
Coling 2008: Proceedings of the workshop on Speech Processing for Safety Critical Translation and Pervasive Applications, pages 5–8
Manchester, August 2008

Speech Translation with Grammatical Framework

Björn Bringert
Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
bringert@chalmers.se

Abstract

Grammatical Framework (GF) is a gram-
mar formalism which supports interlingua-
based translation, library-based grammar
engineering, and compilation to speech
recognition grammars. We show how these
features can be used in the construction
of portable high-precision domain-specific
speech translators.

1 Introduction

Speech translators for safety-critical applications
such as medicine need to offer high-precision
translation. One way to achieve high precision
is to limit the coverage of the translator to a spe-
cific domain. The development of such high-
precision domain-specific translators can be re-
source intensive, and require rare combinations of
developer skills. For example, consider developing
a Russian–Swahili speech translator for the ortho-
pedic domain using direct translation between the
two languages. Developing such a system could
require an orthopedist programmer and linguist
who speaks Russian and Swahili. Such people may
be hard to find. Furthermore, developing transla-
tors for all pairs of N languages requires O(N2)
systems, developed by an equal number of bilin-
gual domain experts.

The language pair explosion and the need for
the same person to possess knowledge about the
source and target languages can be avoided by
using an interlingua-based approach. The re-
quirement that developers be both domain ex-
perts and linguists can be addressed by the use of

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

grammar libraries which implement the domain-
independent linguistic details of each language.

Grammatical Framework (GF) (Ranta, 2004)
is a type-theoretic grammar formalism which
is well suited to high-precision domain-specific
interlingua-based translation (Khegai, 2006), and
library-based grammar engineering (Ranta, 2008).
GF divides grammars into abstract syntax and con-
crete syntax. The abstract syntax defines what can
be said in the grammar, and the concrete syntax de-
fines how it is said in a particular language. If one
abstract syntax syntax is given multiple concrete
syntaxes, the abstract syntax can be used as an in-
terlingua. Given an abstract and a concrete syn-
tax, GF allows both parsing (text to abstract syn-
tax) and linearization (abstract syntax to text). This
means that interlingua-based translation is just a
matter of parsing in one language and linearizing
to another.

The GF resource grammar library (Ranta, 2008)
implements the domain-independent morphologi-
cal and syntactic details of eleven languages. A
grammar writer can use functions from a resource
grammar when defining the concrete syntax of an
application grammar. This is made possible by
GF’s support for grammar composition, and frees
the grammar writer from having to implement lin-
guistic details such as agreement, word order etc.

In addition to parsing and linearization, the
declarative nature of GF grammars allows them to
be compiled to other grammar formats. The GF
speech recognition grammar compiler (Bringert,
2007) can produce context-free grammars or finite-
state models which can be used to guide speech
recognizers.

These components, interlingua-based transla-
tion, grammar libraries, and speech recognition
grammar compilation, can be used to develop

5



domain-specific speech translators based on GF
grammars. Figure 1 shows an overview of a min-
imal unidirectional speech translator which uses
these components. This is a proof-of-concept sys-
tem that demonstrates how GF components can
be used for speech translation, and as such it can
hardly be compared to a more complete and mature
system such as MedSLT (Bouillon et al., 2005).
However, the system has some promising features
compared to systems based on unification gram-
mars: the expressive power of GF’s concrete syn-
tax allows us to use an application-specific inter-
lingua without any transfer rules, and the wide lan-
guage support of the GF Resource Grammar li-
brary makes it possible to quickly port applications
to new languages.

In Section 2 we show a small example grammar
for a medical speech translator. Section 3 briefly
discusses how a speech translator can be imple-
mented. Section 5 describes some possible ex-
tensions to the proof-of-concept system, and Sec-
tion 6 offers some conclusions.

2 Example Grammar

We will show a fragment of a grammar for a med-
ical speech translator. The example comes from
Khegai’s (2006) work on domain-specific transla-
tion with GF, and has been updated to use the cur-
rent version of the GF resource library API.

The small abstract syntax (interlingua) shown
in Figure 2 has three categories (cat): the start
category Prop for complete utterances, Patient
for identifying patients, and Medicine for iden-
tifying medicines. Each category contains a
single function (fun). There are the nullary
functions ShePatient and PainKiller, and the bi-
nary NeedMedicine, which takes a Patient and a
Medicine as arguments, and produces a Prop. This
simple abstract syntax only allows us to construct
the term NeedMedicine ShePatient PainKiller.
A larger version could for example include cat-
egories for body parts, symptoms and illnesses,
and more functions in each category. An example
of a term in such an extended grammar could be
And (Injured TheyPatient Foot) (NeedMedicine
HePatient Laxative).

For this abstract syntax we can use the En-
glish resource grammar to write an English con-
crete syntax, as shown in Figure 3. The resource
grammar category NP is used as the linearization
type (lincat) of the application grammar categories

abstract Health = {
flags startcat = Prop;
cat Patient; Medicine; Prop;
fun

ShePatient : Patient;
PainKiller : Medicine;
NeedMedicine : Patient → Medicine → Prop;

}
Figure 2: Example abstract syntax.

Patient and Medicine, and S is used for Prop. The
linearizations (lin) of each abstract syntax function
use overloaded functions from the resource gram-
mar, such as mkCl and mkN which create clauses
and nouns, respectively.

concrete HealthEng of Health =
open SyntaxEng, ParadigmsEng in {

lincat Patient, Medicine = NP; Prop = S;
lin

ShePatient = mkNP she Pron;
PainKiller =

mkNP indefSgDet (mkN “painkiller”);
NeedMedicine p m =

mkS (mkCl p (mkV2 (mkV “need”)) m);
}

Figure 3: English concrete syntax.

Figure 4 shows a Swedish concrete syntax cre-
ated in the same way. Note that PainKiller in
Swedish uses a mass noun construction rather than
the indefinite article.

concrete HealthSwe of Health =
open SyntaxSwe, ParadigmsSwe in {

lincat Patient, Medicine = NP; Prop = S;
lin

ShePatient = mkNP she Pron;
PainKiller =

mkNP massQuant
(mkN “smärtstillande”);

NeedMed p m =
mkS (mkCl p

(mkV2 (mkV “behöver”)) m);
}

Figure 4: Swedish concrete syntax.

6



Grammar development

Resource grammar library

Application grammar

Speech translator

PGF interpreter

Speech 
recognizer

(L1)

Speech 
synthesizer

(L2)

Parser
(L1)

Linearizer
(L2)

Speech
(L1)

Text
(L2)

Text
(L1)

Speech recognition
grammar (L1)

Speech recognition 
grammar compiler

Grammar 
compilerPGF

Speech
(L2)

User
(L1)

User 
(L2)

Abstract
syntax term

PGF

Abstract syntax Concrete syntax 
(L1)

Concrete syntax 
(L2)

Resource grammar 
(L1)

Resource grammar 
(L2)

Figure 1: Overview of a GF-based speech translator. The developer writes a multilingual application
grammar using the resource grammar library. This is compiled to a PGF (Portable Grammar Format)
grammar used for parsing and linearization, and a speech recognition grammar. Off-the-shelf speech
recognizers and speech synthesizers are used together with a PGF interpreter in the running system.

3 Speech Translator Implementation

The GF grammar compiler takes grammars in
the GF source language used by programmers,
and produces grammars in a low-level language
(Portable Grammar Format, PGF (Angelov et
al., 2008)) for which interpreters can be eas-
ily and efficiently implemented. There are cur-
rently PGF implementations in Haskell, Java and
JavaScript. The GF speech recognition gram-
mar compiler (Bringert, 2007) targets many differ-
ent formats, including Nuance GSL, SRGS, JSGF
and HTK SLF. This means that speech transla-
tors based on GF can easily be implemented on
almost any platform for which there is a speech
recognizer and speech synthesizer. We have run
Java-based versions under Windows using Nuance
Recognizer and RealSpeak or FreeTTS, Haskell-
based versions under Linux using Nuance Recog-
nizer and RealSpeak, and JavaScript-based proto-
types in the Opera XHTML+Voice-enabled web
browser on Zaurus PDAs and Windows desktops.

The speech translation system itself is domain-

independent. All that is required to use it in a new
domain is an application grammar for that domain.

4 Evaluation

Since we have presented a proof-of-concept sys-
tem that demonstrates the use of GF for speech
translation, rather than a complete system for any
particular domain, quantitative translation perfor-
mance evaluation would be out of place. Rather,
we have evaluated the portability and speed of pro-
totyping. Our basic speech translators written in
Java and Haskell, using existing speech compo-
nents and PGF interpreters, require less than 100
lines of code each. Developing a small domain for
the translator can be done in under 10 minutes.

5 Extensions

5.1 Interactive Disambiguation

The concrete syntax for the source language may
be ambiguous, i.e. there may be sentences for
which parsing produces multiple abstract syntax

7



terms. The ambiguity can sometimes be preserved
in the target language, if all the abstract syntax
terms linearize to the same sentence.

In cases where the ambiguity cannot be pre-
served, or if we want to force disambiguation for
safety reasons, we can use a disambiguation gram-
mar to allow the user to choose an interpretation.
This is a second concrete syntax which is com-
pletely unambiguous. When the user inputs an
ambiguous sentence, the system linearizes each of
the abstract syntax terms with the disambiguation
grammar, and prompts the user to select the sen-
tence with the intended meaning. If only some
of the ambiguity can be preserved, the number
of choices can be reduced by grouping the ab-
stract syntax terms into equivalence classes based
on whether they produce the same sentences in the
target language. Since all terms in a class produce
the same output, the user only needs to select the
correct class of unambiguous sentences.

Another source of ambiguity is that two abstract
syntax terms can have distinct linearizations in the
source language, but identical target language lin-
earizations. In this case, the output sentence will
be ambiguous, even though the input was unam-
biguous. This could be addressed by using unam-
biguous linearizations for system output, though
this may lead to the use of unnatural constructions.

5.2 Bidirectional Translation
Since GF uses the same grammar for parsing and
linearization, the grammar for a translator from L1

to L2 can also be used in a translator from L2 to
L1, provided that the appropriate speech compo-
nents are available. Two unidirectional translators
can be used as a bidirectional translator, something
which is straightforwardly achieved using two
computers. While PGF interpreters can already be
used for bidirectional translation, a single-device
bidirectional speech translator requires multiplex-
ing or duplicating the sound hardware.

5.3 Larger Input Coverage
GF’s variants feature allows an abstract syntax
function to have multiple representations in a given
concrete syntax. This permits some variation in
the input, while producing the same interlingua
term. For example, the linearization of PainKiller
in the English concrete syntax in Figure 3 could be
changed to:
mkNP indefSgDet (variants{

mkN “painkiller”;mkN “analgesic”});

6 Conclusions

Because it uses a domain-specific interlingua, a
GF-based speech translator can achieve high pre-
cision translation and scale to support a large num-
ber of languages.

The GF resource grammar library reduces the
development effort needed to implement a speech
translator for a new domain, and the need for the
developer to have detailed linguistic knowledge.

Systems created with GF are highly portable to
new platforms, because of the wide speech recog-
nition grammar format support, and the availability
of PGF interpreters for many platforms.

With additional work, GF could be used to im-
plement a full-scale speech translator. The ex-
isting GF components for grammar development,
speech recognition grammar compilation, parsing,
and linearization could also be used as parts of
larger systems.

References
Angelov, Krasimir, Björn Bringert, and Aarne

Ranta. 2008. PGF: A Portable Run-Time
Format for Type-Theoretical Grammars.
Manuscript, http://www.cs.chalmers.
se/˜bringert/publ/pgf/pgf.pdf.

Bouillon, P., M. Rayner, N. Chatzichrisafis, B. A.
Hockey, M. Santaholma, M. Starlander, H. Isahara,
K. Kanzaki, and Y. Nakao. 2005. A generic Multi-
Lingual Open Source Platform for Limited-Domain
Medical Speech Translation. pages 5–58, May.

Bringert, Björn. 2007. Speech Recognition Grammar
Compilation in Grammatical Framework. In Pro-
ceedings of the Workshop on Grammar-Based Ap-
proaches to Spoken Language Processing, pages 1–
8, Prague, Czech Republic.

Khegai, Janna. 2006. Grammatical Framework (GF)
for MT in sublanguage domains. In Proceedings
of EAMT-2006, 11th Annual conference of the Eu-
ropean Association for Machine Translation, Oslo,
Norway, pages 95–104, June.

Ranta, Aarne. 2004. Grammatical Framework: A
Type-Theoretical Grammar Formalism. Journal of
Functional Programming, 14(2):145–189, March.

Ranta, Aarne. 2008. Grammars as software libraries.
In Bertot, Yves, Gérard Huet, Jean-Jacques Lévy,
and Gordon Plotkin, editors, From semantics to com-
puter science: essays in honor of Gilles Kahn. Cam-
bridge University Press.

8


