Speeding up LFG Parsing Using C-Structure Pruning
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Abstract mark certain constituents on the input sentences,

limiting the number of c-structures the XLE pars-

) i ) ing system would build. They achieved an 18%
Qfea“y reducmg parse tlmes n LFG _pgrs- speedup in parse times, while maintaining the ac-
ing, while at the same time maintaining curacy of the output f-structures. The experiments
parse accuracy. We eva]uate the method- presented in Cabhill et al. (2007) used the XLE sys-
ology on data from English, German and tem as a black box and did not make any changes to
Norwegian and show that the same pat- it. However, the results were encouraging enough
terns hold across languages. 'We achieve for a c-structure pruning mechanism to be fully in-
a speedup of 67% on the English data and tegrated into the XLE system.

49% on the German data}. On a small The paper is structured as follows: we present
amount of data for Norwegian, we achieve the pruning model that has been integrated into the
a §peedup of 40%, a“hOL_’gh, with more — x1 e system (Section 2), and how it can be ap-
training data we expect this figure to in- plied successfully to more than one language. We
crease. present experiments for English (Section 3), Ger-

1 Introduction man (Section 4) and Norwegian (Section 5) show-

ing that for both German and English, a significant

Efficient parsing of large amounts of natural lanjmprovement in speed is achieved, while the qual-
guage is extremely important for any real-worldity of the f-structures remains stable. For Norwe-
application. The XLE Parsing System is a largegjan a speedup is also achieved, but more training
scale, hand-crafted, deep, unification-based sygata is required to sustain the accuracy of the f-
tem that processes raw text and produces bofjryctures. In Section 7 we present an error anal-
constituent structures (phrase structure trees) a@gis on the German data. We then relate the work
feature structures (dependency attribute-value Mg@resented in this paper to similar efficient parsing
trices). A typical breakdown of parsing time gtrategies (Section 8) before concluding in Section
of XLE components with the English grammarg

is Morphology (1.6%), Chart (5.8%) and Unifier

(92.6%). It is clear that the major bottleneck in2 XLE and the C-Structure Pruning

processing is in unification. Cahill et al. (2007) Mechanism

carried out a preliminary experiment to test thel_

. he XLE system is designed to deal with large
theory that if fewer c-structures were passed tQ .
o . . amounts of data in a robust manner. There are
the unifier, overall parsing times would improve,

several mechanisms which facilitate this, including

while the accuracy of parsing would remain Stai‘ragmenting and skimming. Fragmenting is called

ble. Their experiments used state-of-the-art pro Wwhen the grammar is unable to provide a complete

abilistic treebank-based parsers to automaticall .
Efarse for the input sentence, and a fragment anal-
(©2008.  Licensed under th&reative Commons ysijs of largest possible chunks is built. Skimming
Attribution-Noncommercial-Share Alike 3.0 Unportdd .
is called when too much time or memory has been

cense (http://creativecommons.org/licenses/by-n8-88/ ]
Some rights reserved. used by XLE. Any constituents that have not been

In this paper we present a method for
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fully processed are “skimmed”, which means that S

the amount of work carried out in processing the NP p

constituent is limited. This guarantees that XLE P o~
will finish processing the sentence in polynomial N N v NP
time. Fruit flies e
XLE uses a chart-based mechanism for build-
ing parses, and has been complemented with a c- s . NPyp b%ﬁgggg
structure pruning mechanism to speed up parsing NP — NN 0.1500
time. During pruning, subtrees at a particular cell N — Fruit 0.0010
in the chart are pruned if their probabilities are not \'\/'P : ('/'eNSP 8_‘28&8
higher than a certain threshold. The chart pruner Vo = like 0.0050
uses a simple stochastic CFG model. The proba- NP — N 0.5000
bility of a tree is the product of the probabilities N = banan;zwgéo_(ﬁs

of each of the rules used to form the tree, includ-

ing the rules that lead to lexical items (such as Nrigure 1: Analysis (1) for the stringruit flies like
— dog). The probability of a rule is basically thebananaswith hypothetical probabilities

number of times that that particular form of the

rule occurs in the training data divided by the num- S

ber of times the rule’s category occurs in the train- N

ing data, plus a smoothing term. This is similar N|P /VP\
to the pruning described in Charniak and Johnson ITI vV PP

(2005) where edges in a coarse-grained parse for-

Fruit el N
: o Uit flies P NP
est are pruned to allow full evaluation with fine-

grained categories. Iille r\|1
The pruner prunes at the level of individual con- ban|anas
stituents in the chart. It calculates the probabil- S — NPVP 0.5000
ities of each of the subtrees of a constituent and HP - gruit g-gg‘ig
compares them. The probability of each subtree Vv  —  flies 0.0025
is compared with the best subtree probability for VP — VPP 0.1000
that constituent. If a subtree’s probability is lower e ||:I>k§p %%50%%
than the best probability by a given factor, then the NP — bananas 0.0015
subtree is pruned. In practice, the threshold is the 4.21875E-12

natural logarithm of the factor used. So a value of. . : . L
5 means that a subtree will be pruned if its prob[filgure 2: Analysis (2) for the strinBruit flies like

ability is about a factor of 150 less than the besteananasmth hypothetical probabilities
probability.

If two different subtrees have different num-ability of the second analysis is 4.21875E-12. This
bers of morphemes under them, then the probaneans that the probability of the second analysis
bility model is biased towards the subtree that hais 50 times higher than the probability of the first
fewer morphemes (since there are fewer probabiknalysis. If the threshold is less than the natural
ities multiplied together). XLE counteracts this bylogarithm of 50 (about 3.9), then the subtree of the
normalizing the probabilities based on the differfirst analysis will be pruned from the S constituent.
ence in length.

To illustrate how this works, we give the follow-

ing example. The strinBruit flies like banana®ias  we carried out a number of parsing experiments to
two different analyses. Figures 1 and 2 give theitest the effect of c-structure pruning, both in terms
analyses along with hypothetical probabilities foiof time and accuracy. We trained the c-structure
each rule. pruning algorithm on the standard sections of Penn
These two analyses come together at the S coifireebank Wall Street Journal Text (Marcus et al.,
stituent that spans the whole sentence. The prob&994). The training data consists of the original
bility of the first analysis is 8.4375E-14. The prob-WSJ strings, marked up with some of the Penn

3 Experiments on English
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Treebank constituent information. We marked up Pruning Level None >
NP d SBAR I diecti d bal Total Time 1204 392

San ARs as well as agjective and verba Most Probable F-Scoré 79.93 | 82.83
POS categories. This is meant to guide the train- Oracle F-Score 84.75| 87.79
ing process, so that it does learn from parses that #F:i”dom F'tstore 75-gg 74-9311
are not compatible with the original treebank anal- e T 5
ysis. We evaluated against the PARC 700 Depen- # Skimmed Sents 33 0

dency Bank (King et al., 2003), splitting it into 140 _ _ ,
sentences as development data and the remainih@P!e 2: Results of c-structure pruning experi-

unseen 560 for final testing (as in Kaplan et afMents on English test data
(2004)). We experimented with different values
of the pruning cutoff on the development set; th%,

results are given in Table 1. Experiments on German

We carried out a similar set of experiments on
The results show that the lower the cutoff valueGerman data to test whether the methodology de-

the quicker the sentences can be parsed. Usisgribed above ported to a language other than En-
a cutoff of 4, the development sentences can tglish. In the case of German, the typical time of
parsed in 100 CPU seconds, while with a cutofKLE components is: Morphology (22.5%), Chart
of 10, the same experiment takes 182 second&®.5%) and Unifier (74%). As training data we
With no cutoff, the experiment takes 288 CPU secdsed the TIGER corpus (Brants et al., 2002). Set-
onds. However, this increase in speed comes attiag aside 2000 sentences for development and
price. The number of fragment parses increasetgsting, we used the remaining 48,474 sentences as
i.e. there are more sentences that fail to be analyz#@ining data. In order to create the partially brack-
with a complete spanning parse. With no pruninggted input required for training, we converted the
the number of fragment parses is 23, while withoriginal TIGER graphs into Penn-style trees with
the most aggressive pruning factor of 4, there arempty nodes and retained bracketed constituents of
39 fragment parses. There are also many motbe type NP, S, PN and AP. The training data was
skimmed sentences with no c-structure pruningqarsed by the German ParGram LFG (Rohrer and
which impacts negatively on the results. The oraForst, 2006). This resulted in 25,677 full parses,
cle f-score with no pruning is 83.07, but with prun-21,279 fragmented parses and 1,518 parse fail-
ing (at all thresholds) the oracle f-score is highemres! There are 52,959 features in the final prun-
This is due to less skimming when pruning is actiing model.
vated, since the more subtrees that are pruned, theTo establish the optimal pruning settings for
less likely the XLE system is to run over the timeGerman, we split the 2,000 saved sentences into
or memory limits needed to trigger skimming. 371 development sentences and 1495 test sen-

tences for final evaluation. We evaluated against
the TiGer Dependency Bank (Forst et al., 2004)

Having established that a cutoff of 5 performs.__
best on the development data, we carried out t)‘%’GerDB)’ a dependency-based gold standard for

final evaluation on the 560-sentence test set usin ermap !cl)arsterstrt]hat ﬁ ncodesf'gramnjatlgatlhrela-
this cutoff. The results are given in Table 2. Therc;Ii NS similar to, though more fine-graine an,

is a 67% speedup in parsing the 560 sentences, a“? ones in the TIGER Treebank as well as mor-

the most probable f-score increases significantl osyntactic features. We experimented with the

from 79.93 to 82.83. The oracle f-score also in>2M¢ pruning levels as in the English experiments.

creases, while there is a decrease in the random@e results are given in Table 3. )
The results on the development set show a sim-

score. This shows that we are throwing away good _
solutions during pruning, but that overall the rel1a trend to the English results. A cutoff of 4 re-
sults improve. Part of this again is due to the factUlts In the fastest system, however at the expense

that with no p“%”'”% Sklmmmg Is triggered much The reason there are more fragment parses than, for ex-

more often. With a pruning factor of 5, there areample, the results reported in Rohrer and Forst (2006) is tha

no skimmed sentences. There is also one senteri@ bracketed input constrains the parser to only retursqsar

that timed out with . hich also | compatible with the bracketed input. If there is no solution
at umed out with no pruning, which also 0Werscompatible with the brackets, then a fragment parse is re-

the most probable and oracle f-scores. turned.
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Pruning Level None 4 5 6 7 8 9 10
Oracle F-Score 83.07 | 84.50 | 85.47 | 85.75| 85.57 | 85.57 | 85.02 | 84.10
Time (CPU seconds) 288 100 109 123 132 151 156 182
# Time Outs 0 0 0 0 0 0 0
# Fragments 23 39 36 31 29 27 27 24
# Skimmed Sents 8 0 0 1 1 1 1 3

Table 1: Results of c-structure pruning experiments on iEhglevelopment data

Pruning Level None 4 5 6 7 8 9 10
Oracle F-Score 83.69 | 83.45| 84.02 | 82.86 | 82.82 | 82.95| 83.03 | 82.81
Time (CPU seconds) 1313 331 465 871 962 | 1151 | 1168 | 1163
# Time Outs 6 0 0 5 5 5 5 6
# Fragments 65 104 93 81 74 73 73 68

Table 3: Results of c-structure pruning experiments on @Gerdevelopment data

_'?g‘:;m?m'-:"e' ’;‘ggg 16555 ambiguated data as a gold standard for evaluation.
Most Probable F-Scoré 8263 | 82.73 The _typical time of _XLE components with the Nor-
Oracle F-Score 84.96 | 84.79 wegian grammar is: Morphology (1.6%), Chart
;\t’aF”dom F'tSPCOfe 79;-52 79;-;% (11.2%) and Unifier (87.2%).

ragment Parses . . .
FTime Outs 5 5 From the disambiguated text, we can automati-

cally extract partially bracketed sentences as input
Table 4: Results of c-structure pruning experito the c-structure pruning training method. We can
ments on German test data also extract sentences for training that are partially
disambiguated, but these cannot be used as part of

_ the test data. To do this, we extract the bracketed
of accuracy. A cutoff of 5 seems to provide theying for each solution. If all the solutions pro-

best tradeoff between time and accuracy. Agaifyce the same bracketed string, then this is added
most of the gain in oracle f-score is due t0 feweg, yhe training data. This results in an average of
timeouts, rather than improved f-structures. In th@sse features. As the data set is small. we do not
German development set, a cutoff of 5 leads t0 gyit it into development, training and test sections

speedup of over 64% and a small increase in Ofq \ya5 done for English and German. Instead we

acle f-score of 0.33 points. Therefore, for the fiary gyt a 10-fold cross validation over the entire

nal evaluation on the unseen test-set, we cho0S§g "The results for each pruning level are given in

cutoff of 5. The results are given in Table 4. Wergple 5.

achieve a speedup of 49% and a non-significant in- 1o reqylts in Table 5 show that the pattern that

crease in most probable f-score of 0.094. The timge4 for English and German does not quite hold

spent by the system on morphology is much higheg \onyegian. While, as expected, the time taken

for German than for English. If we only take they, o e the test set is greatly reduced when using

unification stage of the process into account; the structure pruning, there is also a negative impact
German experiments show a speedup of 65.5%. o, yhe quality of the f-structures. One reason for

this is that there are now sentences that could pre-
viously be parsed, and that now no longer can be

As there is no treebank currently available for NorParsed, even with a fragment grammawith c-
wegian, we were unable to train the c-structurdtructure pruning, the number of fragment parses
pruning mechanism for Norwegian in the samdncreases for all thresholds, apart from 10. It is
way as was done for English and German. Ther@lso difficult to compare the Norwegian experi-
is, however, some LFG-parsed data that has be&¢nt to the English and German, since the gold
completely disambiguated using the techniquegtandard is constrained to only consist of sentences
described in Rosén et al. (2006). In total theréhat can be parsed by the grammar. Theoretically
are 937 sentences from various text genres inclué?e oracle f-score for the experiment with no prun-
Ing Norweglgn hlk'ln.g gu_ldes, Sophie’s WOI’I.d and 2With an extended fragment grammar, this would not hap-
the Norwegian Wikipedia. We also use this dispen.

5 Experiments on Norwegian
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Pruning Level None 4 5 6 7 8 9 10
Oracle F-Score 98.76 | 94.45| 95.60 | 96.40 | 96.90 | 97.52 | 98.00 | 98.33
Time (CPU seconds) 218.8 | 106.2 | 107.4 | 109.3 112 | 116.2 124 | 130.7
# Time Outs 0 0 0 0 0 0 0 0
# Parse Failures 0.2 5.7 3.9 2 3.2 4.2 4.6 4.2
# Fragments 1.3 7.7 6.5 4.7 2.8 1.8 15 12

Table 5: Results of c-structure pruning 10-fold cross \atliwh experiments on Norwegian data

% tuates, the general trend is that the more training
/7- data, the better the oracle f-scdre.
7 "

N S 7 Error Analysis
o V /\0—(
® Given that we are removing some subtrees during

) parsing, it can sometimes happen that the desired
analysis gets pruned. We will take German as an

Figure 3: The lower-bound results for each of th&xample, and look at some of these cases.

10 cross validation runs across the thresholds

7.1 Separable particles vs pronominal
adverbs

ing should be 100. The slight drop is due to arhe worddageger(“against it”) can be a separable
slightly different morphological analyzer used inprefix (VPART) or a pronominal adverb (PADV).
the final experiments that treats compound nounshe verbprotestieren(“to protest”) does not take
differently. Athreshold of 10 gives the best reSUItSdagegenas separab|e preﬁx_ The vedlimmen
with a speedup of 40% and a drop in f-score of 0.4@‘]:0 agree”) however does. If we parse the sen-
points. It is difficult to choose the “best” thresh-tence in (1) with the verprotestierenand activate
old, as the amount of training data is probably nopruning, we do not get a complete parse. If we
enough to get an accurate picture of the data. Farse the same sentence wsttmmeras in (2) we
example, Figure 3 shows the lower-bound reSl,IthO get a Comp|ete parse. If we rep|ad&gegen
for each of the 10 runs. It is difficult to see a cleay dafur, which in the current version of the Ger-
pattern for all the runs, indicating that the amounfman LFG can 0n|y be a pronomina| adverb, the
of training data is probably not enough for a reli-sentence in (3) gets a parse. We also notice that
able experiment. if we parse a sentence, as in (4), whelagegen
occurs in a position where our grammar does not
allow separable prefixes to occur, we get a com-

The size of the Norwegian training corpus is conblete parse for the sentence. These examples show

siderably smaller than the training corpora for Enthat theé pruning mechanism has learned to prune

glish or German, so the question remains hothe separable prefix reading of words that can be

much training data we need in order for the cboth separable prefixes and pronominal adverbs.

structure pruning to deliver reliable results. In or-
der to establish a rough estimate for the size o(tl)
training corpus required, we carried out an experi-
ment on the German TIGER training corpus.

We randomly divided the TIGER training cor- (2) Sie stimmendagegen.
pus into sets of 500 sentences. We plot the learn- theyvote  against-it
ing curve of the c-structure pruning mechanism in ‘They vote against it.’

Figure 4, examining the effect of increasing th o i bedins to decline after 32.000
. . nexpectedly, the curve begins to decline after 32,
size of the training corpus on the oracle f-score Olentences. However, the differences in f-score are nasstat
the development set of 371 sentences. The curyeally significant (using the approximate randomizatiest}.
shows that, for the German data, the highest orackinning the same experiment with a different random seed
. . .. results in a similarly shaped graph, but any decline in freco
f-score of 84.98 was achieved with a training cor

when training on more data was not statistically significnt
pus of 32,000 sentences. Although the curve fluahe 99% level.

6 Size of Training Data Corpus

Sie protestiererdagegen.
they protest against-it
‘They protest against it.’
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Figure 4: The effect of increasing the size of the trainintadan the oracle f-score

3) Er protestiertdafr. (6) DasMorden will nichtenden.
heprotests for-it the murderingwantsnot end
‘He protests in favour of it ‘The murdering does not want to end.’
(4) Dagegenprotestierter. (7) DasArbeitenendet.
against-itprotests he the working ends
‘Against it, he protests. ‘The operation ends.’

7.2 Derived nominal vs non-derived nominal 7.3 personal pronouns which also function as
The wordMorden can be the dative plural of the determiners

nounMord (*murder”) or the nominalized form of there are a number of words in German that can
the verbmorden(‘to murder”). With c-structure ¢ n.tion hoth as personal pronouns and determin-
pruning activated (at level 5), the nominalized, g |f e take, for example, the worldr, which
reading, as in (6), gets pruned, whereas the dative, mean “her’ “their’. “to-her” “you-pl” etc.
plural reading is not (5). At pruning level 6, bothye reading as a determiner gets pruned as well as
readings are assigned a full parse. We see simip e occurrences as a pronoun. In example (8),
lar pruning of nominalized readings as in (7). lfye get a complete parse for the sentence with the
we look in more detail at the raw counts for re-ya+ive pronoun reading Ghr. However, in ex-
lated subtrees gathered from th_e training data, ngple (9), the determiner reading is pruned and
see that the common noun reading kbordenoc- e 4l to get a complete parse. In example (10),
curs 156 times, while the nominalized reading only, o 4150 fail to get a complete parse, but in exam-
occurs three times. With more training data, the C;')Ie (11), we do get a complete parr;e. There is a
structure pruning mechanism could possibly learf;ameter we can set that sets a confidence value
when to prune correctly in such cases. in certain tags. So, for example, we set the con-
fidence value ofNFL-F_BASE[det] (the tag given

to the determiner reading of personal pronouns) to
be 0.5, which says that we are 50% confident that
the tagINFL-F_BASE[det] is correct. This results in

(5) Erredet vonMorden.
hespeakof murders
‘He speaks of murders.’
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examples 8, 9 and 11 receiving a complete parspruning. We automatically extracted a specialized

with the pruning threshold set to 5. corpus of 31,845 sentences from the Huge Ger-
_ _ man Corpus. This corpus is a collection of 200
(8) Ergibt esihr. million words of newspaper and other text. The
‘heg|v_e3|t her , sentences we extracted all contained examples of
He gives it to her. proper noun coordination and had been automati-
9) Ihr Auto fahrt. cally chunked. Training on this sub-corpus as well
herftheircar drives as the original TIGER training data did have the
‘Her/Their car drives. desired effect of now parsing example (13) with

c-structure pruning activated.
(20) Ihr kommt.

you(pl) come
‘You come.” 8 Related Work

(11)  Ervertrautihr. Ninomiya et al. (2005) investigate beam threshold-
hetrusts her ing based on the local width to improve the speed
‘He trusts her.’ of a probabilistic HPSG parser. In each cell of a

CYK chart, the method keeps only a portion of the
edges which have higher figure of merits compared
Training the German c-structure pruning mechato the other edges in the same cell. In particular,
nism on the TIGER treebank resulted in a pecueach cell keeps the edges whose figure of merit is
liar phenomenon when parsing coordinated propejreater than,,,, - 6, where a,,.. is the high-
nouns. If we parse four coordinated proper nounsst figure of merit among the edges in the chart.
with c-structure pruning activated as in (12), weThe term “beam thresholding” is a little confusing,
get a complete parse. However, as soon as we agdithce a beam search is not necessary — instead, the
a fifth proper noun as in (13), we get a fragmenCYK chart is pruned directly. For this reason, we
parse. This is only the case with proper nounsyrefer the term “chart pruning” instead.
since the sentence in (14) which coordinates com- cjark and Curran (2007) describe the use of
mon nouns gets a complete parse. Interestingly,  supertagger with a CCG parser. A supertag-
we coordinaten proper nouns plus one commonger js like a tagger but with subcategorization in-
noun, we also get a complete parse. The reason fRfrmation included. Chart pruners and supertag-
this is that proper noun coordination is less comgers are conceptually complementary, since chart
mon than common noun coordination in our trainyryners prune edges with the same span and the
Ing set. same category, whereas supertaggers prune (lexi-
cal) edges with the same span and different cate-
gories. Ninomiya et al. (2005) showed that com-
bining a chunk parser with beam thresholding pro-
(13)  Hans, Fritz, Emil, Walter und Maria sin- duced better results than either technique alone. So
gen. adding a supertagger should improve the results
‘Hans, Fritz, Emil, Walter and Maria sing.” described in this paper.
Zhang et al. (2007) describe a technique to
Fierde und Affer'selectively unpack an HPSG parse forest to ap-
‘ ply maximum entropy features and get the n-best
Dogs: cats, donkeys, horses and apeﬁarses. XLE already does something similar when
come. it applies maximum entropy features to get the
(15)  Hans, Fritz, Emil, Walter, Maria und N-Pest feature structures after having obtained a

7.4 Coordination of Proper Nouns

(12)  Hans, Fritz, Emil und Maria singen.
‘Hans, Fritz, Emil and Maria sing.’

(14) Hunde, Katzen, Esel,
kommen.

Kinder singen. packed representation of all of the valid feature
‘Hans, Fritz, Emil, Walter, Maria and chil- Structures. The current paper shows that pruning
dren sing. the c-structure chart before doing (packed) unifica-

tion speeds up the process of getting a packed rep-
We ran a further experiment to test what effectesentation of all the valid feature structures (ex-
adding targeted training data had on c-structureept the ones that may have been pruned).
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9 Conclusions tics (ACL'05) pages 173-180, Ann Arbor, Michi-
_ gan, June. Association for Computational Linguis-
In this paper we have presented a c-structure prun- tics.
ing mechanism which has been integrated into th
XEE LEG . t B . 9 th b Slark, Stephen and James R. Curran. 2007. Wide-
parsing 'sy.s em. By pruning the number Coverage Efficient Statistical Parsing with CCG and
of c-structures built in the chart, the next stage of Log-Linear Models. Computational Linguistigs
processing, the unifier, has considerably less work 33(4):493-552.
i i 0, -
to' do. T?'S results in a speedch)p of 67% for,EnForst, Martin, Nlria Bertomeu, Berthold Crysmann,
glish, 49% for Ger.m.an and 40% for Nomeglan. Frederik Fouvry, Silvia Hansen-Schirra, and Valia
The amount of training data for Norwegian was Kordoni. 2004. Towards a dependency-based gold
much less than that for English or German, there- standard for German parsers — The TiGer Depen-
fore further work is required to fully investigate ~d€NCy Bank. IrProceedings of the COLING Work-
. shop on Linguistically Interpreted Corpora (LINC
the effect of c-structure pruning. However, the re- .o4) Geneva, Switzerland.
sults, even from the small training data, were en- _
couraging and show the same general patterns &8plan, Ronald M., John T. Maxwell, Tracy H. King,

. and Richard Crouch. 2004. Integrating Finite-state
English and German. We showed that for the Ger- Technology with Deep LFG Grammars. Rro-

man training data, 32,000 sentences was the opti- ceedings of the ESSLLI 2004 Workshop on Combin-
mal number in order to achieve the highest oracle ing Shallow and Deep Processing for NLRancy,

f-score. There remains some work to be done in France.

tuning the parameters for the c-structure pruningcing, Tracy Holloway, Richard Crouch, Stefan Riezler,
as our error analysis shows. Of course, with sta- Mary Dalrymple, and Ronald M. Kaplan. 2003. The
tistical methods one can never be guaranteed thatPARC 700 Dependency Bank. Rroceedings of the
the correct parse will be produced; however we can EACL Workshop on Linguistically Interpreted Cor-
. ' pora (LINC '03), Budapest, Hungary.

adjust the parameters to account for known prob-
lems. We have shown that the c-structure pruniniylarcus, Mitchell P., Beatrice Santorini, and Mary Ann
mechanism described is an efficient way of reduc- E"afc'”k'ﬁwécz-l_lﬁgih BglldmgTa Lgrgn%Annotated
: . : L orpus of English: The Penn TreebanRomputa-
ing parse times, while maintaining the accuracy of tional Linguistics 19(2):313—330.
the overall system.
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