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Abstract

The most accurate unsupervised word seg-
mentation systems that are currently avail-
able (Brent, 1999; Venkataraman, 2001;
Goldwater, 2007) use a simple unigram
model of phonotactics. While this sim-
plifies some of the calculations, it over-
looks cues that infant language acquisition
researchers have shown to be useful for
segmentation (Mattys et al., 1999; Mattys
and Jusczyk, 2001). Here we explore the
utility of using bigram and trigram phono-
tactic models by enhancing Brent’s (1999)
MBDP-1 algorithm. The results show
the improved MBDP-Phon model outper-
forms other unsupervised word segmenta-
tion systems (e.g., Brent, 1999; Venkatara-
man, 2001; Goldwater, 2007).

1 Introduction

How do infants come to identify words in the
speech stream? As adults, we break up speech
into words with such ease that we often think
that there are audible pauses between words in the
same sentence. However, unlike some written lan-
guages, speech does not have any completely reli-
able markers for the breaks between words (Cole
and Jakimik, 1980). In fact, languages vary on how
they signal the ends of words (Cutler and Carter,
1987), which makes the task even more daunting.
Adults at least have a lexicon they can use to rec-
ognize familiar words, but when an infant is first
born, they do not have a pre-existing lexicon to
consult. In spite of these challenges, by the age of
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six months infants can begin to segment words out
of speech (Bortfeld et al., 2005). Here we present
an efficient word segmentation system aimed to
model how infants accomplish the task.

While an algorithm that could reliably extract
orthographic representations of both novel and fa-
miliar words from acoustic data is something we
would like to see developed, following earlier re-
searchers, we simplify the problem by using a text
that does not contain any word boundary markers.
Hereafter, we use the phrase “word segmentation”
to mean some process which adds word boundaries
to a text that does not contain them.

This paper’s focus is on unsupervised, incre-
mental word segmentation algorithms; i.e., those
that do not rely on preexisting knowledge of a par-
ticular language, and those that segment the cor-
pus one utterance at a time. This is in contrast
to supervised word segmentation algorithms (e.g.,
Teahan et al., 2000), which are typically used for
segmenting text in documents written in languages
that do not put spaces between their words like
Chinese. (Of course, unsupervised word segmen-
tation algorithms also have this application.) This
also differs from batch segmentation algorithms
(Goldwater, 2007; Johnson, 2008b; Fleck, 2008),
which process the entire corpus at least once be-
fore outputting a segmentation of the corpus. Un-
supervised incremental algorithms are of interest
to some psycholinguists and acquisitionists inter-
ested in the problem of language learning, as well
as theoretical computer scientists who are inter-
ested in what unsupervised, incremental models
are capable of achieving.

Phonotactic patterns are the rules that deter-
mine what sequences of phonemes or allophones
are allowable within words. Learning the phono-
tactic patterns of a language is usually modeled
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separately from word segmentation; e.g., current
phonotactic learners such as Coleman and Pierre-
humbert (1997), Heinz (2007), or Hayes and Wil-
son (2008) are given word-sized units as input.

However, infants appear to simultaneously learn
which phoneme combinations are allowable within
words and how to extract words from the input. It
is reasonable that the two processes feed into one
another, and when infants acquire a critical mass of
phonotactic knowledge, they use it to make judge-
ments about what phoneme sequences can occur
within versus across word boundaries (Mattys and
Jusczyk, 2001). We use this insight, also suggested
by Venkataraman (2001) and recently utilized by
Fleck (2008) in a different manner, to enhance
Brent’s (1999) model MBDP-1, and significantly
increase segmentation accuracy. We call this mod-
ified segmentation model MBDP-Phon.

2 Related Work

2.1 Word Segmentation

The problem of unsupervised word segmentation
has attracted many earlier researchers over the
past fifty years (e.g., Harris, 1954; Olivier, 1968;
de Marcken, 1995; Brent, 1999). In this section,
we describe the base model MBDP-1, along with
two other segmentation approaches, Venkataraman
(2001) and Goldwater (2007). In §4, we compare
MBDP-Phon to these models in more detail. For
a thorough review of word segmentation literature,
see Brent (1999) or Goldwater (2007).

2.1.1 MBDP-1
Brent’s (1999) MBDP-1 (Model Based Dy-

namic Programming) algorithm is an implemen-
tation of the INCDROP framework (Brent, 1997)
that uses a Bayesian model of how to generate an
unsegmented text to insert word boundaries. The
generative model consists of five steps:

1. Choose a number of word types, n.

2. Pick n distinct strings from Σ+#, which will
make up the lexicon, L. Entries in L are la-
beled W1 . . .Wn. W0 = $, where $ is the
utterance boundary marker.

3. Pick a function, f , which maps word types to
their frequency in the text.

4. Choose a function, s, to map positions in the
text to word types.

5. Concatenate the words in the order specified
by s, and remove the word delimiters (#).

It is important to note that this model treats the
generation of the text as a single event in the prob-
ability space, which allows Brent to make a num-
ber of simplifying assumptions. As the values for
n, L, f, and s completely determine the segmenta-
tion, the probability of a particular segmentation,
wm, can be calculated as:

P (wm) = P (n, L, f, s) (1)

To allow the model to operate on one utterance at
a time, Brent states the probability of each word in
the text as a recursive function, R(wk), where wk

is the text up to and including the word at position
k, wk. Furthermore, there are two specific cases
for R: familiar words and novel words. If wk is
familiar, the model already has the word in its lex-
icon, and its score is calculated as in Equation 2.

R(wk) =
f(wk)

k
·
(

f(wk)− 1
f(wk)

)2

(2)

Otherwise, the word is novel, and its score is cal-
culated using Equation 31 (Brent and Tao, 2001),

R(wk) =
6
π2 · n

k · PΣ(a1)...PΣ(aq)
1−PΣ(#) ·

(
n−1

n

)2 (3)

where PΣ is the probability of a particular
phoneme occurring in the text. The third term of
the equation for novel words is where the model’s
unigram phonotactic model comes into play. We
detail how to plug a more sophisticated phonotac-
tic learning model into this equation in §3. With
the generative model established, MBDP-1 uses a
Viterbi-style search algorithm to find the segmen-
tation for each utterance that maximizes the R val-
ues for each word in the segmentation.

Venkataraman (2001) notes that considering the
generation of the text as a single event is un-
likely to be how infants approach the segmenta-
tion problem. However, MBDP-1 uses an incre-
mental search algorithm to segment one utterance
at a time, which is more plausible as a model of
infants’ word segmentation.

1Brent (1999) originally described the novel word score

as R(wk) = 6
π2 · nk

k
· Pσ(Wnk

)

1−nk−1
nk

·
∑nk

j=1
Pσ(Wj)

·
(

nk−1
nk

)2

,

where Pσ is the probability of all the phonemes in the word
occurring together, but the denominator of the third term was
dropped in Brent and Tao (2001). This change drastically
speeds up the model, and only reduces segmentation accuracy
by ∼ 0.5%.

66



2.1.2 Venkataraman (2001)
MBDP-1 is not the only incremental unsuper-

vised segmentation model that achieves promis-
ing results. Venkataraman’s (2001) model tracks
MBDP-1’s performance so closely that Batchelder
(2002) posits that the models are performing the
same operations, even though the authors describe
them differently.

Venkataraman’s model uses a more traditional,
smoothed n-gram model to describe the distribu-
tion of words in an unsegmented text.2 The most
probable segmentation is retrieved via a dynamic
programming algorithm, much like Brent (1999).

We use MBDP-1 rather than Venkataraman’s
approach as the basis for our model only because it
was more transparent how to plug in a phonotactic
learning module at the time this project began.

2.1.3 Goldwater (2007)
We also compare our results to a segmenter put

forward by Goldwater (2007). Goldwater’s seg-
menter uses an underlying generative model, much
like MBDP-1 does, only her language model is
described as a Dirichlet process (see also John-
son, 2008b). While this model uses a unigram
model of phoneme distribution, as did MBDP-1, it
implements a bigram word model like Venkatara-
man (2001). A bigram word model is useful in
that it prevents the segmenter from assuming that
frequent word bigrams are not simply one word,
which Goldwater observes happen with a unigram
version of her model.

Goldwater uses a Gibbs sampler augmented
with simulated annealing to sample from the pos-
terior distribution of segmentations and deter-
mine the most likely segmentation of each utter-
ance.3 This approach requires non-incremental
learning.4 We include comparison with Goldwa-
ter’s segmenter because it outperforms MBDP-1
and Venkataraman (2001) in both precision and
recall, and we are interested in whether an incre-
mental algorithm supplemented with phonotactic
learning can match its performance.

2.2 Phonotactic Learning
Phonotactic acquisition models have seen a surge
in popularity recently (e.g., Coleman and Pierre-

2We refer the reader to Venkataraman (2001) for the de-
tails of this approach.

3We direct the reader to Goldwater (2007) for details.
4In our experiments and those in Goldwater (2007), the

segmenter runs through the corpus 1000 times before out-
putting the final segmentation.

humbert, 1997; Heinz, 2007; Hayes and Wilson,
2008). While Hayes and Wilson present a more
complex Maximum Entropy phonotactic model in
their paper than the one we add to MBDP-1, they
also evaluate a simple n-gram phonotactic learner
operating over phonemes. The input to the mod-
els is a list of English onsets and their frequency
in the lexicon, and the basic trigram learner simply
keeps track of the trigrams it has seen in the cor-
pus. They test the model on novel words with ac-
ceptable rhymes—some well-formed (e.g., [kIp]),
and some less well-formed (e.g., [stwIk])—so any
ill-formedness is attributable to onsets. This ba-
sic trigram model explains 87.7% of the variance
in the scores that Scholes (1966) reports his 7th
grade students gave when subjected to the same
test. When Hayes and Wilson run their Maximum
Entropy phonotactic learning model with n-grams
over phonological features, the r-score increases
substantially to 95.6%.

Given the success and simplicity of the basic n-
gram phonotactic model, we choose to integrate
this with MBDP-1.

3 Extending MBDP-1 with Phonotactics

The main contribution of our work is adding
a phonotactic learning component to MBDP-1
(Brent, 1999). As we mention in §2.1.1, the third
term of Equation 3 is where MBDP-1’s unigram
phonotactic assumption surfaces. The original
model simply multiplies the probabilities of all the
phonemes in the word together and divides by one
minus the probability of a particular phoneme be-
ing the word boundary to come up with probabil-
ity of the phoneme combination. The order of the
phonemes in the word has no effect on its score.
The only change we make to MBDP-1 is to the
third term of Equation 3. In MBDP-Phon this be-
comes

q∏
i=0

PMLE(ai . . . aj) (4)

where ai . . . aj is an n-gram inside a proposed
word, and a0 and aq are both the word boundary
symbol, #5.

It is important to note that probabilities calcu-
lated in Equation 4 are maximum likelihood esti-
mates of the joint probability of each n-gram in the
word. The maximum likelihood estimate (MLE)

5The model treats word boundary markers like a phoneme
for the purposes of storing n-grams (i.e., a word boundary
marker may occur anywhere within the n-grams).
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for a particular n-gram inside a word is calculated
by dividing the total number of occurrences of that
n-gram (including in the word we are currently ex-
amining) by the total number of n-grams (includ-
ing those in the current word). The numbers of
n-grams are computed with respect to the obtained
lexicon, not the corpus, and thus the frequency of
lexical items in the corpus does not affect the n-
gram counts, just like Brent’s unigram phonotactic
model and other phonotactic learning models (e.g.,
Hayes and Wilson, 2008).

We use the joint probability instead of the con-
ditional probability which is often used in compu-
tational linguistics (Manning and Schütze, 1999;
Jurafsky and Martin, 2000), because of our intu-
ition that the joint probability is truer to the idea
that a phonotactically well-formed word is made
up of n-grams that occur frequently in the lexicon.
On the other hand, the conditional probability is
used when one tries to predict the next phoneme
that will occur in a word, rather than judging the
well-formedness of the word as a whole.6

We are able to drop the denominator that was
originally in Equation 3, because PΣ(#) is zero
for an n-gram model when n > 1. This sim-
ple modification allows the model to learn what
phonemes are more likely to occur at the begin-
nings and ends of words, and what combinations
of phonemes rarely occur within words.

What is especially interesting about this mod-
ification is that the phonotactic learning compo-
nent estimates the probabilities of the n-grams by
using their relative frequencies in the words the
segmenter has extracted. The phonotactic learner
is guaranteed to see at least two valid patterns in
every utterance, as the n-grams that occur at the
beginnings and ends of utterances are definitely
at the beginnings and ends of words. This al-
lows the learner to provide useful information to
the segmenter even early on, and as the segmenter
correctly identifies more words, the phonotactic
learner has more correct data to learn from. Not
only is this mutually beneficial process supported
by evidence from language acquisitionists (Mat-
tys et al., 1999; Mattys and Jusczyk, 2001), it also
resembles co-training (Blum and Mitchell, 1998).
We refer to the extended version of Brent’s model

6This intuition is backed up by preliminary results sug-
gesting MBDP-Phon performs better when using MLEs of the
joint probability as opposed to conditional probability. There
is an interesting question here, which is beyond the scope of
this paper, so we leave it for future investigation.

described above as MBDP-Phon.

4 Evaluation

4.1 The Corpus
We run all of our experiments on the Bernstein-
Ratner (1987) infant-directed speech corpus from
the CHILDES database (MacWhinney and Snow,
1985). This is the same corpus that Brent (1999),
Goldwater (2007), and Venkataraman (2001) eval-
uate their models on, and it has become the de
facto standard for segmentation testing, as unlike
other corpora in CHILDES, it was phonetically
transcribed.

We examine the transcription system Brent
(1999) uses and conclude some unorthodox
choices were made when transcribing the corpus.
Specifically, some phonemes that are normally
considered distinct are combined into one symbol,
which we call a bi-phone symbol. These phonemes
combinations include diphthongs and vowels fol-
lowed by /ô/. Another seemingly arbitrary deci-
sion is the distinction between stressed and un-
stressed syllabic /ô/ sound (i.e., there are differ-
ent symbols for the /ô/ in “butter” and the /ô/ in
“bird”) since stress is not marked elsewhere in the
corpus. To see the effect of these decisions, we
modified the corpus so that the bi-phone symbols
were split into two7 and the syllabic /ô/ symbols
were collapsed into one.

4.2 Accuracy
We ran MBDP-1 on the original corpus, and the
modified version of the corpus. As illustrated by
Figures 1 and 2, MBDP-1 performs worse on the
modified corpus with respect to both precision and
recall. As MBDP-1 and MBDP-Phon are both iter-
ative learners, we calculate segmentation precision
and recall values over 500-utterance blocks. Per
Brent (1999) and Goldwater (2007), precision and
recall scores reflect correctly segmented words,
not correctly identified boundaries.

We also test to see how the addition of an n-gram
phonotactic model affects the segmentation accu-
racy of MBDP-Phon by comparing it to MBDP-
1 on our modified corpus.8 As seen in Figure 3,
MBDP-Phon using bigrams (henceforth MBDP-
Phon-Bigrams) is consistently more precise in its

7We only split diphthongs whose first phoneme can occur
in isolation in English, so the vowels in “bay” and “boat” were
not split.

8We also compare MBDP-Phon to MBDP-1 on the origi-
nal corpus. The results are given in Tables 1 and 2.
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Figure 1: Precision of MBDP-1 on both corpora.

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

500 1500 2500 3500 4500 5500 6500 7500 8500 9500

R
e
c
a
ll

Utterances Processed

Modified Original

Figure 2: Recall of MBDP-1 on both corpora.

segmentation than MBDP-1, and bests it by∼ 18%
in the last block. Furthermore, MBDP-Phon-
Bigrams significantly outpaces MBDP-1 with re-
spect to recall only after seeing 1000 utterances,
and finishes the corpus ∼ 10% ahead of MBDP-
1 (see Figure 4). MBDP-Phon-Trigrams does not
fair as well in our tests, falling behind MBDP-1
and MBDP-Phon-Bigrams in recall, and MBDP-
Phon-Bigrams in precision. We attribute this poor
performance to the fact that we are not currently
smoothing the n-gram models in any way, which
leads to data sparsity issues when using trigrams.
We discuss a potential solution to this problem in
§5.

Having established that MBDP-Phon-Bigrams
significantly outperforms MBDP-1, we compare
its segmentation accuracy to those of Goldwater
(2007) and Venkataraman (2001).9 As before, we

9We only examine Venkataraman’s unigram model, as his
bigram and trigram models perform better on precision, but
worse on recall.
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Figure 3: Precision of MBDP-1 and MBDP-Phon
on modified corpus.
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Figure 4: Recall of MBDP-1 and MBDP-Phon on
modified corpus.

run the models on the entire corpus, and then mea-
sure their performance over 500-utterance blocks.

MBDP-Phon-Bigrams edges out Goldwater’s
model in precision on our modified corpus, with
an average precision of 72.79% vs. Goldwa-
ter’s 70.73% (Table 1). If we drop the first 500-
utterance block for MBDP-Phon-Bigrams because
the model is still in the early learning stages,
whereas Goldwater’s has seen the entire corpus, its
average precision increases to 73.21% (Table 1).
When considering the recall scores in Table 2,
it becomes clear that MBDP-Phon-Bigrams has a
clear advantage over the other models. Its aver-
age recall is higher than or nearly equal to both
of the other models’ maximum scores. Since
Venkataraman’s (2001) model performs similarly
to MBDP-1, it is no surprise that MBDP-Phon-
Bigrams achieves higher precision and recall.
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MBDP-
Phon-
Bigrams

Venkataraman Goldwater

Original: Utterances 0 to 9790
Avg. 72.84% 67.46% 67.87%
Max. 79.91% 71.79% 71.98%
Min. 63.97% 61.77% 61.87%

Modified: Utterances 0 to 9790
Avg. 72.79% 59.64% 70.73%
Max. 80.60% 66.84% 74.61%
Min. 64.78% 52.54% 65.29%

Modified: Utterances 500 to 9790
Avg. 73.21% 59.54% 70.59%
Max. 80.60% 66.84% 74.61%
Min. 67.40% 52.54% 65.29%

Table 1: Precision statistics for MBDP-Phon-
Bigrams, Goldwater, and Venkataraman on both
corpora over 500-utterance blocks.

The only metric by which MBDP-Phon-
Bigrams does not outperform the other algorithms
is lexical precision, as shown in Table 3. Lexi-
cal precision is the ratio of the number of correctly
identified words in the lexicon to the total number
of words in the lexicon (Brent, 1999; Venkatara-
man, 2001).10 The relatively poor performance
of MBDP-Phon-Bigrams is due to the incremental
nature of the MBDP algorithm. Initially, it makes
numerous incorrect guesses that are added to the
lexicon, and there is no point at which the lexi-
con is purged of earlier erroneous guesses (c.f. the
improved lexical precision when omitting the first
block in Table 3). On the other hand, Goldwater’s
algorithm runs over the corpus multiple times, and
only produces output when it settles on a final seg-
mentation.

In sum, MBDP-Phon-Bigrams significantly im-
proves the accuracy of MBDP-1, and achieves
better performance than the models described in
Venkataraman (2001) and Goldwater (2007).

5 Future Work

There are many ways to implement phonotactic
learning. One idea is to to use n-grams over phono-
logical features, as per Hayes and Wilson (2008).
Preliminary results have shown that we need to add
smoothing to our n-gram model, and we plan to use

10See Brent (1999) for a discussion of the meaning of this
statistic.

MBDP-
Phon-
Bigrams

Venkataraman Goldwater

Original: Utterances 0 to 9790
Avg. 72.03% 70.02% 71.02%
Max. 79.31% 75.59% 76.79%
Min. 44.71% 42.57% 64.32%

Modified: Utterances 0 to 9790
Avg. 74.63% 66.24% 70.48%
Max. 82.45% 70.47% 74.79%
Min. 47.63% 44.71% 63.74%

Modified: Utterances 500 to 9790
Avg. 76.05% 67.37% 70.28%
Max. 82.45% 70.47% 74.79%
Min. 71.92% 63.86% 63.74%

Table 2: Recall statistics for MBDP-Phon-
Bigrams, Goldwater, and Venkataraman on both
corpora over 500-utterance blocks.

Modified Kneser-Ney smoothing (Chen and Good-
man, 1998).

Another approach would be to develop a
syllable-based phonotactic model (Coleman and
Pierrehumbert, 1997). Johnson (2008b) achieves
impressive segmentation results by adding a sylla-
ble level with Adaptor grammars.

Some languages (e.g., Finnish, and Navajo)
contain long-distance phonotactic constraints that
cannot be learned by n-gram learners (Heinz,
2007). Heinz (2007) shows that precedence-based
learners—which work like a bigram model, but
without the restriction that the elements in the bi-
gram be adjacent—can handle many long-distance
agreement patterns (e.g., vowel and consonantal
harmony) in the world’s languages. We posit that
adding such a learner to MBDP-Phon would allow
it to handle a greater variety of languages.

Since none of these approaches to phonotactic
learning depend on MBDP-1, it is also of interest
to integrate phonotactic learners with other word
segmentation strategies.

In addition to evaluating segmentation models
integrated with phonotactic learning on their seg-
mentation performance, it would be interesting to
evaluate the quality of the phonotactic grammars
obtained. A good point of comparison for English
are the constraints obtained by Hayes and Wilson
(2008), since the data with which they tested their
phonotactic learner is publicly available.

Finally, we are looking forward to investigat-
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MBDP-
Phon-
Bigrams

Venkataraman Goldwater

Original: Utterances 0 to 9790
Avg. 47.69% 49.78% 56.50%
Max. 49.71% 52.95% 63.09%
Min. 46.30% 41.83% 55.33%

Modified: Utterances 0 to 9790
Avg. 48.31% 45.98% 58.03%
Max. 50.42% 48.90% 65.58%
Min. 41.74% 36.57% 56.43%

Modified: Utterances 500 to 9790
Avg. 54.34% 53.06% 57.95%
Max. 63.76% 54.35% 62.30%
Min. 51.31% 51.95% 56.52%

Table 3: Lexical precision statistics for MBDP-
Phon-Bigrams, Goldwater, and Venkataraman on
both corpora over 500-utterance blocks.

ing the abilities of these segmenters on corpora
of different languages. Fleck (2008) tests her seg-
menter on a number of corpora, including Arabic
and Spanish, and Johnson (2008a) applies his seg-
menter to a corpus of Sesotho.

6 Conclusion

From the results established in §4, we can con-
clude that MBDP-Phon using a bigram phonotac-
tic model is more accurate than the models de-
scribed in Brent (1999), Venkataraman (2001), and
Goldwater (2007). The n-gram phonotactic model
improves overall performance, and is especially
useful for corpora that do not encode diphthongs
with bi-phone symbols. The main reason there
is such a marked improvement with MBDP-Phon
vs. MBDP-1 when the bi-phone symbols were re-
moved from the original corpus is that these bi-
phone symbols effectively allow MBDP-1 to have
a select few bigrams in the cases where it would
otherwise over-segment.

The success of MBDP-Phon is not clear evi-
dence that the INCDROP framework (Brent, 1997)
is superior to Venkataraman or Goldwater’s mod-
els. We imagine that adding a phonotactic learning
component to either of their models would also im-
prove their performance.

We also tentatively conclude that phonotactic
patterns can be learned from unsegmented text.
However, the phonotactic patterns learned by our
model ought to be studied in detail to see how well

they match the phonotactic patterns of English.
MBDP-Phon’s performance reinforces the the-

ory put forward by language acquisition re-
searchers that phonotactic knowledge is a cue for
word segmentation (Mattys et al., 1999; Mattys
and Jusczyk, 2001). Furthermore, our results in-
dicate that learning phonotactic patterns can oc-
cur simultaneously with word segmentation. Fi-
nally, further investigation of the simultaneous ac-
quisition of phonotactics and word segmentation
appears fruitful for theoretical and computational
linguists, as well as acquisitionists.
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