

3.2 Experts’ descriptive strategy
Work in psychology has suggested that meteorologists
use a dynamic mental model to arrive at an inference to
predict and explain weather conditions (Trafton, 2007).
Vital to this process is also their ability to take into
account how the geography of a region influences the
general weather conditions. Understanding the weath-
ers interaction with the terrain enables them to make
reliable meteorological inferences particularly when a
certain pattern in the data may appear random. It is
often unfeasible for a human forecaster to spend large
amounts of time inspecting every data point in a de-
tailed visual display. Using experience and expertise a
forecaster can use her mental model to ‘play out dif-
ferent hypothetical situations’ (Trafton, 2007, p.2) and
thus arrive at a plausible explanation for an apparently
random weather pattern. Consider the following exam-
ple description of a weather event by an expert taken
from our road ice corpus:

• ‘exposed locations may have gales at times.’

This is a good example of a forecaster using her me-
teorological expertise to make an inference about a ran-
dom weather pattern. Clearly there is no way from
inspection of a map one can ascertain with certainty
where the exposed locations are in a region. How-
ever, an expert’s knowledge of how the referent entity
(the wind parameter) is affected by geographical fea-
tures allow her to make such an inference. These prag-
matic factors play a large part in determining an experts
descriptive strategy, where certain frames of reference
may be considered more appropriate to describe certain
weather events (Turner et al., 2008a). This comes from
weather forecasters’ explicit knowledge of spatial de-
pendence (the fact that observations points in georefer-
enced data at nearby locations are related, and the val-
ues of their non-spatial attributes will be influenced by
certain geographical features). This is one of the most
important and widely understood fact about spatial data
from an analysis point of view, and one of the main rea-
sons that it requires special treatment in comparison to

other types of non-spatial data. This fact is most clearly
outlined by an observation made in (Tobler, 1970, p.3)
that ‘everything is related to everything else, but near
things are more related than distant things’. This is
commonly known as the first law of geography and still
resonates strongly today amongst geographers (Miller,
2004). The implication of Tobler’s first law (TFL) is
that samples in spatial data are not independent, and
observations located at nearby locations are more likely
to be similar. Recasting this into meteorological terms,
exposed locations are more likely to be windier and el-
evated areas colder for example.

In fact, an analogy can be drawn between how me-
teorologists consider perspectives in their descriptive
strategy and the preferred attribute list in the semi-
nal work on REG by (Dale and Reiter, 1995). In
their specification of an algorithm for generating refer-
ring expressions content selection is performed through
the iteration over a pre-determined and task specific
list of attributes. In our context, preferred attributes
are replaced by preferred frames of reference. This
means describing georeferenced data requires situa-
tional knowledge of when to apply a particular frame
of reference given a particular geographic distribution
to describe.

The most striking observation about the expert strat-
egy is that the geographic descriptions in the corpora
are approximations of the input (Turner et al., 2008a).
The input is highly overspecified with 1000s of points
for a small forecast region, sampled at sub hourly inter-
vals during a forecast period. Meteorologists use vague
descriptions in the texts to refer to weather events such
as:

• ‘in some places in the south, temperatures will
drop to around zero or just above zero.’

There are a number of reasons they use this descrip-
tive strategy: the forecasts are highly compressed sum-
maries, as a few sentences describes megabytes of data;
very specific descriptions are avoided unless the pat-
tern in the data is very clear cut; experts try to avoid
misinterpretation, road engineers often have detailed
local geographic knowledge and experts may not be
aware the more provincial terminology they use to refer
to specific areas. The following section demonstrates
how the problem of generating such descriptions is ad-
dressed in RoadSafe.

4 Generating Approximate Geographic
Descriptions

In its current form, where summaries are meant to give
a brief synopsis of conditions to the user, RoadSafe
follows the approach taken by forecasters as discussed
previously. This is unconventional in comparison to
traditional REG approaches that aim to rule out all dis-
tractors in the domain (properties that are not true of
the referent). In a description such as ‘reaching zero
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in some places above 100M by 16:00’ above, distrac-
tors can be defined as the set of points above 100M that
do not satisfy the premise that temperatures will drop
below zero. More succinctly, these can be defined as
false positives. In fact, the problem can be formulated
as a trade off between false positives and false nega-
tives, where false negatives constitute points that are
wrongly omitted from the description. For road grit-
ting purposes, costs can be assigned to each type of
error: road accidents in the case of false negatives and
wasted salt in the case of false positives. As the task
dictates, with the higher associated cost it is impera-
tive that a referring expression eliminates all false neg-
atives. Ideally a truly optimal description should then
seek to minimise false positives as far as possible, thus
reducing the overall cost for the reader. While reduc-
ing errors descriptions should also be meteorologically
correct, as discussed in the previous section. Using cer-
tain frames of reference in certain contexts may result
in a poor inference about a particular weather situation
(Turner et al., 2008b).

Given this domain knowledge, we can formulate
constraints for what makes a good approximate geo-
graphic description in this task context:

1. Meteorological correctness (inferencing about
causal relationships).

2. Minimise false positives.

3. Complete coverage of the event being described
(no false negatives).

These constraints have been realized in a two staged
approach to generating geographic descriptions. The
first stage involves using domain knowledge (meteo-
rological knowledge in our case) to select a frame of
reference, while the second accounts for end-user con-
straints to select values within that frame of reference.
Before we describe the individual stages, two necessary
pre-processing stages for generation are described.

4.1 Geographic characterisation
As noted in §2, observations in georeferenced data of-
ten contain little explicit geographic information apart
from their coordinates. Geographic characterisation is
responsible for assigning a set of qualitative descrip-
tors to each observation based upon a set of reference
frames, such that observations can be collectively dis-
tinguished from each other. This provides both a cri-
terion for partitioning the data, and a set of properties
to generate geographic descriptions. A frame of ref-
erence in this context consists of a set of descriptions
based upon a common theme such as coastal proximity
e.g. {inland,coastal} or population e.g. {urban,rural}.
In RoadSafe four frames of reference have been imple-
mented: altitude, coastal proximity, population and di-
rection. Those that make use of human (population)
and physical geographical features (altitude, coastal
Proximity) can be represented by existing GIS data

sets; therefore, in these cases geographic characterisa-
tion is simply responsible for mapping observation co-
ordinates to areas of these data sets. In contrast, direc-
tions are abstract and require definition. In RoadSafe,
geographic characterisation maps each observation to a
set of directional areas with crisp boundaries, described
in the following section.

4.2 Pattern formation

To generate descriptions, the geographic distribution
of the event to be communicated has to be approxi-
mated using data analysis techniques such as cluster-
ing. While not new to data-to-text systems, the novel
aspect here is that the data is partitioned based upon
the frames of reference that make up the spatial sublan-
guage of the system. This process summarises the lo-
cation of the event by measuring its density within each
frame of reference’s set of descriptions. An example of
such a distribution is shown in Figure 3.

Reference Frame Description Proportion
Altitude

100M 0.033
200M: 0.017
300M 0.095
400M 0.042

Direction
SSE 0.037
SSW 0.014
WSW: 0.048
TSE 0.489
TSW 0.444

Population
Rural: 0.039

Figure 3: Density of zero temperatures in Figure 2

While the descriptions within each frame of refer-
ence with human and geographical features are dictated
by the granularity of available GIS data sets (altitude
resolution for example), the boundaries of directional
areas require definition. In RoadSafe, because some
flexibility in the generated geographic descriptions is
desirable, the system uses a four by four grid to split
the domain into sixteen equally sized directional areas
defined by their their latitude longitude extents. This
configuration is shown below where T stands for true
and C for central in this case:

TNW NNW NNE TNE
WNW CNW CNE ENE
WSW CSW CSE ESE
TSW SSW SSE TSE

Using a simple set of adjacency matrices based on
this grid, RoadSafe represents a set of descriptions de-
picting the traditional eight main points of the compass
plus a further five that we term gradable (central, far
south, far north, far east and far west). Alternative con-
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figurations using a greater number of gradable descrip-
tions are possible. These matrices are used by the mi-
croplanner to choose attributes to refer to events using
the direction frame of reference. One example matrix
for each category of directional description are listed
below. In each matrix a value of 1 indicates that the
event has a non-zero density in that area.

Gradable

• Far South:

{TSW,SSW,SSE, TSE} =




0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1




Intercardinal

• South West:

{TSW,WSW,SSW,CSW} =




0 0 0 0
0 0 0 0
1 1 0 0
1 1 0 0




Cardinal

• South:

SouthEast ∪ SouthWest =




0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1




In what follows we describe how our two stage strat-
egy is implemented in our system.

4.3 Frame of reference selection
The main content selection decision made by the doc-
ument planner is the choice of which frame of refer-
ence to describe a specific weather event such as wind
gusts increasing or road surface temperature falling be-
low zero. This decision is based upon both the location
of the event as discussed previously, and situational
knowledge stored in the knowledge base of the system.
Frames of reference where all descriptions have non-
zero densities are not considered. Situational knowl-
edge consists of the probability of using each frame of
reference given the context (the weather parameter to
describe), and is based on corpus frequencies. Rather
than simply choosing the frame of reference with the
highest density, weighting each frame of reference in
this way ensures meteorological correctness as far as
possible.

4.4 Attribute selection
Once a frame of reference has been selected the mi-
croplanner maps the descriptions to abstract syntax
templates. As this is fairly trivial for most frames of

reference in RoadSafe, because they contain a limited
number of descriptions, we will provide an example
how this is accomplished for directional descriptions.
The input to the microplanner is a structure comprised
of the density of the event within the containing area
plus its associated adjacency matrix as shown in Figure
4.

Location {Pointratio : 0.21
Relation : in

Container :




0 0 0 0
0 0 0 0
1 0 0 0
1 1 1 1




}

Figure 4: REG input to describe Figure 2

The attribute selection algorithm is based upon four
constraints incorporating the first two principles of the
descriptive strategy outlined at the beginning of this
section. They are:

1. Minimise false positives - The description de-
scribing the distribution should introduce the least
number of distractors. For the above example distri-
bution the set {South} ensures coverage but introduces
three distractors: CSW, CSE and ESE. While the set
of directions {Far South, South West} only introduces
one: CSW. In general, a measure of how distinguishing
a description x is of a distribution y is given by:

distinguishing(x, y) =
|x ∩ y|
|x|

Thus, for a distribution z and descriptions x and y,
x is a more distinguishing description of z than y iff
distinguishing(x,z) > distinguishing(y,z).

2. Coverage (no false negatives) - The descrip-
tion should completely describe the distribution. The
set of directions {Far South,South West} completely
describes the above example distribution while {Far
South} does not. For the set of directions x and dis-
tribution y, the predicate covers(x, y) is true iff

|x ∩ y|
|y| = 1

3. Brevity - The set of directions should yield the
shortest description of the distribution. For the above
example distribution there is only one set of direc-
tions that ensures complete coverage. But when faced
with a choice for example {South} and {South West,
South East} brevity constraint favours {South}. In gen-
eral,the set x should be chosen over y because it is a
shorter description. For the distribution z and sets of
directions x, y with equal coverage of z, x is a shorter
description of z than y iff |x| < |y|.

4. Ordering: If two descriptions have equal cov-
erage, cardinality and are equally distinguishing for a
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given distribution, a description is chosen based upon
a predefined preference ordering. Each type of prop-
erty is assigned a score: Cardinal = 3, Intercardinal =
2 and Gradeable = 1. Therefore, the set of directions
{Far South, South West} would be assigned a value of
3.

In classification terms, the first constraint can be con-
sidered as precision and the second as recall. The algo-
rithm firstly ranks each individual description in the set
described in §4.2 according to the constraints outlined
above. If a single directional term cannot be used to de-
scribe the distribution it then incrementally tries to find
the highest ranking combination of directions that sat-
isfy the coverage constraint and do not cover the whole
region; otherwise, the algorithm terminates by return-
ing the empty set. So, for the example input provided
at the beginning of this section it would return the ab-
stract syntax template shown in Figure 4. Quantifiers
are selected by applying a simple threshold to the point
ratio (which is recalculated should distractors be intro-
duced): some = > 0, many = > 0.5, most = > 0.7.
This would be realised as ‘in some far southern and
southwestern places’.




Type: LocationSyntax
Head: | in |

Object:




Head: | place |

Features:

[
definite:false
plural:true

]

Quantifier: | some |

Modifier:




Head: | and |

Coord1

[
Head: | southern |
Modifier: | far |

]

Coord2
[
Head | southwestern |

]










Figure 5: Phrase syntax for input in Figure 4

5 Evaluation and Discussion

RoadSafe has been evaluated in post-edit evaluations
with meteorologists at AMI and by asking potential
users to compare the quality of the summaries to corpus
texts based on the same data. While evaluations have
been intended to test the overall quality of the texts
we have received much feedback on the geographic de-
scriptions the system generates. We have also carried
out some comparison of the direction descriptions to
those in the corpus, by annotating the corpus descrip-
tions with our adjacency matrices and running them
through the system. Descriptions were compared by
calculating the Jaccard coefficient between the two ma-
trices. Overall the mean score was 0.53, with a fairly
low perfect recall percentage of 30%. The low pre-
cision score is perhaps not surprising as the descrip-
tions generated by RoadSafe are crisp and the corpus
descriptions are not solely based on the input data we

have available. However, the majority (67%) of par-
tial alignments were the result of RoadSafe producing
a subset of the human desciprition, e.g. northwest ver-
sus north, which indicates the system descriptions are
more fine grained. In terms of the human descriptions,
what was most apparent from this evaluation is the fact
that they almost exclusively used the eight major points
of the compass.

In terms of feedback experts have commented that
generally the location descriptions generated by the
system are accurate but should be more general. Of
97 post edited texts generated by the system 20% of
the geographic descriptions were edited.

Most notable was feedback from twenty one road
maintenance personnel, who participated in an exper-
iment asking them to compare expert written texts to
RoadSafe generated texts based on the same five data
sets. The details of this experiment are to be published
elsewhere; however, one of the main reasons they gave
for liking the style of the generated texts was because
they contained more geographic descriptions than the
corresponding human ones. The fact that a data-to-text
system can analyse every data point is an advantage. In
contrast experts have a huge amount of knowledge and
experience to draw upon and this reflects in their more
general and conservative approach in their geographic
descriptions. Perhaps one of their biggest criticisms
of the system as a whole is that it doesn’t do a good
job of generating geographic descriptions that involve
motion, such as ‘a band of rain works east across the
area’. Indeed, this was the most edited type of gener-
ated phrase during the post-edit evaluation. There has
been little work to our knowledge on describing motion
in the NLG literature.

There are many aspects of the generation of geo-
graphic that haven’t been addressed in this paper and
warrant further exploration. Particularly at the con-
tent level, there is a need to consider how to account
for semantic composition effects caused by overlaying
frames of reference. Another question that arises is
when is it best to use an intensional rather than exten-
sional description. There is also the question of when
to use descriptions that involve relations or gradable
properties. These are all choices that a data-to-text sys-
tem can make that will affect how the summary is in-
terpreted.

6 Conclusions

This paper has described an approach for generating
approximate geographic descriptions involving regions
in the RoadSafe system, which is based on empirical
work carried out in the weather domain. Our strat-
egy takes into account constraints on what constitutes a
good reference in the application domain described, by
taking into account pragmatic factors imposed by both
the task context and the end user. What is most appar-
ent from our empirical studies is that geographic de-
scriptions describing georeferenced data are influenced
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by not only by location but also task context. An im-
portant observation based on our evaluation studies is
that NLG systems by virtue of their ability to analyse
input data exhaustively can generate descriptions that
are more useful to end users than those generated by
human experts.
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