
Coling 2008: Proceedings of the workshop on Grammar Engineering Across Frameworks, pages 33–40
Manchester, August 2008

Speeding up LFG Parsing Using C-Structure Pruning

Aoife Cahill‡ John T. Maxwell III † Paul Meurer§ Christian Rohrer ‡ Victoria Rosén¶

‡IMS, University of Stuttgart, Germany,{cahillae, rohrer}@ims.uni-stuttgart.de
†Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto,CA 94304,maxwell@parc.com

§Unifob Aksis, Bergen, Norway,paul.meurer@aksis.uib.no
¶Unifob Aksis and University of Bergen, Norway,victoria@uib.no

Abstract

In this paper we present a method for
greatly reducing parse times in LFG pars-
ing, while at the same time maintaining
parse accuracy. We evaluate the method-
ology on data from English, German and
Norwegian and show that the same pat-
terns hold across languages. We achieve
a speedup of 67% on the English data and
49% on the German data. On a small
amount of data for Norwegian, we achieve
a speedup of 40%, although with more
training data we expect this figure to in-
crease.

1 Introduction

Efficient parsing of large amounts of natural lan-
guage is extremely important for any real-world
application. The XLE Parsing System is a large-
scale, hand-crafted, deep, unification-based sys-
tem that processes raw text and produces both
constituent structures (phrase structure trees) and
feature structures (dependency attribute-value ma-
trices). A typical breakdown of parsing time
of XLE components with the English grammar
is Morphology (1.6%), Chart (5.8%) and Unifier
(92.6%). It is clear that the major bottleneck in
processing is in unification. Cahill et al. (2007)
carried out a preliminary experiment to test the
theory that if fewer c-structures were passed to
the unifier, overall parsing times would improve,
while the accuracy of parsing would remain sta-
ble. Their experiments used state-of-the-art prob-
abilistic treebank-based parsers to automatically

c© 2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

mark certain constituents on the input sentences,
limiting the number of c-structures the XLE pars-
ing system would build. They achieved an 18%
speedup in parse times, while maintaining the ac-
curacy of the output f-structures. The experiments
presented in Cahill et al. (2007) used the XLE sys-
tem as a black box and did not make any changes to
it. However, the results were encouraging enough
for a c-structure pruning mechanism to be fully in-
tegrated into the XLE system.

The paper is structured as follows: we present
the pruning model that has been integrated into the
XLE system (Section 2), and how it can be ap-
plied successfully to more than one language. We
present experiments for English (Section 3), Ger-
man (Section 4) and Norwegian (Section 5) show-
ing that for both German and English, a significant
improvement in speed is achieved, while the qual-
ity of the f-structures remains stable. For Norwe-
gian a speedup is also achieved, but more training
data is required to sustain the accuracy of the f-
structures. In Section 7 we present an error anal-
ysis on the German data. We then relate the work
presented in this paper to similar efficient parsing
strategies (Section 8) before concluding in Section
9.

2 XLE and the C-Structure Pruning
Mechanism

The XLE system is designed to deal with large
amounts of data in a robust manner. There are
several mechanisms which facilitate this, including
fragmenting and skimming. Fragmenting is called
when the grammar is unable to provide a complete
parse for the input sentence, and a fragment anal-
ysis of largest possible chunks is built. Skimming
is called when too much time or memory has been
used by XLE. Any constituents that have not been

33

fully processed are “skimmed”, which means that
the amount of work carried out in processing the
constituent is limited. This guarantees that XLE
will finish processing the sentence in polynomial
time.

XLE uses a chart-based mechanism for build-
ing parses, and has been complemented with a c-
structure pruning mechanism to speed up parsing
time. During pruning, subtrees at a particular cell
in the chart are pruned if their probabilities are not
higher than a certain threshold. The chart pruner
uses a simple stochastic CFG model. The proba-
bility of a tree is the product of the probabilities
of each of the rules used to form the tree, includ-
ing the rules that lead to lexical items (such as N
→ dog). The probability of a rule is basically the
number of times that that particular form of the
rule occurs in the training data divided by the num-
ber of times the rule’s category occurs in the train-
ing data, plus a smoothing term. This is similar
to the pruning described in Charniak and Johnson
(2005) where edges in a coarse-grained parse for-
est are pruned to allow full evaluation with fine-
grained categories.

The pruner prunes at the level of individual con-
stituents in the chart. It calculates the probabil-
ities of each of the subtrees of a constituent and
compares them. The probability of each subtree
is compared with the best subtree probability for
that constituent. If a subtree’s probability is lower
than the best probability by a given factor, then the
subtree is pruned. In practice, the threshold is the
natural logarithm of the factor used. So a value of
5 means that a subtree will be pruned if its prob-
ability is about a factor of 150 less than the best
probability.

If two different subtrees have different num-
bers of morphemes under them, then the proba-
bility model is biased towards the subtree that has
fewer morphemes (since there are fewer probabil-
ities multiplied together). XLE counteracts this by
normalizing the probabilities based on the differ-
ence in length.

To illustrate how this works, we give the follow-
ing example. The stringFruit flies like bananashas
two different analyses. Figures 1 and 2 give their
analyses along with hypothetical probabilities for
each rule.

These two analyses come together at the S con-
stituent that spans the whole sentence. The proba-
bility of the first analysis is 8.4375E-14. The prob-

S

NP

N

Fruit

N

flies

VP

V

like

NP

N

bananas
S → NP VP 0.5000
NP → N N 0.1500
N → Fruit 0.0010
N → flies 0.0015
VP → V NP 0.2000
V → like 0.0050
NP → N 0.5000
N → bananas 0.0015

8.4375E-14

Figure 1: Analysis (1) for the stringFruit flies like
bananaswith hypothetical probabilities

S

NP

N

Fruit

VP

V

flies

PP

P

like

NP

N

bananas
S → NP VP 0.5000
NP → N 0.5000
N → Fruit 0.0010
V → flies 0.0025
VP → V PP 0.1000
P → like 0.0500
PP → P NP 0.9000
NP → bananas 0.0015

4.21875E-12

Figure 2: Analysis (2) for the stringFruit flies like
bananaswith hypothetical probabilities

ability of the second analysis is 4.21875E-12. This
means that the probability of the second analysis
is 50 times higher than the probability of the first
analysis. If the threshold is less than the natural
logarithm of 50 (about 3.9), then the subtree of the
first analysis will be pruned from the S constituent.

3 Experiments on English

We carried out a number of parsing experiments to
test the effect of c-structure pruning, both in terms
of time and accuracy. We trained the c-structure
pruning algorithm on the standard sections of Penn
Treebank Wall Street Journal Text (Marcus et al.,
1994). The training data consists of the original
WSJ strings, marked up with some of the Penn

34

Treebank constituent information. We marked up
NPs and SBARs as well as adjective and verbal
POS categories. This is meant to guide the train-
ing process, so that it does learn from parses that
are not compatible with the original treebank anal-
ysis. We evaluated against the PARC 700 Depen-
dency Bank (King et al., 2003), splitting it into 140
sentences as development data and the remaining
unseen 560 for final testing (as in Kaplan et al.
(2004)). We experimented with different values
of the pruning cutoff on the development set; the
results are given in Table 1.

The results show that the lower the cutoff value,
the quicker the sentences can be parsed. Using
a cutoff of 4, the development sentences can be
parsed in 100 CPU seconds, while with a cutoff
of 10, the same experiment takes 182 seconds.
With no cutoff, the experiment takes 288 CPU sec-
onds. However, this increase in speed comes at a
price. The number of fragment parses increases,
i.e. there are more sentences that fail to be analyzed
with a complete spanning parse. With no pruning,
the number of fragment parses is 23, while with
the most aggressive pruning factor of 4, there are
39 fragment parses. There are also many more
skimmed sentences with no c-structure pruning,
which impacts negatively on the results. The ora-
cle f-score with no pruning is 83.07, but with prun-
ing (at all thresholds) the oracle f-score is higher.
This is due to less skimming when pruning is acti-
vated, since the more subtrees that are pruned, the
less likely the XLE system is to run over the time
or memory limits needed to trigger skimming.

Having established that a cutoff of 5 performs
best on the development data, we carried out the
final evaluation on the 560-sentence test set using
this cutoff. The results are given in Table 2. There
is a 67% speedup in parsing the 560 sentences, and
the most probable f-score increases significantly
from 79.93 to 82.83. The oracle f-score also in-
creases, while there is a decrease in the random f-
score. This shows that we are throwing away good
solutions during pruning, but that overall the re-
sults improve. Part of this again is due to the fact
that with no pruning, skimming is triggered much
more often. With a pruning factor of 5, there are
no skimmed sentences. There is also one sentence
that timed out with no pruning, which also lowers
the most probable and oracle f-scores.

Pruning Level None 5
Total Time 1204 392
Most Probable F-Score 79.93 82.83
Oracle F-Score 84.75 87.79
Random F-Score 75.47 74.31
Fragment Parses 96 91
Time Outs 1 0
Skimmed Sents 33 0

Table 2: Results of c-structure pruning experi-
ments on English test data

4 Experiments on German

We carried out a similar set of experiments on
German data to test whether the methodology de-
scribed above ported to a language other than En-
glish. In the case of German, the typical time of
XLE components is: Morphology (22.5%), Chart
(3.5%) and Unifier (74%). As training data we
used the TIGER corpus (Brants et al., 2002). Set-
ting aside 2000 sentences for development and
testing, we used the remaining 48,474 sentences as
training data. In order to create the partially brack-
eted input required for training, we converted the
original TIGER graphs into Penn-style trees with
empty nodes and retained bracketed constituents of
the type NP, S, PN and AP. The training data was
parsed by the German ParGram LFG (Rohrer and
Forst, 2006). This resulted in 25,677 full parses,
21,279 fragmented parses and 1,518 parse fail-
ures.1 There are 52,959 features in the final prun-
ing model.

To establish the optimal pruning settings for
German, we split the 2,000 saved sentences into
371 development sentences and 1495 test sen-
tences for final evaluation. We evaluated against
the TiGer Dependency Bank (Forst et al., 2004)
(TiGerDB), a dependency-based gold standard for
German parsers that encodes grammatical rela-
tions similar to, though more fine-grained than,
the ones in the TIGER Treebank as well as mor-
phosyntactic features. We experimented with the
same pruning levels as in the English experiments.
The results are given in Table 3.

The results on the development set show a sim-
ilar trend to the English results. A cutoff of 4 re-
sults in the fastest system, however at the expense

1The reason there are more fragment parses than, for ex-
ample, the results reported in Rohrer and Forst (2006) is that
the bracketed input constrains the parser to only return parses
compatible with the bracketed input. If there is no solution
compatible with the brackets, then a fragment parse is re-
turned.

35

Pruning Level None 4 5 6 7 8 9 10
Oracle F-Score 83.07 84.50 85.47 85.75 85.57 85.57 85.02 84.10
Time (CPU seconds) 288 100 109 123 132 151 156 182
Time Outs 0 0 0 0 0 0 0
Fragments 23 39 36 31 29 27 27 24
Skimmed Sents 8 0 0 1 1 1 1 3

Table 1: Results of c-structure pruning experiments on English development data

Pruning Level None 4 5 6 7 8 9 10
Oracle F-Score 83.69 83.45 84.02 82.86 82.82 82.95 83.03 82.81
Time (CPU seconds) 1313 331 465 871 962 1151 1168 1163
Time Outs 6 0 0 5 5 5 5 6
Fragments 65 104 93 81 74 73 73 68

Table 3: Results of c-structure pruning experiments on German development data

Pruning Level None 5
Total Time 3300 1655
Most Probable F-Score 82.63 82.73
Oracle F-Score 84.96 84.79
Random F-Score 73.58 73.72
Fragment Parses 324 381
Time Outs 2 2

Table 4: Results of c-structure pruning experi-
ments on German test data

of accuracy. A cutoff of 5 seems to provide the
best tradeoff between time and accuracy. Again,
most of the gain in oracle f-score is due to fewer
timeouts, rather than improved f-structures. In the
German development set, a cutoff of 5 leads to a
speedup of over 64% and a small increase in or-
acle f-score of 0.33 points. Therefore, for the fi-
nal evaluation on the unseen test-set, we choose a
cutoff of 5. The results are given in Table 4. We
achieve a speedup of 49% and a non-significant in-
crease in most probable f-score of 0.094. The time
spent by the system on morphology is much higher
for German than for English. If we only take the
unification stage of the process into account, the
German experiments show a speedup of 65.5%.

5 Experiments on Norwegian

As there is no treebank currently available for Nor-
wegian, we were unable to train the c-structure
pruning mechanism for Norwegian in the same
way as was done for English and German. There
is, however, some LFG-parsed data that has been
completely disambiguated using the techniques
described in Rosén et al. (2006). In total there
are 937 sentences from various text genres includ-
ing Norwegian hiking guides, Sophie’s World and
the Norwegian Wikipedia. We also use this dis-

ambiguated data as a gold standard for evaluation.
The typical time of XLE components with the Nor-
wegian grammar is: Morphology (1.6%), Chart
(11.2%) and Unifier (87.2%).

From the disambiguated text, we can automati-
cally extract partially bracketed sentences as input
to the c-structure pruning training method. We can
also extract sentences for training that are partially
disambiguated, but these cannot be used as part of
the test data. To do this, we extract the bracketed
string for each solution. If all the solutions pro-
duce the same bracketed string, then this is added
to the training data. This results in an average of
4556 features. As the data set is small, we do not
split it into development, training and test sections
as was done for English and German. Instead we
carry out a 10-fold cross validation over the entire
set. The results for each pruning level are given in
Table 5.

The results in Table 5 show that the pattern that
held for English and German does not quite hold
for Norwegian. While, as expected, the time taken
to parse the test set is greatly reduced when using
c-structure pruning, there is also a negative impact
on the quality of the f-structures. One reason for
this is that there are now sentences that could pre-
viously be parsed, and that now no longer can be
parsed, even with a fragment grammar.2 With c-
structure pruning, the number of fragment parses
increases for all thresholds, apart from 10. It is
also difficult to compare the Norwegian experi-
ment to the English and German, since the gold
standard is constrained to only consist of sentences
that can be parsed by the grammar. Theoretically
the oracle f-score for the experiment with no prun-

2With an extended fragment grammar, this would not hap-
pen.

36

Pruning Level None 4 5 6 7 8 9 10
Oracle F-Score 98.76 94.45 95.60 96.40 96.90 97.52 98.00 98.33
Time (CPU seconds) 218.8 106.2 107.4 109.3 112 116.2 124 130.7
Time Outs 0 0 0 0 0 0 0 0
Parse Failures 0.2 5.7 3.9 2 3.2 4.2 4.6 4.2
Fragments 1.3 7.7 6.5 4.7 2.8 1.8 1.5 1.2

Table 5: Results of c-structure pruning 10-fold cross validation experiments on Norwegian data

55

60

65

70

75

80

85

90

95

None 4 5 6 7 8 9 10

Figure 3: The lower-bound results for each of the
10 cross validation runs across the thresholds

ing should be 100. The slight drop is due to a
slightly different morphological analyzer used in
the final experiments that treats compound nouns
differently. A threshold of 10 gives the best results,
with a speedup of 40% and a drop in f-score of 0.43
points. It is difficult to choose the “best” thresh-
old, as the amount of training data is probably not
enough to get an accurate picture of the data. For
example, Figure 3 shows the lower-bound results
for each of the 10 runs. It is difficult to see a clear
pattern for all the runs, indicating that the amount
of training data is probably not enough for a reli-
able experiment.

6 Size of Training Data Corpus

The size of the Norwegian training corpus is con-
siderably smaller than the training corpora for En-
glish or German, so the question remains how
much training data we need in order for the c-
structure pruning to deliver reliable results. In or-
der to establish a rough estimate for the size of
training corpus required, we carried out an experi-
ment on the German TIGER training corpus.

We randomly divided the TIGER training cor-
pus into sets of 500 sentences. We plot the learn-
ing curve of the c-structure pruning mechanism in
Figure 4, examining the effect of increasing the
size of the training corpus on the oracle f-score on
the development set of 371 sentences. The curve
shows that, for the German data, the highest oracle
f-score of 84.98 was achieved with a training cor-
pus of 32,000 sentences. Although the curve fluc-

tuates, the general trend is that the more training
data, the better the oracle f-score.3

7 Error Analysis

Given that we are removing some subtrees during
parsing, it can sometimes happen that the desired
analysis gets pruned. We will take German as an
example, and look at some of these cases.

7.1 Separable particles vs pronominal
adverbs

The worddagegen(“against it”) can be a separable
prefix (VPART) or a pronominal adverb (PADV).
The verbprotestieren(“to protest”) does not take
dagegenas separable prefix. The verbstimmen
(“to agree”) however does. If we parse the sen-
tence in (1) with the verbprotestierenand activate
pruning, we do not get a complete parse. If we
parse the same sentence withstimmenas in (2) we
do get a complete parse. If we replacedagegen
by dafür, which in the current version of the Ger-
man LFG can only be a pronominal adverb, the
sentence in (3) gets a parse. We also notice that
if we parse a sentence, as in (4), wheredagegen
occurs in a position where our grammar does not
allow separable prefixes to occur, we get a com-
plete parse for the sentence. These examples show
that the pruning mechanism has learned to prune
the separable prefix reading of words that can be
both separable prefixes and pronominal adverbs.

(1) Sie
they

protestieren
protest

dagegen.
against-it

‘They protest against it.’

(2) Sie
they

stimmen
vote

dagegen.
against-it

‘They vote against it.’

3Unexpectedly, the curve begins to decline after 32,000
sentences. However, the differences in f-score are not statis-
tically significant (using the approximate randomization test).
Running the same experiment with a different random seed
results in a similarly shaped graph, but any decline in f-score
when training on more data was not statistically significantat
the 99% level.

37

32000, 84.97698

84

84.1

84.2

84.3

84.4

84.5

84.6

84.7

84.8

84.9

85

50
0

20
00

35
00

50
00

65
00

80
00

95
00

11
00

0

12
50

0

14
00

0

15
50

0

17
00

0

18
50

0

20
00

0

21
50

0

23
00

0

24
50

0

26
00

0

27
50

0

29
00

0

30
50

0

32
00

0

33
50

0

35
00

0

36
50

0

38
00

0

39
50

0

41
00

0

42
50

0

44
00

0

45
50

0

47
00

0

48
50

0

Number of Training Sentences

F
-S

co
re

Figure 4: The effect of increasing the size of the training data on the oracle f-score

(3) Er
he

protestiert
protests

dafür.
for-it

‘He protests in favour of it.’

(4) Dagegen
against-it

protestiert
protests

er.
he

‘Against it, he protests.’

7.2 Derived nominal vs non-derived nominal

The wordMordencan be the dative plural of the
nounMord (“murder”) or the nominalized form of
the verbmorden(“to murder”). With c-structure
pruning activated (at level 5), the nominalized
reading, as in (6), gets pruned, whereas the dative
plural reading is not (5). At pruning level 6, both
readings are assigned a full parse. We see simi-
lar pruning of nominalized readings as in (7). If
we look in more detail at the raw counts for re-
lated subtrees gathered from the training data, we
see that the common noun reading forMordenoc-
curs 156 times, while the nominalized reading only
occurs three times. With more training data, the c-
structure pruning mechanism could possibly learn
when to prune correctly in such cases.

(5) Er
he

redet
speaks

von
of

Morden.
murders

‘He speaks of murders.’

(6) Das
the

Morden
murdering

will
wants

nicht
not

enden.
end

‘The murdering does not want to end.’

(7) Das
the

Arbeiten
working

endet.
ends

‘The operation ends.’

7.3 Personal pronouns which also function as
determiners

There are a number of words in German that can
function both as personal pronouns and determin-
ers. If we take, for example, the wordihr, which
can mean “her”, “their”, “to-her”, “you-pl” etc.,
the reading as a determiner gets pruned as well as
some occurrences as a pronoun. In example (8),
we get a complete parse for the sentence with the
dative pronoun reading ofihr. However, in ex-
ample (9), the determiner reading is pruned and
we fail to get a complete parse. In example (10),
we also fail to get a complete parse, but in exam-
ple (11), we do get a complete parse. There is a
parameter we can set that sets a confidence value
in certain tags. So, for example, we set the con-
fidence value ofINFL-F BASE[det] (the tag given
to the determiner reading of personal pronouns) to
be 0.5, which says that we are 50% confident that
the tagINFL-F BASE[det] is correct. This results in

38

examples 8, 9 and 11 receiving a complete parse,
with the pruning threshold set to 5.

(8) Er
he

gibt
gives

es
it

ihr.
her

‘He gives it to her.’

(9) Ihr
her/their

Auto
car

fährt.
drives

‘Her/Their car drives.

(10) Ihr
you(pl)

kommt.
come

‘You come.’

(11) Er
he

vertraut
trusts

ihr.
her

‘He trusts her.’

7.4 Coordination of Proper Nouns

Training the German c-structure pruning mecha-
nism on the TIGER treebank resulted in a pecu-
liar phenomenon when parsing coordinated proper
nouns. If we parse four coordinated proper nouns
with c-structure pruning activated as in (12), we
get a complete parse. However, as soon as we add
a fifth proper noun as in (13), we get a fragment
parse. This is only the case with proper nouns,
since the sentence in (14) which coordinates com-
mon nouns gets a complete parse. Interestingly, if
we coordinaten proper nouns plus one common
noun, we also get a complete parse. The reason for
this is that proper noun coordination is less com-
mon than common noun coordination in our train-
ing set.

(12) Hans, Fritz, Emil und Maria singen.
‘Hans, Fritz, Emil and Maria sing.’

(13) Hans, Fritz, Emil, Walter und Maria sin-
gen.
‘Hans, Fritz, Emil, Walter and Maria sing.’

(14) Hunde, Katzen, Esel, Pferde und Affen
kommen.
‘Dogs, cats, donkeys, horses and apes
come.’

(15) Hans, Fritz, Emil, Walter, Maria und
Kinder singen.
‘Hans, Fritz, Emil, Walter, Maria and chil-
dren sing.’

We ran a further experiment to test what effect
adding targeted training data had on c-structure

pruning. We automatically extracted a specialized
corpus of 31,845 sentences from the Huge Ger-
man Corpus. This corpus is a collection of 200
million words of newspaper and other text. The
sentences we extracted all contained examples of
proper noun coordination and had been automati-
cally chunked. Training on this sub-corpus as well
as the original TIGER training data did have the
desired effect of now parsing example (13) with
c-structure pruning activated.

8 Related Work

Ninomiya et al. (2005) investigate beam threshold-
ing based on the local width to improve the speed
of a probabilistic HPSG parser. In each cell of a
CYK chart, the method keeps only a portion of the
edges which have higher figure of merits compared
to the other edges in the same cell. In particular,
each cell keeps the edges whose figure of merit is
greater thanαmax - δ, whereαmax is the high-
est figure of merit among the edges in the chart.
The term “beam thresholding” is a little confusing,
since a beam search is not necessary – instead, the
CYK chart is pruned directly. For this reason, we
prefer the term “chart pruning” instead.

Clark and Curran (2007) describe the use of
a supertagger with a CCG parser. A supertag-
ger is like a tagger but with subcategorization in-
formation included. Chart pruners and supertag-
gers are conceptually complementary, since chart
pruners prune edges with the same span and the
same category, whereas supertaggers prune (lexi-
cal) edges with the same span and different cate-
gories. Ninomiya et al. (2005) showed that com-
bining a chunk parser with beam thresholding pro-
duced better results than either technique alone. So
adding a supertagger should improve the results
described in this paper.

Zhang et al. (2007) describe a technique to
selectively unpack an HPSG parse forest to ap-
ply maximum entropy features and get the n-best
parses. XLE already does something similar when
it applies maximum entropy features to get the
n-best feature structures after having obtained a
packed representation of all of the valid feature
structures. The current paper shows that pruning
the c-structure chart before doing (packed) unifica-
tion speeds up the process of getting a packed rep-
resentation of all the valid feature structures (ex-
cept the ones that may have been pruned).

39

9 Conclusions

In this paper we have presented a c-structure prun-
ing mechanism which has been integrated into the
XLE LFG parsing system. By pruning the number
of c-structures built in the chart, the next stage of
processing, the unifier, has considerably less work
to do. This results in a speedup of 67% for En-
glish, 49% for German and 40% for Norwegian.
The amount of training data for Norwegian was
much less than that for English or German, there-
fore further work is required to fully investigate
the effect of c-structure pruning. However, the re-
sults, even from the small training data, were en-
couraging and show the same general patterns as
English and German. We showed that for the Ger-
man training data, 32,000 sentences was the opti-
mal number in order to achieve the highest oracle
f-score. There remains some work to be done in
tuning the parameters for the c-structure pruning,
as our error analysis shows. Of course, with sta-
tistical methods one can never be guaranteed that
the correct parse will be produced; however we can
adjust the parameters to account for known prob-
lems. We have shown that the c-structure pruning
mechanism described is an efficient way of reduc-
ing parse times, while maintaining the accuracy of
the overall system.

Acknowledgements

The work presented in this paper was supported
by the COINS project as part of the linguistic
Collaborative Research Centre (SFB 732) at the
University of Stuttgart and by the Norwegian Re-
search Council through the LOGON and TREPIL
projects.

References

Brants, Sabine, Stefanie Dipper, Silvia Hansen, Wolf-
gang Lezius, and George Smith. 2002. The TIGER
Treebank. InProceedings of the Workshop on Tree-
banks and Linguistic Theories, Sozopol, Bulgaria.

Cahill, Aoife, Tracy Holloway King, and John T.
Maxwell III. 2007. Pruning the Search Space of
a Hand-Crafted Parsing System with a Probabilistic
Parser. InACL 2007 Workshop on Deep Linguistic
Processing, pages 65–72, Prague, Czech Republic,
June. Association for Computational Linguistics.

Charniak, Eugene and Mark Johnson. 2005. Coarse-
to-Fine n-Best Parsing and MaxEnt Discriminative
Reranking. InProceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-

tics (ACL’05), pages 173–180, Ann Arbor, Michi-
gan, June. Association for Computational Linguis-
tics.

Clark, Stephen and James R. Curran. 2007. Wide-
Coverage Efficient Statistical Parsing with CCG and
Log-Linear Models. Computational Linguistics,
33(4):493–552.

Forst, Martin, Núria Bertomeu, Berthold Crysmann,
Frederik Fouvry, Silvia Hansen-Schirra, and Valia
Kordoni. 2004. Towards a dependency-based gold
standard for German parsers – The TiGer Depen-
dency Bank. InProceedings of the COLING Work-
shop on Linguistically Interpreted Corpora (LINC
’04), Geneva, Switzerland.

Kaplan, Ronald M., John T. Maxwell, Tracy H. King,
and Richard Crouch. 2004. Integrating Finite-state
Technology with Deep LFG Grammars. InPro-
ceedings of the ESSLLI 2004 Workshop on Combin-
ing Shallow and Deep Processing for NLP, Nancy,
France.

King, Tracy Holloway, Richard Crouch, Stefan Riezler,
Mary Dalrymple, and Ronald M. Kaplan. 2003. The
PARC 700 Dependency Bank. InProceedings of the
EACL Workshop on Linguistically Interpreted Cor-
pora (LINC ’03), Budapest, Hungary.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a Large Annotated
Corpus of English: The Penn Treebank.Computa-
tional Linguistics, 19(2):313–330.

Ninomiya, Takashi, Yoshimasa Tsuruoka, Yusuke
Miyao, and Jun’ichi Tsujii. 2005. Efficacy of Beam
Thresholding, Unification Filtering and Hybrid Pars-
ing in Probabilistic HPSG Parsing. InProceed-
ings of the Ninth International Workshop on Pars-
ing Technology, pages 103–114, Vancouver, British
Columbia, October. Association for Computational
Linguistics.

Rohrer, Christian and Martin Forst. 2006. Improving
Coverage and Parsing Quality of a Large-scale LFG
for German. InProceedings of the Language Re-
sources and Evaluation Conference (LREC-2006),
Genoa, Italy.

Rosén, Victoria, Paul Meurer, and Koenraad de Smedt.
2006. Towards a Toolkit Linking Treebanking and
Grammar Development. In Hajic, Jan and Joakim
Nivre, editors,Proceedings of the Fifth Workshop
on Treebanks and Linguistic Theories, pages 55–66,
December.

Zhang, Yi, Stephan Oepen, and John Carroll. 2007.
Efficiency in Unification-Based N-Best Parsing. In
Proceedings of the Tenth International Conference
on Parsing Technologies, pages 48–59, Prague,
Czech Republic, June. Association for Computa-
tional Linguistics.

40

