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Abstract asking for the object of the new color, as ibring

the chromium tray, not the blue one. Children were
generally good at performing this “referent selection”
new word from hearing it used in a familiar {55k, In a production task performed six weeks later,
context—an ability often referred to dast when children had to use the name of the new color,
mapping. In this paper, we study fast map-  they showed signs of having learned something about
ping in the context of a general probabilistic  the new color name, but were not successful at pro-
model of word learning. We use our model  qycing it. On the basis of these findings, Carey and

to simulate fast mapping experiments on chil- - partlett suggest that fast mapping and word learning
dren, such as referent selection and retention. gye two distinct, yet related, processes.

The word learning model can perform these

tasks through an inductive interpretation of

the acquired probabilities. Our results suggest
that fast mapping occurs as a natural conse-
guence of learning more words, and provides
explanations for the (occasionally contradic-

tory) child experimental data.

Children can determine the meaning of a

Extending Carey and Bartlett's work, much re-
search has concentrated on providing an explanation
for fast mapping, and on examining its role in word
learning. These studies also show that children are
generally good at referent selection, given a novel tar-
get. However, there is not consistent evidence regard-
ing whether children actually learn the novel word
1 Fast Mapping from one or a few such exposures (retention). For

example, whereas the children in the experiments of

An average six-year-old child knows over,000  Golinkoff et al. (1992) and Halberda (2006) showed
words, most of which s/he has learned from hearingigns of nearly-perfect retention of the fast-mapped
other people use them in ambiguous contexts (Car)ords, those in the studies reported by Horst and
1978). Children are thus assumed to be equipped Wihmuelson (2008) did not (all participating children
powerful mechanisms for performing such a compleyere close in age range).
task so efficiently. One interesting ability children as . :

. There are also many speculations about the possible
young as two years of age show is that of correctly and

immediately mapping a novel word to a novel objecgauses of fast mapping. Some researchers consider

in the presence of other familiar objects. The tern'1t as a sign of a specialized (innate) mechanism for

“fast mapping” was first used by Carey and BartletWorO: Iearnlng.trl:/l ?rkm:n anfd VtVachtelL (1988), Iﬁr ex-
(1978) to refer to this phenomenon. ampiée, argue that chiidren last map because they ex-

Carey and Bartlett’s goal was to examine how mucR® cteach object to have only one name (mutual exclu-

children learn about a word when presented in an arrs1'—V'ty)' Golinkoff et al. (1992) attribute fast mapping

biguous context, as opposed to concentrated teachirtlO a (hard-coded) bias towards mapping novel names

They used an unfamiliar namehtomium) to refer to tg namelless 0 bJeCF categqnes. Somg even suggest a
iy . change in children’s learning mechanisms, at around
an unfamiliar color §1ive green), and then asked . . .
g;e time they start to show evidence of fast mapping

a group of four-year-old children to select an object . . . . _
group y ) Je which coincides with a sudden burst in their vocab-
from among a set, upon hearing a sentence explicit - . .
lary), e.g., from associative to referential (Gopnik

(©2008. Licensed under theCreative Commons  gnd Meltzoff, 1987; Reznick and Goldfield, 1992). In
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and/or communication, which also underlie the iming scene as a set of meaning symbols. To simulate
pressive rate of lexical acquisition in children (e.g.referential uncertainty (i.e., the case where the child
Clark, 1990; Diesendruck and Markson, 2001; Regieperceives aspects of the scene that are unrelated to the
2005; Horst et al., 2006; Halberda, 2006). perceived utterance), we include additional symbols
In our previous work (Fazly et al., 2008), we pre-n the representation of the scene, e.g.:
selj_teq alword Iearr_1ing model whi.ch proposes a pmtbtterance: Joe rolled the ball
abilistic interpretation of cross-situational learning,
and bootstraps its own partially-learned knowledge o
the word meanings to accelerate word learning ovéf Section 3.1, we explain how the utterances and
time. We have shown that the model can learn reasofile corresponding semantic symbols are selected, and
able word—meaning associations from child-directefow we add referential uncertainty.
data, and that it accounts for observed learning pat- Given a corpus of such utterance—scene pairs, our
terns in children, such as vocabulary spurt, withounodel learns the meaning of each wasdas a prob-
requiring a developmental change in the underlyingbility distribution, p(.|w), over the semantic sym-
learning mechanism. Here, we use this computationBPIs appearing in the corpus. In this representation,
model to investigate fast mapping and its relation t#(m|w) is the probability of a symbok: being the
word learning. Specifically, we take a close look afneaning of a wordv. In the absence of any prior
the onset of fast mapping in our model by simulatknowledge, all symbols are equally likely to be the
ing some of the psychological experiments mentione@leaning of a word. Hence, prior to receiving any us-
above. We examine the behaviour of the model in vafges of a given word, the model assumes a uniform
ious referent selection and retention tasks, and prélistribution over semantic symbols as its meaning.
vide gxplanatlons for the (occg5|ona!ly contradlctoryé2 M eaning Probabilities
experimental results reported in the literature. We also
study the effect of exposure to more input on the pepur model combines probabilistic interpretations of
formance of the model in fast mapping. cross-situational learning (Quine, 1960) and of a
Our results suggest that fast mapping can be eyariation of the principle of contrast (Clark, 1990),
plained as an induction process over the acquired d§rough an interaction between two types of prob-
sociations between words and meanings. Our modapilistic knowledge acquired and refined over time.
learns these associations in the form of probabilitie$iven an utterance—scene pair received at time.,
within a unified framework: however, we argue that U, S®)), the model first calculates an alignment
different interpretations of such probabilities may b@robability a for eachw € U and eachmn € S,
involved in choosing the referent of a familiar as op4sing the meaning probabilities(.[w) of all the
posed to a novel target word (as noted by Halberg®/ords in the utterance prior to this time. The model
2006). Moreover, the overall behaviour of our modelhen revises the meaning of the wordsUf) by in-
confirms that the probabilistic bootstrapping approacrporating the alignment probabilities for the current
to word learning naturally leads to the onset of fagfiPut pair. This process is repeated for all the input
mapping in the course of lexical development, withPalrs, one at a time.

out hard-coding any specialized learning mechanisgep 1: Calculating the alignment probabilities.

into the model to account for this phenomenon.  \ye estimate the alignment probabilities of words
and meaning symbols based on a localized version
of the principle of contrast: that a meaning sym-
This section summarizes the model presented in Fhel in a scene is likely to be highly associated with
zly et al. (2008). Our word learning algorithm is anonly one of the worddn the corresponding utter-
adaptation of the IBM translation model proposed bgnce! For a symboln € S® and a wordw € U®),
Brown et al. (1993). However, our model is increthe higher the probability ofn being the meaning
mental, and does not require a batch process over thew (according top(m|w)), the more likely it is
entire data. that m is aligned withw in the current input. In
other words, a(w|m, U®, S(1) is proportional to
p~1(m|w). In addition, if there is strong evidence
The input to our word learning model consists of a sehat m is the meaning of another word i) —
of utterance—scene pairs that link an observed scene., if p{*~1) (m|w’) is high for somew’ € U® other
(what the child perceives) to the utterance that de—; o o _
Note that this differs from what is widely known as the prin-

scribes it (what the child hears). We represent eagible of contrast (Clark, 1990), in that the latter assumm@grast
utterance as a sequence of words, and the correspoadess the entire vocabulary rather than within an utteranc

?cene: {joe,roll, the,ball, mommy, hand, talk}

2 Overview of the Computational Model

2.1 Utterance and Meaning Representations
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thanw—the likelihood of aligningn to w should de- From this point on, we simply use(m|w) (omit-

crease. Combining these two requirements: ting the superscriptt)) to refer to the meaning prob-
(t—1) ability of m for w at the present time of learning.
a(ulm, U, 50) = LMW
> P (mlw') 2.3 Referent Probabilities

w’ eU®) . .- . .
Due to referential uncertainty, some of the meaninéhe meaning probablhtg)(m|w) is used to retnevg
e most probable meaning feramong all the possi-

symbols in the scene might not have a counterpaﬁe meaning symbols:. However, in the referent se-
in the utterance. To accommodate for such cases, a ’ '

18ction tasks performed by children, the subject is of-

dummy word is added to each utterance before th ¢ dt lect the ref tof at ¢ df
alignment probabilities are calculated, in order to Ie&en orced 1o select Ine reterent ot a target word from
mong a limited set of objects, even when the mean-

. . . a
a meaning symbol not be (strongly) aligned with an
of the words in the current utterance. ¥ng of the target word has not been accurately learned

yet. For our model to perform such tasks, it has to de-
Step 2: Updating theword meanings. We need to cide how likely it is for a target wordv to refer to a
update the probabilities(.|w) for allwordsw € U®),  particular objectn, based on its previous knowledge
based on the evidence from the current input pair rezhout the mapping between andw (i.e., p(m|w)),
flected in the alignment probabilities. We thus adés well as the mapping betwegnand other words in
the current alignment probabilities farand the sym- the lexicon?
bolsm € S to the accumulated evidence from prior  The likelihood of using a particular nameto refer
co-occurrences ofv and m. We summarize this to a given objecin is calculated as:

cross-situational evidence in the form of an associa- rf(wlm) = p(w|m)
tion score, which is updated incrementally: p(m|w) - p(w)
assoc® (w, m) = assoc= (w, m) + a p(m)
a(w|m, U S®) 2 _ p(m|w) - p(w) 4)

Zw’ev p(mlw’) - p(w’)
yaherev is the set of all words that the model has seen

is the relative frequency ab:
freq(w)

whereassoc*— (w, m) is zero ifw andm have not
co-occurred before. The association score of a wo
and a symbol is basically a weighted sum of their co2° far anch(w)
occurrence counts. p(w) -
The model then uses these association scores to up- 2 wey freq(w’)
date the meaning of the words in the current input: The referent of a target word among the present ob-
assoc(t)(m, w) + A jects, therefore, will be the objeet with the highest

Z assoc(t)(mj, w) + B x A referent probabilityrf (w|m).

m;EM 3
whereM is the set of all symbols encountered prior to
or attimet, g is the expected number of symbol types3.1 Thelnput Corpora

and) is a small smoothing factor. The denominator i§y,e extract utterances from the Manchester corpus
a normalization factor to get valid probabilities. ThiS(Theakston et al., 2001) in the CHILDES database
formulation results in a uniform probability df/3 (MacWhinney, 2000). This corpus contains tran-
over allm & M for anovel wordw, and a probability  gcrints of conversations with children between the
smaller than\ for a meaning symbaot: that has not ages of1:8 and 3;0 (years;months). We use the
been previously seen with a familiar word mother’s speech from transcripts 6fchildren, re-
Our model updates the meaning of a word eV ove punctuation and lemmatize the words, and con-
ery time it is heard in an utterance. The Stf?”QtBatenate the corresponding sessions as input data.
of learning of a word at timet is reflected in  There is no semantic representation of the corre-
P(t)(m = my|w), wherem,, is the “correct” mean- gnonding scenes available from CHILDES. There-
ing of w: for a learned wordv, the probability dis- tqre we automatically construct a scene representa-
tribution p(.|w) is highly skewed towards the correctijo for each utterance, as a set containing the seman-
meaningm.,, and therefore hearing will trigger the ¢ referents of the words in that utterance. We get
retrieval of the meaning,,..> these from an input-generation lexicon that contains

2An input-generation lexicon contains the correct meanimg f @ symbol associated with each word as its semantic
each word, as described in Section 3.1. Note thatthe moésldo—_
not have access to this lexicon for learning; it is used ooly f 3All through the paper, we use as both the meaning and the
input generation and evaluation. referent of a wordw.

(®)

P (mlw) =

Experimental Setup
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referent. We use every other sentence from the origating a cheem, wherecheem is a previously unseen
inal corpus, preserving their chronological order. Tdruit). In such a setting, our model aligns the objects
simulate referential uncertainty in the input, we thein the scene with the words in the utterance based on
pair each sentence with its own scene representatida acquired knowledge of word meanings, and then
as well as that of the following sentence in the origiupdates the meanings of the words accordingly. The
nal corpus. (Note that the latter sentence is not usedodel can align a familiar word with its referent with
as an utterance in our input.) The extra semantic syrhigh confidence, since the previously learned mean-
bols that are added to each utterance thus correspdnd probability of the familiar object given the famil-

to meaningful semantic representations, as opposia word, orp(m|w), is much higher than the meaning
to randomly selected symbols. In the resulting corpysrobability of the same object given any other word in
of 92,239 input pairs, each utterance is, on averagéhe sentence. In a similar fashion, the model can eas-
paired with78% extra meaning symbols, reflecting aily align a novel word in the sentence with a novel

high degree of referential uncertianty. object in the scene, because the meaning probability
of the novel object given the novel word /3, ac-
32 TheModel Parameters cording to Eq. (3)) is higher than the meaning proba-

We set the parameters of our learning algorithm usingjlity of that object for any previously heard word in

a development data set which is similar to our traininghe sentence (the latter probability is smaller than

and test data, but is selected from a non-overlappirfed- (3), as explained in Section 3.2).

portion of the Manchester corpus. The expected num- Earlier fast mapping experiments on children as-
ber of symbols3 in Eq. (3), is set t&500 based on sumed that it is such a contrast between the familiar
the total number of distinct symbols extracted for th@nd novel words in the same sentence that helps chil-
development data. Therefore, the default probabilitgiren select the correct target object in a referent selec-
of a symbol for a novel word will bé/8500. A famil- ~ tion task. For example, in Carey and Bartlett's (1978)
iar word, on the other hand, has been seen with sorggperiment, to introduce a novel word—meaning as-
symbols before. Therefore, the probability of a previsociation (e.g.,chromium-olive), the authors use
ously unseen symbol for it (which, based on Eq. (3)poth the familiar and the novel words in one sentence
has an upper bound &) must be less than the default(bring methe chromiumtray, not the blue one.). How-
probability mentioned above. Accordingly, we set ever, further experiments show that children can suc-

to 1075, cessfully select the correct referent even if such a con-
trast is not present in the sentence. Many researchers
33 TheTraining Procedure have performed experiments where young subjects

In the next section, we report results from the com@'e forced to choose between a novel and a familiar
putational simulation of our model for a number ofbject upon hearing a request, suchgage me the
experiments. All of the simulations use the same p&#@ll (familiar target), orgive me the dax (novel tar-
rameter settings (as described in the previous sectio@e,t)- In all of the reported experimental results, chil-
but different input: in each simulation, a random pordren can readily pick the correct referent for a famil-
tion of 1000 utterance—scene pairs is selected frorfff Or & novel target word in such a setting (Golinkoff
the input corpus, and incrementally processed by ttf al., 1992; Halberda and Goldman, 2008; Halberda,
model. The size of the training corpus is chosen arbZ006; Horst and Samuelson, 2008).

trarily to reflect a sample pointin learning, and further However, Halberda’s eye-tracking experiments on
experiments have shown that increasing this numbgpth adults and pre-schoolers suggest that the pro-
does not change the pattern observed in the results.a@sses involved for referent selection in the familiar
order to avoid behaviour that is specific to a particutarget situation may be different from those in the
lar sequence of input items, the reported results in tmpvel target situation. In the latter situation, Subjects

next section are averaged ouérsimulations. appear to systematically reject the familiar object as
the referent of the novel name before mapping the
4 Experimental Resultsand Analysis novel object to the novel name. In the familiar target

] situation, however, there is no need to reject the novel
4.1 Referent Selection distractor object, because the subject already knows
In a typical word learning scenario, the child faceshe referent of the target.
a scene where a number of familiar and unfamiliar The difference between these two conditions can be
objects are present. The child then hears a sentenegplained in terms of the meaning and referent proba-
which describes (some part of) the scene, and is corbilities of our model explained in Section 2. In a typi-
posed of familiar and novel words (e.g., hearilogis cal referent selection experiment, the child is asked to
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get the ball” while facing aball and a novel ObJeCt. Table 1: Referent selection imMILIAR and NOVEL
(dax). We assume that the child knows the meaning -
ARGET conditions.

of verbs and determiners suchgesandthe, therefore

we simplify the familiar target condition in the form ____UPON HEARING THE TARGET WORD
N . . Condition p(ballltarget) | p(dax|target)
of the following input item: FAMILIAR TARGET | 0.843 £0.056 < 0.0001
NOVEL TARGET 0.0001+0.00 0.0001+0.00
ball (FAMILIAR TARGET)
{ball,dax} AFTER PERFORMING INDUCTION
Condition rf (target[ball) | rf (target|dax)
A familiar word such ashall has a meaning prob- | NOVEL TARGET 0.12740.127 | 0993 £0.002

ability highly skewed towards its correct meaning.

That is, upon hearingall, the model can confidently

retrieve its meaningall, which is the one with the input item as a training pair, simulating the in-

the highest probability)(m/|ball) among all possible duction process that humans go through to select the

meaningsn. In such a case, Ball is present in the referentin such cases. This time, the model shows a

scene, the model can easily pick it as the referent §frong preference towards the novel object as the ref-

the familiar target name, without processing the othedrent of the target word (see Table 1, bottom panel).

objects in the scene. Our results confirm that in both conditions, the model
Now consider the condition where a novel targe@onsistently selects the correct referent for the target

name is used in the presence of a familiar and a priord across all the simulations.

viously unseen object:

4.2 Retention
dax (NOVEL TARGET) As discussed in the previous section, results from
{pall,dax} the human experiments as well as our computational

Since this is the first time the model has heard th@mulations show that the referent of a novel target
word dax, both meaning®all anddax are equally word can be selected based on the previous knowl-
likely becausep(.|daz) is uniform. Thus the mean- edge about the present objects and their names. How-

ing probabilities cannot be solely used for selectingver’ the success of a subject in a referent selection
the referent ofdax, and the model has to perform ask does not necessarily mean that the child/model

some kind of induction on the potential referents ir@S!éarned the meaning of the novel word based on

the scene based on what it has learned about eégﬁt one trial. In order to better understand what and
of them. The model can infer the referent dix how much children learn about a novel word from a
by comparing the referent probabilities( daz|ball) single amb'gl%ous .exposure, some studies h?“’e per-
andrf (daz|dax) from Eq. (4) after processing the in- formed retention trials after the referent selection ex-
put item. Sinceball has strong associations with anPeriments. Often, various referent selection trials are
other wordball, its referent probability for the novel performed in ong s.es.smn, where in each trla.l 'a novel
namedax is much lower than the referent probability®PieCt-name pair is introduced among familiar ob-
of dax, which does not have strong associations withfCts- Some of thg recently m'Froduced objects_ are
any of the words in the learned lexicon then put together in one last trial, and the subjects

We simulate the process of referent selection in ofre asked to choose the correct referent for one of the
model as follows. We train the model as describeg ecently heard) novel target words. The majority of

in Section 3.3. We then present the model with on{‘-.he reported experiments show that children can suc-
more input item, which represents either thievi. - cessfully perform the retention task (Golinkoff et al.,
IAR TARGET Of t,he NOVEL TARGET condition. For 1992; Halberda and Goldman, 2008; Halberda, 2006).

each condition, we compare the meaning probabilit We simulate a similar retention experiment by
p(object]|target) for both familiar and novel objects raining Fhe model as usual. V\'/e. fur'ther prgsgnt the
in the scene (see Table 1, top panel). In the F model with tw<_) experimental training |tems S|_m|Iar to
MILIAR TARGET condition, the model demonstrates'® ON€ used in the BVEL TARGET condition in the

a strong preference towards choosing the familiar off€Vious sectlon_, with dlf_ferent familiar and novel ob-
ject as the referent, whereas in theweL TargeT JECtS and words in each input:

condition, the model shows no preference towards any dax (REFERENTSELECTIONTRIAL 1)

of the objects based on the meaning probabilities of  {ball, dax}

the target word. Therefore, for thedVEL TARGET

condition, we also compare the referent probabilities  cheem (REFERENTSELECTIONTRIAL 2)

rf (target|object) for both objects after processing {pen, cheen}
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Table 2: Retention of a novel target word from a set
of novel objects.
2-OBJECTRETENTION TRIAL

rf(daz]dax) | rf(daz|cheem)
0.996 +0.001 | 0.501+0.068

3-OBJECTRETENTION TRIAL
rf(daz]dax) | rf(dax|cheem) | rf(dax|lukk) 3
0.995 +0.001 0.407+0.062 0.990 +0.001 0 02 o4 08 08 1 12 14 16 18 2

8
time of first exposure x10

number of usages needed to learn

o

oo o o o

@ a0 000 00000 Qo0
D 0 O D QWD ® 00 OO

. L . . Figure 1. Number of usages needed to learn a word,
The training session is followed by a retention trial . :
as a function of the word’s age of exposure.

where the two novel objects used in the previous ex-
perimental inputs are paired with one of the novel tar-

get words: knowledge aboutlukk (i.e., associating it with an-
dax (2-OBJECTRETENTIONTRIAL) other word) to rule it out as a referent fdax. These
{cheem, dax} results show that introducing a new object for the first

After processing the retention input, we comdiime inaretention trial considerably increases the dif-
pare the referent probabilitiesf (daz|cheem) and ficulty of the task. This can explain the contradictory
rf (dax|dax) to see if the model can choose the corresults reported in the literature: when the referent
rect novel object in response to the target wdest.  probabilities are not informative, other factors may
The top panel in Table 2 summarizes the results of thigfluence the outcome of the experiment, such as the
experiment. The model consistently shows a strorgmount of training received for a novel word-object,
preference towards the correct novel object as the refdr a possible delay between training and test sessions.
erent of the novel target word across all simulations.

Unlike studies on referent selection, experimentdt-3 The Effect of Exposureto More Input
results for retention have not been consistent acrosge fast mapping ability observed in children implies
various studies. Horst and Samuelson (2008) pethat once children have learned a repository of words,
form experiments with two-year-old children involv- they can easily link novel words to novel objects in a
ing both referent selection and retention, and repofamiliar context based only on a few exposures. We
that their subjects perform very poorly at the retentioexamine this effect in our model: we train the model
task. One factor that discriminates the experimentah 20, 000 input pairs, looking at the relation between
setup of Horst and Samuelson from others (e.g., Hahe time of first exposure to a word, and the number
berda, 2006) is that, in their retention trials, they pugf usages that the model needs for learning that word.
together two recently observed novel objects with &igure 1 plots this for words that have been learned at
third novel object that has not been seen in any of th&ome point during the training.We can see that the
experimental sessions before. The authors do not aodel shows clear fast mapping behaviour—that is,
tribute their contradictory results to the presence afords received later in time, on average, require fewer
this third object, but this factor can in fact affect theusages to be learned. These results show that our
performance considerably. We simulate this conditiomodel exhibits fast mapping patterns once it has been
by using the same input items for referent selectiogxposed to enough word usages, and that no change
trials as in the previous simulation, but we replace thig the underlying learning mechanism is needed.

retention trial with the following: The effect of exposure to more input on fast map-
dax (3-OBJECTRETENTION TRIAL) ping can be described in terms of context familiarity:
{cheem, dax, lukk} the more input the model has processed so far, the

The third object, 1ukk, has not been seen by theMmore likely it is that the context of the usage of a novel

model before. Results under the new condition are r&/Crd (the other words in the sentence and the objects
ported in the bottom panel of Table 2. As can be seelf the scene) is familiar to the model. Thls_ pattern
the model shows a strong tendency towards the Cd}lgs been studied through a number of experiments on
rect novel referendax for the novel targeda)_(' com- “We consider a wora as learned if the meaning probability
pared to the other recently seen novel objgotem.  p(m.|w) is higher than a certain threshofd For this experi-
However, the probability of the unseen objasikk ~ Ment, we sef = 0.70. - _

is also very high for the target wothx. That is be- ®In Fazly et al. (2008), we reported a variation of this exper-

] _iment, where we used a smaller training set, and also a eliffer
cause the model cannot use any previously acquirgdmantic representation for word meanings.
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children. For example, Gershkoff-Stowe and Hahrf’able 3: Average number of correct mappings and the

(2007) taughtlG- to 18-month-olds the names aft (. probabilities of target words for two condi-
unfamiliar objects over2 training sessions, where _.
tions, Low and HGH TRAINING.

unfamiliar objects were presented with varying fre- _ _

quency. Data were compared to a control group Cffgnwd$§2|N|N . Correﬁzsmfpp'ngs P(tgfggféf&’gjﬁ)

children who were exposed to the same experimel-Hicn TRAINING %90 0.494£0.79

tal words at the first and last sessions only. Their re-

sults show that for children in the experimental group,

extended practice with a novel set of words led téor a target word, as well as the referent probability of

the rapid acquisition of a second set of low-practice target word for its correct meaning, increase as a re-

words. Children in the control group did not show thesult of more training on the context. In other words, a

same lexical advantage. more familiar context helps the model perform better
Inspired by Gershkoff-Stowe and Hahn (2007), wén a fast mapping task.

perform an experiment to study the effect of con-

text familiarity on fast mapping in our model. We5 Related Computational Models

choose two sets of words,dBITEXT (containing20 o
words) and ERGET (containing10 words), to con- The rule-based model of Siskind (1996), and the con-

duct a referent selection task as follows. First, w8ectionist model proposed by Regier (2005), both
train our model on a sequence of utterance—sceﬁQOW that learning gets easier as the model is exposed

pairs constructed from the SeDATEXT U TARGET, to more input—that is, words heard later are learned
as follows: the unified set is randomly shuffled and@Ster- These findings confirm that fast mapping may
divided into two subsets, words in each subset afdMPIY be a result of learning more words, and that
put together to form an utterance, and the meaning® €XPlicit change in the underlying learning mech-
of the words in that utterance are put together tg"iS™ iS needed. However, these studies do not ex-
form the corresponding scene. We repeat this proce@$!ne various aspects of fast mapping, such as ref-

twice, so that each word appears in exactly two inp rént selection and retention. Horst et al. (2006) ex-
pairs. We train our model on the constructed p’éirs.pl'c'tly test fast mapping in their connectionist model

Next, we perform a referent selection task on eac?lf word learning by performing referent selection and

word in the TARGET set: we pair each target word retention tasks. The behaviour of their model matches

w with the meaning ofl0 randomly selected words the child experimental data reported in a study by the
from CONTEXT U TARGET, including the meaning of same authors (Horst and Samuelson, 2008), but not

the target word itselfrf,,), and have the model pro- that of the contradictory findings of other similar ex-
wlr . , . .

cess this test pair. We compare the referent probabff€iments. Moreover, the model's learming capacity

ity of w and eachn € CONTEXT U TARGET to see is limited, and the fast mapping experiments are per-

whether the model can correctly map the target Worfd')rme.d onavery Sn_ﬁall_vocak_JuIary. Erank etal. (2007)
to its referent. We call this setting theow TRAIN-  €X@Mmine fastmapping in their Bayesian model by test-
ING condition. ing its performance in a novel target referent selection

In the above setting, the context words in the refiask. However, the experiment is performed on an ar-

erent selection trials are as new to the model as ﬂt]igcal corpus. Moreover, since the learning algorithm
target words. We thus repeat this experiment witi? non-incremental, the success of the model in refer-
a familiar context: we first train the model over in-€Nt selection is determined implicitly: each possible

put pairs that are randomly constructed from word&/©rd-meaning mapping from the test input is added
in CONTEXT only, using the same training proce_to t_he cgrrent lexicon, gnd the coqs'lstency of the new
dure as described above. This context-familiarizatiol$XICON IS checked against the training corpus.

process is followed by a similar training session o%
CONTEXT U TARGET, and a test session on target

words, similar to the previous condition. Again, wewe have used a general computational model of word
count the number of correct mappings between a tagarning (first introduced in Fazly et al., 2008) to study

get word and its referent based on the referent probgist mapping. Our model learns a probabilistic asso-
bilities. We call this Set“ng the t&H TRAINING con- ciation between a word and its meaning, from expo-
dition. Table 3 shows the results for both conditionssyre to word usages in naturalistic contexts. We have
It can be seen that the accuracy of finding the refereghown that these probabilities can be used to simu-

®Unlike in previous experiments, here we do not use childl-at_e various fast mapping eXper_'mentS performed on
directed data as we want to control the familiarity of thetesh  children, such as referent selection and retention. Our

Discussion and Concluding Remarks
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experimental results suggest that fast mapping can Biark, Eve 1990. On the pragmatics of contrakiurnal
explained as an induction process over the acquiredof Child Language, 17:417-431.

associations between words and objects. In that senégsendruck, Gil and Lori Markson 2001. Children's
fast mapping is a general cognitive ability, and not avoidance of lexical overlap: Apragmatlc accoune-

a hard-coded, specialized mechanism of word learn- velopmental Psychology, 37(5):630-641.

iy 7 " . azly, Afsaneh, Afra Alishahi, and Suzanne Steven-
ing.” In addition, our results confirm that the onsef: son 2008. A probabilistic incremental model of word

of fast mapping 'is a natural consequence of Iegrning learning in the presence of referential uncertainty. In
more words, which in turn accelerates the learning of Proceedings of the 30th Annual Conference of the Cog-
new words. This bootstrapping approach results in a nitive Science Society.

rapid pace of vocabulary acquisition in children, with+rank, Michael C., Noah D. Goodman, and Joshua B.

out requiring a developmental change in the underly- T_ener_1bau|m 2%0|7- A bayegian fra_meworkl fO; cross-
ing learning mechanism. situational word-learning. IAdvancesin Neural Infor-

. . mation Processing Systems, volume 20.
Results of the referent selection experiments sho¢/

h del fully find th f ershkoff-Stowe, Lisa and Erin R. Hahn 2007. Fast map-
that our mode| can successiully find the reterent o ping skills in the developing lexicordournal of Speech,

a novel target word in a familiar context. Moreover, |anguage, and Hearing Research, 50:682—-697.
our retention experiments show tha_t the model cafolinkoff, Roberta Michnick, Kathy Hirsh-Pasek,
map a recently heard novel word to its recently seen Leslie M. Bailey, and Neil R. Wegner 1992. Young
novel referent (among other novel objects) after only children and adults use lexical principles to learn new
one exposure. However, the strength of the associa-N0Uns-Developmental Psychology, 28(1):99-108.
tion of a novel pair after one exposure shows a nd2oPnik, '°];"S°” and Andrew a/leltzoff %1987- Thed _deve:op-

. L ment of categorization in the second year and its relation
ta?le @ffe”rence_:_compared to f[he assoplatlon _be_tweento other cognitive and linguistic development€hild
a typlcal fgmlllar Wgrd and its meaning. ThIS IS Development, 58(6):1523-1531.
consistent with what is C(_)mmonly assumed In the litry31perda, Justin 2006. Is this a dax which | see before
erature: even though children learn something aboutme? use of the logical argument disjunctive syllogism
a word from only one exposure, they often need more supports word-learning in children and adu@sgnitive
exposure to reliably learn its meaning (Carey, 1978). Psychology, 53:310-344.
Various kinds of experiments have been performed tdalberda, Justin and Julie Goldman 2008. One-trial learn-
examine how strongly children learn novel words in- "9 In 2-year-olds: Children learn new nouns in 3 sec-

troduced to them in experimental settings. For exam onds flat. (in submission).
P gs-. H8rst, Jessica S., Bob McMurray, and Larissa K. Samuel-

ple, children are persuaded to produce a fast-m_appe son 2006. Online processing is essential for learning:
word, or to use the novel word to refer to objects understanding fast mapping and word learning in a dy-
that are from the same category as its original refer- namic connectionist architecture. Pnoc. of CogSci’ 06.
ent (e.g., Golinkoff et al., 1992; Horst and Samuelsomiorst, Jessica S. and Larissa K. Samuelson 2008. Fast
2008). We intend to look at these new tasks in our fu- mapping but poor retention by 24-month-old infarits.
ture research. fancy, 13(2):128-157.

MacWhinney, B. 2000.The CHILDES Project: Tools for
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