
Coling 2008: Proceedings of the 2nd workshop on Information Retrieval for Question Answering (IR4QA), pages 1–8
Manchester, UK. August 2008

Improving Text Retrieval Precision and
Answer Accuracy in Question Answering Systems

Matthew W. Bilotti and Eric Nyberg
Language Technologies Institute

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213 USA
{ mbilotti, ehn }@cs.cmu.edu

Abstract

Question Answering (QA) systems are of-
ten built modularly, with a text retrieval
component feeding forward into an answer
extraction component. Conventional wis-
dom suggests that, the higher the quality of
the retrieval results used as input to the an-
swer extraction module, the better the ex-
tracted answers, and hence system accu-
racy, will be. This turns out to be a poor
assumption, because text retrieval and an-
swer extraction are tightly coupled. Im-
provements in retrieval quality can be lost
at the answer extraction module, which can
not necessarily recognize the additional
answer candidates provided by improved
retrieval. Going forward, to improve ac-
curacy on the QA task, systems will need
greater coordination between text retrieval
and answer extraction modules.

1 Introduction

The task of Question Answering (QA) involves
taking a question phrased in natural human lan-
guage and locating specific answers to that ques-
tion expressed within a text collection. Regard-
less of system architecture, or whether the sys-
tem is operating over a closed text collection or
the web, most QA systems use text retrieval as a
first step to narrow the search space for the an-
swer to the question to a subset of the text col-
lection (Hirschman and Gaizauskas, 2001). The
remainder of the QA process amounts to a gradual
narrowing of the search space, using successively
more finely-grained filters to extract, validate and
present one or more answers to the question.

c©2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

Perhaps the most popular system architecture in
the QA research community is the modular archi-
tecture, in most variations of which, text retrieval
is represented as a separate component, isolated
by a software abstraction from question analysis
and answer extraction mechanisms. The widely-
accepted pipelined modular architecture imposes a
strict linear ordering on the system’s control flow,
with the analysis of the input question used as in-
put to the text retrieval module, and the retrieved
results feeding into the downstream answer extrac-
tion components.

Proponents of the modular architecture naturally
view the QA task as decomposable, and to a cer-
tain extent, it is. The modules, however, can never
be fully decoupled, because question analysis and
answer extraction components, at least, depend on
a common representation for answers and perhaps
also a common set of text processing tools. This
dependency is necessary to enable the answer ex-
traction mechanism to determine whether answers
exist in retrieved text, by analyzing it and compar-
ing it against the question analysis module’s an-
swer specification. In practice, the text retrieval
component does not use the common representa-
tion for scoring text; either the question analysis
module or an explicit query formulation compo-
nent maps it into a representation queryable by the
text retrieval component.

The pipelined modular QA system architecture
also carries with it an assumption about the com-
positionality of the components. It is easy to ob-
serve that errors cascade as the QA process moves
through downstream modules, and this leads to the
intuition that maximizing performance of individ-
ual modules minimizes the error at each stage of
the pipeline, which, in turn, should maximize over-
all end-to-end system accuracy.

It is a good idea to pause to question what this
intuition is telling us. Is end-to-end QA system
performance really a linear function of individual

1



[ARG0 [PERSONJohn]] [ TARGET loves] [ ARG1 [PERSONMary]]

Figure 1: Example OpenEphyra semantic representation for the sentence,John loves Mary. Note that
Johnis identified as the ARG0, the agent, or doer, of theloveaction.Mary is identified as the ARG1, the
patient, or to whom theloveaction is being done. BothJohnandMary are also identified as PERSON

named entity types.

components? Is component performance really ad-
ditive? This paper argues that the answer is no,
not in general, and offers the counterexample of a
high-precision text retrieval system that can check
constraints against the common representation at
retrieval time, which is integrated into a publicly-
available pipelined modular QA system that is oth-
erwise unchanged.

Ignoring the dependency between the answer
extraction mechanism and the text retrieval com-
ponent creates a problem. The answer extraction
module is not able to handle the more sophisti-
cated types of matches provided by the improved
text retrieval module, and so it ignores them, leav-
ing end-to-end system performance largely un-
changed. The lesson learned is that a module im-
proved in isolation does not necessarily provide an
improvement in end-to-end system accuracy, and
the paper concludes with recommendations for fur-
ther research in bringing text retrieval and answer
extraction closer together.

2 Improving Text Retrieval in Isolation

This section documents an attempt to improve the
performance of a QA system by substituting its
existing text retrieval component with for high-
precision retrieval system capable of checking lin-
guistic and semantic constraints at retrieval time.

2.1 The OpenEphyra QA System

OpenEphyra is the freely-available, open-source
version of the Ephyra1 QA system (Schlaefer et
al., 2006; Schlaefer et al., 2007). OpenEphyra is a
pipelined modular QA system having four stages:
question analysis, query generation, search and an-
swer extraction and selection. OpenEphyra also
includes support for answer projection, or the use
of the web to find answers to the question, which
are then used to find supporting text in the cor-
pus. Answer projection support was disabled for
the purposes of this paper.

1See:http://www.ephyra.info

The common representation in OpenEphyra is
a verb predicate-argument structure, augmented
with named entity types, in which verb arguments
are labeled with semantic roles in the style of Prop-
Bank (Kingsbury et al., 2002). This feature re-
quires the separate download2 of a semantic parser
called ASSERT (Pradhan et al., 2004), which was
trained on PropBank. See Figure 1 for an example
representation for the sentence,John loves Mary.

OpenEphyra comes packaged with standard
baseline methods for answer extraction and se-
lection. For example, it extracts answers from
retrieved text based on named entity instances
matching the expected answer type as determined
by the question analysis module. It can also look
for predicate-argument structures that match the
question structure, and can extract the argument
corresponding to the argument in the question rep-
resenting the interrogative phrase. OpenEphyra’s
default answer selection algorithm filters out an-
swers containing question keyterms, merges sub-
sets, and combines scores of duplicate answers.

2.2 Test Collection

The corpus used in this experiment is the
AQUAINT corpus (Graff, 2002), the standard
corpus for the TREC3 QA evaluations held in
2002 through 2005. The corpus was prepared
using MXTerminator (Reynar and Ratnaparkhi,
1997) for sentence segmentation, BBN Identi-
finder (Bikel et al., 1999) for named entity recog-
nition, as well as the aforementioned ASSERT
for identification of verb predicate-argument struc-
tures and PropBank-style semantic role labeling of
the arguments.

The test collection consists of 109 questions
from the QA track at TREC 2002 with extensive
document-level relevance judgments (Bilotti et al.,
2004; Lin and Katz, 2006) over the AQUAINT
corpus. A set of sentence-level judgments was pre-

2See:http://www.cemantix.org
3Text REtrieval Conferences organized by the U.S. Na-

tional Institute of Standards and Technology

2



Existing query #combine[sentence]( #any:person first person reach
south pole )

Top-ranked result Dufek became the first person to land an airplane atthe South Pole.
Second-ranked result He reached the North Pole in 1991.

High-precision query #combine[sentence]( #max( #combine[target]( scored
#max( #combine[./arg1]( #any:person ))
#max( #combine[./arg2](
#max( #combine[target]( reach
#max( #combine[./arg1]( south pole )))))))))

Top-ranked result [ARG1 Norwegian explorer[PERSONRoald Admundsen]] [ TARGET becomes]
(relevant) [ARG2 [ARG0 first man] to [TARGET reach] [ ARG1 [LOCATION South Pole]]]

Figure 2: Retrieval comparison between OpenEphrya’s existing text retrieval component, and the high-
precision version it was a replaced with, for question 1475,Who was the first person to reach the South
Pole? Note that the top two results retrieved by the existing text retrieval componentare not relevant,
and the top result from the high-precision component is relevant. The existing component does retrieve
this answer-bearing sentence, but ranks it third.

pared by manually determining whether each sen-
tence matching the TREC-provided answer pattern
for a given question wasanswer-bearingaccording
to the definition that an answer-bearing sentence
completely contains and supports the answer to the
question, without requiring inference or aggrega-
tion outside of that sentence. Questions without
any answer-bearing sentences were removed from
the test collection, leaving 91 questions.

Questions were manually reformulated so that
they contain predicates. For example, question
1432, Where is Devil’s Tower?was changed to
Where is Devil’s Tower located?, because AS-
SERT does not cover verbs, includingbeandhave,
that do not occur in its training data. Hand-
corrected ASSERT parses for each question were
were cached in the question analysis module. Re-
formulated questions are used as input to both the
existing and high-precision text retrieval modules,
to avoid advantaging one system over the other.

2.3 High-Precision Text Retrieval

OpenEphyra’s existing text retrieval module was
replaced with a high-precision text retrieval sys-
tem based on a locally-modified version of the In-
dri (Strohman et al., 2005) search engine, a part of
the open-source Lemur toolkit4. While the existing
version of the text retrieval component supports
querying on keyterms, phrases and placeholders

4See:http://www.lemurproject.org

for named entity types, the high-precision version
also supports retrieval-time constraint-checking
against the semantic representation based on verb
predicate-argument structures, PropBank-style se-
mantic role labels, and named entity recognition.

To make use of this expanded text retrieval ca-
pability, OpenEphyra’s query formulation module
was changed to source pre-prepared Indri queries
that encode using structured query operators the
predicate-argument and named entity constraints
that match the answer-bearing sentences for each
question. If questions have multiple queries asso-
ciated with them, each query is evaluated individu-
ally, with the resulting ranked lists fused by Round
Robin (Voorhees et al., 1994). Round Robin,
which merges ranked lists by taking the top-ranked
element from each list in order followed by lower-
ranking elements, was chosen because Indri, the
underlying retrieval engine, gives different queries
scores that are not comparable in general, making
it difficult to choose a fusion method that uses re-
trieval engine score as a feature.

Figure 2 shows a comparison of querying and
retrieval behavior between OpenEphyra’s existing
text retrieval module and the high-precision ver-
sion with which it is being replaced for question
1475,Who was the first person to reach the South
Pole? The bottom of the figure shows an answer-
bearing sentence with the correct answer,Roald
Admundsen. The predicate-argument structure, se-

3



mantic role labels and named entities are shown.
The high-precision text retrieval module sup-

ports storing of extents representing sentences, tar-
get verbs and arguments and named entity types
as fields in the index. At query time, con-
straints on these fields can be checked using struc-
tured query operators. The queries in Figure 2
are shown in Indri syntax. Both queries begin
with #combine[sentence], which instructs
Indri to score and rank sentence extents, rather
than entire documents. The query for the ex-
isting text retrieval component contains keyterms
as well an#any:type operator that matches in-
stances of the expected answer type, which in this
case isperson. The high-precision query encodes
a verb predicate-argument structure. The nested
#combine[target] operator scores a sentence
by the predicate-argument structures it contains.
The#combine[./role] operators are used to in-
dicate constraints on specific argument roles. The
dot-slash syntax tells Indri that the argument ex-
tents are related to but not enclosed by the target
extent. Throughout, the#max operator is used to
select the best matching extent in the event that
more than one satisfy the constraints.

Figure 3 compares average precision at the top
twenty ranks over the entire question set between
OpenEphyra’s existing text retrieval module and
the high-precision text retrieval module, showing
that the latter performs better.

2.4 Results

To determine what effect improving text retrieval
quality has on the end-to-end QA system, it suf-
fices to run the system on the entire test collection,

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 6 11 16

High-precision

Existing

Rank

A
v
e
ra

g
e
 P

re
c
is

io
n
 a

t 
R

a
n
k

Figure 3: Comparison of average precision at top
twenty ranks between OpenEphyra’s existing text
retrieval module, and the high-precision version
that took its place.

replace the text retrieval component with the high-
precision version while holding the other modules
constant, and repeat the test run. Table 1 summa-
rizes the MAP, average end-to-end system accu-
racy (whether the top-ranked returned answer is
correct), and the mean reciprocal rank (MRR) of
the correct answer (one over the rank at which the
correct answer is returned). If the correct answer
to a question is returned beyond rank twenty, the
reciprocal rank for that question is considered to
be zero.

Table 1: Summary of end-to-end QA system ac-
curacy and MRR when the existing text retrieval
module is replaced with a high-precision version

Retrieval MAP Accuracy MRR
Existing 0.3234 0.1099 0.2080
High-precision 0.5487 0.1319 0.2020

Table 1 shows that, despite the improvement in
average precision, the end-to-end system did not
realize a significant improvement in accuracy or
MRR. Viewed in the aggregate, the results are dis-
couraging, because it seems that the performance
gains realized after the text retrieval stage of the
pipeline are lost in downstream answer extraction
components.

Figure 4 compares OpenEphyra both before and
after the integration of the high-precision text re-
trieval component on the basis of average precision
and answer MRR. The horizontal axis plots the dif-
ference in average precision; a value of positive
one indicates that the high-precision version of the
module was perfect, ranking all answer-bearing
sentences at the top of the ranked list, and that the
existing version retrieved no relevant text at all.
Negative one indicates the reverse. The vertical
axis plots the difference in answer MRR. As be-
fore, positive one indicates that the high-precision
component led the system to rank the correct an-
swer first, and the existing component did not, and
negative one indicates the reverse. The zero point
on each axis is where the high-precision and ex-
isting text retrieval components performed equally
well.

The expectation is that there will be a posi-
tive correlation between average precision and an-
swer MRR; when the retrieval component provides
higher quality results, the job of the answer extrac-
tion module should be easier. This is illustrated
in the bottom portion of Figure 4, which was cre-

4



-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Difference in Average Precision

Ideal Answer Extraction

OpenEphyra

D
if
fe

re
n
c
e
 i
n
 A

n
s
w

e
r 

M
R

R

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure 4: Scatter plot comparing the difference in
average precision between the high-precision re-
trieval component and the existing retrieval com-
ponent on the horizontal axis, to the difference in
answer MRR on the vertical axis. Ideally, there
would be a high correlation between the two; as av-
erage precision improves, so should answer MRR.

ated by assuming that the answer extraction mod-
ule could successfully extract answers without er-
ror from all answer-bearing sentences returned by
the text retrieval component.

Interestingly, actual extraction performance,
shown in the top portion of Figure 4, bears lit-
tle resemblance to the ideal. Note the large con-
centration of data points along the line represent-
ing zero difference in answer MRR. This indicates
that, regardless of improvement in average pre-
cision of the results coming out of the retrieval
module, the downstream answer extraction perfor-
mance remains the same as it was when the ex-
isting text retrieval component was in use. This
occurs because the answer extraction module does
not know how to extract answers from some of the
types of answer-bearing sentences retrieved by the
high-precision version of the retrieval module and
not by the existing version.

There are several data points in the top right-
hand quadrant of the top half of Figure 4, indicat-
ing that for some questions, answer extraction was
able to improve as average precision improved.
This is likely due to better rankings for types of
answer-bearing sentences that answer extraction
already knows how to handle. Data points occur-
ring in the lower right-hand portion of the graph in-

dicate depressed answer extraction performance as
average precision is increasing. This phenomenon
can be explained by the higher-precision text re-
trieval module ranking answer-bearing sentences
that answer extraction can not handle ahead of
those that it can handle.

3 Failure Analysis

The results presented in the previous section con-
firm that an improvement made to the text retrieval
component, in isolation, without a corresponding
improvement to the downstream answer extraction
modules, can fail to translate into a corresponding
improvement in end-to-end QA system accuracy.
The increased average precision in the retrieved re-
sults is coming in the form of answer-bearing sen-
tences of types that the answer extraction machin-
ery does not know how to handle. To address this
gap in answer extraction coverage, it is first nec-
essary to examine examples of the types of errors
made by the OpenEphyra answer extraction mod-
ule, summarized in Table 2.

Question 1497,What was the original name be-
fore “The Star Spangled Banner”?is an exam-
ple of a question for which OpenEphyra’s answer
extraction machinery failed outright. An answer-
bearing sentence was retrieved, however, contain-
ing the answer inside a quoted phrase:His poem
was titled “Defense of Fort M’Henry” and by
November 1814 had been published as “The Star-
Spangled Banner”. The expected answer type of
this question does not match a commonly-used
named entity type, so OpenEphrya’s named entity-
based answer extractor found no candidates in this
sentence. Predicate-argument structure-based an-
swer extraction fails as well because the old and
new names do not appear within the same struc-
ture. Because OpenEphyra does not include sup-
port for positing quoted phrases as answer candi-
dates, no answer to this question can be found de-
spite the fact that an answer-bearing sentence was
retrieved.

Question 1417,Who was the first person to run
the mile in less than four minutes?is an exam-
ple of a question for which average precision im-
proved greatly, by 0.7208, but for which extraction
quality remained the same. The existing text re-
trieval module ranks 14 sentences ahead of the first
answer-bearing sentence, but only one contains a
named entity of type person, so despite the im-
provement in retrieval quality, the correct answer

5



Table 2: Summary of end-to-end QA system results on the question set

Result Type Count
Extraction failure 42
Retrieval better, extraction same 20
Retrieval better, extraction worse13
Retrieval better, extraction better 10
Retrieval worse, extraction better3
Retrieval worse, extraction worse3
Total 91

moves up only one rank in the system output.
For ten questions, extraction performance does

improve as average precision improves. Ques-
tion 1409,Which vintage rock and roll singer was
known as “The Killer”? For each of these ques-
tions, OpenEphyra’s existing text retrieval module
could not rank an answer-bearing sentence highly
or retrieve one at all. Adding the high-precision
version of the text retrieval component solved this
problem. In each case, named entity-based an-
swer extraction was able extract the correct an-
swer. These eleven questions range over a variety
of answer types, and have little in common except
for the fact that there are relatively few answer-
bearing sentences in the corpus, and large numbers
of documents matched by a bag-of-words query
formulated using the keyterms from the question.

There are three questions for which extraction
performance degrades as retrieval performance de-
grades. Question 1463,What is the North Korean
national anthem? is an example. In this case,
there is only one relevant sentence, and, owing
to an annotation error, it has a predicate-argument
structure that is very generic, havingNorth Korea
as the only argument:Some of the North Korean
coaches broke into tears as the North’s anthem,
the Patriotic Song, played.The high-precision re-
trieval component retrieved a large number of sen-
tences matching the that predicate-argument struc-
ture, but ranked the one answer-bearing sentence
very low.

Some questions actually worsened in terms of
the reciprocal rank of the correct answer when av-
erage precision improved. An example is question
1504,Where is the Salton Sea?The high-precision
text retrieval module ranked answer-bearing sen-
tences such asThe combination could go a long
way to removing much of the pesticides, fertilizers,
raw sewage carried by the river into the Salton
Sea, the largest lake in California, but a failure

of the named entity recognition tool did not iden-
tify California as an instance of the expected an-
swer type, and therefore it was ignored. Sen-
tences describing other seas near other locations
provided answers such asCentral Asia, Russia,
TurkeyandUkrainethat were ranked ahead ofCal-
ifornia, which was eventually extracted from an-
other answer-bearing sentence.

And finally, for some questions, high-precision
retrieval was more of a hindrance than a help,
retrieving more noise than answer-bearing sen-
tences. A question for which this is true is ques-
tion 1470, When did president Herbert Hoover
die? The high-precision text retrieval module uses
a predicate-argument structure to match the target
verb die, themeHoover and adate instance oc-
curring in a temporal adjunct. Interestingly, the
text collection contains a great deal ofdie struc-
tures that match partially, including those referring
to deaths of presidents of other nations, and those
referring to the death of J. Edgar Hoover, who was
not a U.S. president but the first director of the U.S.
Federal Bureau of Investigation (FBI). False posi-
tives such as these serve to push the true answer
down on the ranked list of answers coming out of
the QA system.

4 Improving Answer Extraction

The answer extraction and selection algorithms
packaged with OpenEphyra are widely-accepted
baselines, but are not sophisticated enough to
extract answer candidates from the additional
answer-bearing text retrieved by the high-precision
text retrieval module, which can check linguistic
and semantic constraints at query time.

The named-entity answer extraction method se-
lects any candidate answer that is an instance of
the expected answer type, so long as it co-occur
with query terms. Consider question 1467,What

6



year did South Dakota become a state?Given
that the corpus consists of newswire text report-
ing on current events, years that are contempo-
rary to the corpus often co-occur with the ques-
tion focus, as in the following sentence,Monaghan
also seized about$87,000 from a Santee account
in South Dakota in 1997. Of the top twenty an-
swers returned for this question, all but four are
contemporary to the corpus or in the future. Min-
imal sanity-checking on candidate answers could
save the system the embarrassment of returning a
date in the future as the answer. Going one step
further would involve using external sources to de-
termine that1997is too recent to be the year a state
was admitted to the union.

OpenEphyra’s predicate-argument structure-
based answer extraction algorithm can avoid
some of these noisy answers by comparing some
constraints from the question against the retrieved
text and only extracting answers if the constraints
are satisfied. Consider question 1493,When was
Davy Crockett born?One relevant sentence says
Crockett was born Aug. 17, 1786, in what is now
eastern Tennessee, and moved to Lawrenceburg
in 1817. The SRL answer extraction algorithm
extractsAug. 17, 1786because it is located in an
argument labeledargm-tmp with respect to the
verb, and ignores the other date in the sentence,
1817. The named entity-based answer extraction
approach proposes both dates as answer candi-
dates, but the redundancy-based answer selection
prefers1786.

The predicate-argument structure-based answer
extraction algorithm is limited because it only ex-
tracts arguments from text that shares the structure
as the question. The high-precision text retrieval
approach is actually able to retrieve additional
answer-bearing sentences with different predicate-
argument structures from the question, but answer
extraction is not able to make use of it. Consider
the sentence,At the time of his 100 point game with
the Philadelphia Warriors in 1962, Chamberlain
was renting an apartment in New York. Though
this sentence answers the questionWhat year did
Wilt Chamberlain score 100 points?, its predicate-
argument structure is different from that of the
question, and predicate-argument structure-based
answer extraction will ignore this result because it
does not contain ascoreverb.

In addition to answer extraction, end-to-end per-
formance could be improved by focusing on an-

swer selection. OpenEphyra does not include sup-
port for sanity-checking the answers it returns,
and its default answer selection mechanism is
redundancy-based. As a result, nonsensical an-
swers are occasionally retrieved, such asmoon
for question 1474,What is the lowest point on
Earth? Sophisticated approaches, however, do ex-
ist for answer validation and justification, includ-
ing use of resources such as gazetteers and ontolo-
gies (Buscaldi and Rosso, 2006), Wikipedia (Xu
et al., 2002), the Web (Magnini et al., 2002), and
combinations of the above (Ko et al., 2007).

5 Conclusions

This paper set out to challenge the assumption of
compositionality in pipelined modular QA systems
that suggests that an improvement in an individual
module should lead to an improvement in the over-
all end-to-end system performance. An attempt
was made to validate the assumption by showing
an improvement in the end-to-end system accu-
racy of an off-the-shelf QA system by substitut-
ing its existing text retrieval component for a high-
precision retrieval component capable of checking
linguistic and semantic constraints at query time.
End-to-end system accuracy remained roughly un-
changed because the downstream answer extrac-
tion components were not able to extract answers
from the types of the answer-bearing sentences re-
turned by the improved retrieval module.

The reality of QA systems is that there is a
high level of coupling between the different system
components. Ideally, text retrieval should have an
understanding of the kinds of results that answer
extraction is able to utilize to extract answers, and
should not offer text beyond the capabilities of the
downstream modules. Similarly, question analy-
sis and answer extraction should be agreeing on
a common representation for what constitutes an
answer to the question so that answer extraction
can use that information to locate answers in re-
trieved text. When a retrieval module is available
that is capable of making use of the semantic rep-
resentation of the answer, it should do so, but an-
swer extraction needs to know what it can assume
about incoming results so that it does not have to
re-check constraints already guaranteed to hold.

The coupling between text retrieval and answer
extraction is important for a QA system to per-
form well. Improving the quality of text retrieval
is essential because once the likely location of

7



the answer is narrowed down to a subset of the
text collection, anything not retrieved text can not
be searched for answers in downstream modules.
Equally important is the role of answer extraction.
Even the most relevant retrieved text is useless to
a QA system unless answers can be extracted from
it. End-to-end QA system performance can not
be improved by improving text retrieval quality
in isolation. Improvements in answer extraction
must keep pace with progress on text retrieval tech-
niques to reduce errors resulting from a mismatch
in capabilities. Going forward, research on the lin-
guistic and semantic constraint-checking capabili-
ties of text retrieval systems to support the QA task
can drive research in answer extraction techniques,
and in QA systems in general.

References

Bikel, D., R. Schwartz, and R. Weischedel. 1999. An
algorithm that learns what’s in a name.Machine
Learning, 34(1–3):211–231.

Bilotti, M., B. Katz, and J. Lin. 2004. What works bet-
ter for question answering: Stemming or morpholog-
ical query expansion? InProceedings of the Infor-
mation Retrieval for Question Answering (IR4QA)
Workshop at SIGIR 2004.

Bilotti, M., P. Ogilvie, J. Callan, and E. Nyberg. 2007.
Structured retrieval for question answering. InPro-
ceedings of the 30th Annual International ACM SI-
GIR Conference on Research and Development in In-
formation Retrieval.

Buscaldi, D. and P. Rosso. 2006. Mining knowledge
from wikipedia for the question answering task. In
Proceedings of the International Conference on Lan-
guage Resources and Evaluation.

Cui, H., R. Sun, K. Li, M. Kan, and T. Chua. 2005.
Question answering passage retrieval using depen-
dency relations. InProceedings of the 28th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval.

Graff, D. 2002. The AQUAINT Corpus of English
News Text. Linguistic Data Consortium (LDC). Cat.
No. LDC2002T31.

Hirschman, L. and R. Gaizauskas. 2001. Natural
language question answering: The view from here.
Journal of Natural Language Engineering, Special
Issue on Question Answering, Fall–Winter.

Kingsbury, P., M. Palmer, and M. Marcus. 2002.
Adding semantic annotation to the penn treebank. In
Proceedings of the 2nd International Conference on
Human Language Technology Research (HLT 2002).

Ko, J., L. Si, and E. Nyberg. 2007. A probabilistic
graphical model for joint answer ranking in question
answering. InProceedings of the 30th Annual Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval.

Lin, J. and B. Katz. 2006. Building a reusable test col-
lection for question answering.Journal of the Amer-
ican Society for Information Science and Technol-
ogy, 57(7):851–861.

Magnini, B., M. Negri, R. Pervete, and H. Tanev. 2002.
Comparing statistical and content-based techniques
for answer validation on the web. InProceedings of
the VIIIo Convegno AI*IA.

Narayanan, S. and S. Harabagiu. 2004. Question an-
swering based on semantic structures. InProceed-
ings of the 20th international conference on Compu-
tational Linguistics.

Pradhan, S., W. Ward, K. Hacioglu, J. Martin, and
D. Jurafsky. 2004. Shallow semantic parsing using
support vector machines. InProceedings of the Hu-
man Language Technology Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (HLT-NAACL 2004).

Reynar, J. and A. Ratnaparkhi. 1997. A maximum en-
tropy approach to identifying sentence boundaries.
In Proceedings of the Fifth Conference on Applied
Natural Language Processing.

Schlaefer, N., P. Gieselmann, and G. Sautter. 2006.
The ephyra qa system at trec 2006. InProceedings
of the Fifteenth Text REtrieval Conference (TREC).

Schlaefer, N., J. Ko, J. Betteridge, G. Sautter,
M. Pathak, and E. Nyberg. 2007. Semantic exten-
sions of the ephyra qa system for trec 2007. InPro-
ceedings of the Sixteenth Text REtrieval Conference
(TREC).

Strohman, T., D. Metzler, H. Turtle, and W. B. Croft.
2005. Indri: A language model-based search engine
for complex queries. InProceedings of the Interna-
tional Conference on Intelligence Analysis.

Sun, R., J. Jiang, Y. Tan, H. Cui, T. Chua, and M. Kan.
2005. Using syntactic and semantic relation analysis
in question answering. InProceedings of the Four-
teenth Text REtrieval Conference (TREC-14).

Voorhees, E., N. Gupta, and B. Johnson-Laird. 1994.
The collection fusion problem. InProc. of TREC-3.

Xu, J., A. Licuanan, J. May, S. Miller, and
R. Weischedel. 2002. Trec 2002 qa at bbn: Answer
selection and confidence estimation. InProceedings
of the Text REtrieval Conference.

8


