
Evolving Questions in Text Planning

Mick O’Donnell

Escuela Politecnica Superior,

Universidad Autónoma de Madrid,

Cantoblanco, Spain

 michael.odonnell@uam.es

Abstract

This paper explores how the main question

addressed in Text Planning has evolved over

the last twenty years. Earlier approaches to

text planning asked the question: How do we

write a good text?, and whatever answers

were found were programmed directly into

code. With the introduction of search-based

text planning in recent years, the focus shifted

to the evaluation function, and thus the ques-

tion became: How do we tell if a text is good?

This paper will explore these evolving ques-

tions, and subsequent refinements of them as

the field matures.

Introduction

Given the growing interest in the application of

search-based planning methods in NLG, we can

describe how text planning has evolved from its

beginning in terms of the kinds of questions that

have been addressed.

1 How do we compose a good text?

The object in text planning is to write a program

which can compose a text to meet some input

specification. Traditionally, the programs them-

selves embody decision making procedures coded

to make textual decisions, such as whether or not

to include some content, how to rhetorically link it

to the rest of the text, and in what order should the

content nodes appear.

How one writes a good text has many answers,

and depends partly on the type of text one is writ-

ing. For some texts, a schematic approach is possi-

ble: a text can be composed by using predefined

schemas, which nominate what information should

appear, and in what order (McKeown 1985).

Sometimes the system makes the inclusion of a

schema element conditional on the context of the

text, for instance, deciding to include or exclude

content based on the type of user that the message

is being generated for (DiMarco et al. 1997).

For other types of text, the application of sche-

mas is less appropriate. Some text planners take as

their goal the delivery of a single fact, or a set of

facts, but take into account that other information

may need to be given first for each message to be

understood, other information may need to be

given after to counter misconceptions, and exam-

ples may be given to aide assimilation (for in-

stance, the RST text planners, such as Hovy 1988).

The system thus composes a text which delivers

the facts required of it, and any other facts which

will facilitate the uptake of these facts.

In another text genre, the goal is not to deliver

specific facts, but rather to describe an entity, for

instance, museum artefacts (e.g., ILEX: O’Donnell

et al. 2001), or animals (Peba: Milosavljevic

1999). A basic strategy to generate a reasonable

text of this kind is to list the different attributes of

the target entity, possibly sorted into relevant top-

ics. Good systems are aware of which information

is already known to the intended audience, what

should be interesting, etc. In ILEX, the system fol-

lowed various strategies to generate better texts,

such as allowing digressions (describing secondary

entities), generalisations, defeating misconcep-

tions, aggregation, etc.

Systems have increasingly tried to address lar-

ger sets of the issues needed to produce good qual-

ity text. We not only need to ensure that

appropriate content is selected, and that adequate

grounding is given to ensure the audience can un-

121

derstand the content. Increasingly issues of coher-

ence dominate. Entities should be referred to in a

contextually appropriate form, related sentences

should be aggregated to avoid repetition, the se-

quence of sentence themes should be structured to

express a logical development of messages, etc.

As systems address more and more of these is-

sues, the planning algorithms become more com-

plex. Systems which need to produce texts meeting

content and coherence constraints are reaching the

limit of what they can do, because the program-

ming needs to address too many issues.

2 What texts can be produced?

The text-planning problem gets more complex

when text planners need to address global as well

as local goals. In Ilex, one constraint on the plan-

ner was that the generated text needed to fit in a

specified space on a web page. During the genera-

tion process, the decision of whether or not to in-

clude a given fact in the page was difficult to

make, since while the inclusion of the fact might

help achieve the communicative goals, it also in-

creases the size of the text. However, the system

cannot know until the whole text is produced

whether including this fact would push the text size

over the limit. One can only calculate the real cost

of including extra content when the text is finished.

In the Ilex case, we selected an incremental text

planning approach, adding facts into the text struc-

ture in order of their relevance, until the space limit

is reached. But this approach is not compatible

with all generation goals.

In the 1990s, several approaches started to re-

characterise the text planning process as one of

searching the space of possible text structures for

those structures which were optimal when seen as

a completed whole. These approaches split the

question: how do we produce a good text? into two

parts:

• How can we search the space of texts which

could be produced for given content?

• How can we select the text in this space which

optimally meets our goals?

In this section, we will discuss the first of these

questions. Marcu (1997) characterised the text

planning process as follows. He assumed that the

knowledge base (KB) consists of a set of semantic

units to express, and that an additional resource

provided a set of rhetorical relations, which can

hold between two semantic units in the KB. A pair

of semantic units may have no relation between

them, one relation, or multiple.

The set of units to express is finite, and the rela-

tions that can hold between them is finite, so if we

assume that each semantic unit can only appear

once in the text tree, then it is clear that the set of

text structures that can realise the KB is also finite.

We can model the space of possible text structures

as a lattice, where each point in the lattice repre-

sents a given set of included facts, with a given set

of relationships between them, and a given se-

quencing of these facts in relation to each other.

Seen in this light, one might naively propose

the following approach to text planning: generate

all possible text plans for the given input, evaluate

each tree as a whole, and choose the one with the

highest value. However, even for a small number

of facts, the number of trees is huge, and this ap-

proach is not feasible.

A more feasible approach is to treat this as a

search problem. Each text plan represents one

point in the space of all possible plans. Adjacent

points in this lattice represent similar text plans

differing in one detail (the insertion of a fact, the

deletion of a subtree, the reordering of nucleus and

satellite, etc.). Given a starting text plan, we can

move from point to point in the space, searching

for a text plan which is optimal for our goals.

The earliest of work to take this approach was

that of Zukerman and McConachy (1994). They

were concerned with generating texts which con-

veyed content adequately but concisely. A text

adequately conveys the facts it is given to convey

if these facts are understood by the addressee.

Where a given fact requires other facts to be given

for it to be understood, these facts need also to be

included. If a given fact or set of facts may cause

the reader to make an unintended inference, facts

are included to prevent this. Additionally, the in-

clusion of a fact sometimes made the inclusion of

other facts unnecessary (e.g., including an example

might clarify a concept better than a longer expla-

nation). The conciseness goal required that as few

facts as possible are used to convey the informa-

tion that needs to be conveyed.

Given these constraints, traditional planning

methods which made decisions locally were not

appropriate. The conciseness and communicative

adequacy of the text is a property of a set of facts

as a whole, and thus text plans need to be evalu-

122

ated as a whole. They thus rephrased the text plan-

ning issue as optimisation at a global text level.

They only addressed part of text planning as an

optimisation problem: content selection. They take

as a starting point the set of facts that are categori-

cally required to be expressed. They then use an

incremental graph search algorithm to search for

optimal sets of facts to include in a text: on each

iteration, facts are added to or deleted from each

solution to produce new solutions, until the pro-

gram finds one solution which adequately conveys

the designated facts, with the fewest facts possible.

Marcu (1997) experimented with several different

search methods. Firstly, he assumed that all the

units in the KB need to be included in the text plan

(the problem of content selection was thus not

relevant). His goal was thus to find RST trees

which optimally covered all facts.

In his first algorithm, he used a chart mecha-

nism to construct all possible text plans for the

given content and the set of possible relations.

However, as he notes, for any non-trivial number

of facts, with multiple possible relations between

them, this approach is computationally expensive. I

also note that Marcu assumed all facts in the KB

were to be expressed. If content selection is in-

cluded in the process, meaning all facts are op-

tional, the solution is even less tractable.

His second proposal restricts the chart mecha-

nism to a greedy algorithm, which at each level,

selects only the best tree to take to the next level.

However, this basically amounts to make decisions

locally, not globally, and thus is not relevant to this

section.

His third algorithm is more relevant here. He

splits the problem into two parts. Firstly, determine

an ordering of content units such that as many as

possible of the ordering and adjacency constraints

in the potential relations are satisfied. Secondly,

derive an RST tree for this ordering of content

units.

He uses a constraint satisfaction algorithm for

the first step. A small corpus study was used to

derive, for each relation, the relative probability of

nucleus-satellite vs. satellite-nucleus ordering, and

also the degree to which the connected text seg-

ments are required to be linearly adjacent.

Given a set of facts, for each possible relation

between a pair of facts, the process asserts a con-

straint stating what the nucleus-satellite order

should be, and another constraint asserting that the

connected facts should be adjacent. The strength of

the constraint depends on the values obtained in

the corpus study, for instance, if a relation allows

relatively free ordering of a satellite, the constraint

strength would be low.

The constraint satisfaction algorithm then de-

rives the ordering of facts which maximises the

constraints. Marcu elsewhere provides an algo-

rithm to build a text tree on top of a given ordering

of facts, again using adjacency and order propensi-

ties.

Mellish et al. (1998) made the point that even

this restricted approach would soon become intrac-

table with more than a small set of facts when one

allows weak RST relations such as Joint and

Elaboration into the model.

An alternative approach, which I haven’t seen

implemented (although Mellish mentions the pos-

sibility), would be to apply hill climbing tech-

niques to the problem of finding a text which

optimally satisfies a set of locally and globally

stated text constraints. The idea would be to start

with a single text structure, generated in a simple

manner. The system then tries each possible single

mutation on this text structure, (e.g., adding a fact

in each location in the tree this is possible; deleting

each subtree in the tree; grafting a subtree from

one location to another, etc.). Each of the resulting

text structures is then evaluated, and the one which

scores higher is taken as the text structure for the

next cycle. When no one-step change to the tree

results in an improvement, the process stops.

The problem with all hill-climbing applications

is that we might reach a local maximum, a point

where no simple change can produce an improve-

ment, but radical restructuring could produce better

structures. One partial solution is to repeat the

process a number of times from different starting

structures, and select the best structure produced in

all the trials. But the problem remains.

Genetic algorithms offer an alternative to hill-

climbing methods, and are less susceptible to stop-

ping at local maxima. In the late 1990s, Chris Mel-

lish implemented the first stochastic text planner

(Mellish et al. 1998). He replaced the procedural

text planner of the ILEX system, with one based on

a genetic approach.

Like the above approaches, a genetic algorithm

can be seen as a means to search the space of pos-

sible texts. The system starts with a small popula-

tion of randomly produced text structures, and, on

123

each iteration (each generation), randomly mutates

some or all of the structures. Each new text struc-

ture is then evaluated by an “evaluation function”.

In each generation, those text structures with

the highest ‘fitness’ are more likely to produce off-

spring, while those under a certain threshold are

dropped from the population. In this way, muta-

tions which improve the text structure should be

preserved in the population, while those which

weaken the text should disappear. After a certain

number of iterations, the process is stopped, and

the highest scoring text-structure is selected as the

one to give the user.

The advantage of a genetic algorithm over a

hill-climbing approach is that mutations which

may by themselves lower the text value can sur-

vive in the population, and later combine with

other mutations to produce a high-value text struc-

ture. The evolutionary approach has its cost, how-

ever, in that far more processing time is required.

For this reason, the text mutation stage is usually

kept fairly simple.

Like Marcu, Mellish also assumes that the

search algorithm is given a set of facts, all of

which need to be included. He proposes 3 algo-

rithms. The first mutates a selected tree by ran-

domly swapping two subtrees, and then ‘repairing’

any relation which is no longer valid (where the

relation which links a nucleus and satellite no

longer holds between these facts, select another

relation which does, or if none exist, use the ge-

neric relation, Joint).

Mellish noted that, often, different trees in the

population develop good structure for different

subsets of facts. He thus introduced a cross-over

mechanism, allowing the grafting of structure from

one tree to another. He simplifies the process

somewhat in a manner similar to Marcu, assuming

that the genetic algorithm only manipulates the

surface ordering of facts, and that an RST tree can

be derived from that ordering (he assumes satel-

lites always follow the nucleus). He differs from

Marcu in that evaluation is of the final text tree,

rather than the fact sequence. Mellish thus allows

for two forms of mutation: moving a fact from one

place to another within a single fact sequence, and

inserting a sequence of facts from one fact-

sequence into a random place in another (then de-

leting any facts which are repeated).

I have two problems with the approach above.

Firstly, I do not believe that a given sequencing of

facts so deterministically relates to a particular tree

structuring of those facts. Two trees with the same

surface ordering of facts could be fundamentally

different in structure and in terms of the relations

used, and thus will be evaluated very differently.

By not including the text structure in the search

process, the process cannot search for an optimal

text structure.

My second problem with this approach is that

the mutations used are fairly destructive of the text

plans. When as a human writer I cut and paste text

from one document to another, I generally find the

amount of repair needed out-weighs the time saved

by reusing text. And even the simpler mutation,

randomly moving a text node within a sequence,

will have far more chance of fracturing coherence

than of creating it.

For these two reasons, I believe it is better to

use a genetic text planner which firstly operates

directly on text trees, and secondly, only allows

mutations which preserve the legality of the tree. I

also assume the genetic algorithm is used to deter-

mine selected content as well as structuring and

ordering it. In this hypothetical text planner, no

cross-over is used, only operations on a target tree.

We start with a population of trees of one fact each

(all related to the entity being described). The mu-

tations include:

• Insert Fact: select a fact not in the tree and

attach it as satellite to a fact which permits

such a relation.

• Delete Subtree: randomly select a subtree and

delete it.

• Move Subtree: randomly select a subtree and

move it to another location where it can legally

attach.

• Change Top Nucleus: break off a subtree from

the main tree, make its nucleus the top of the

tree, and graft the original tree into this tree at

a legal point.

• Switch Order: change the order of a satellite in

relation to the nucleus, or in regards to other

satellites of the same nucleus.

• Switch Focus: the assessment of text trees in-

cludes the evaluation of the focus movement

throughout the tree, each fact in the tree nomi-

nates a focus. This operation changes that fo-

cus for another of the entities in the fact, which

will affect which entity is realised as subject in

the final text.

124

All of these operations preserve the legality of

the tree, but may change the global evaluation of

the tree, given that suboptimal focus movements

may result, information prerequisite for under-

standing may occur late, or not at all, etc.

By only allowing legal mutations, the system

needs to do less work repairing the illegalities in-

troduced by mutations. Good solutions should be

reached quicker, although as said above, this ap-

proach is still in an early stage of development,

To a degree, this approach mirrors the way hu-

mans write texts. We start off with a rough draft

with the core of what we want to say, and revise

parts, sometimes adding in an explanation, some-

times adding a digression to provide background

material. We may erase material because a change

in another part of the document made the material

redundant. Or we might cut/paste material from

one part of the document to another.

Another approach to the problem of satisfying

global constraints in text planning has been the

‘generate and revise’ approach, where a text is

generated with only partial regard to the global

constraints, and the resulting text is then revised to

fit the global constraints (e.g., Robin and McKe-

own, 1996). In the STOP system (Reiter 2000),

texts are constrained to fit a certain length. The

system generates texts of approximately the right

length, and then prunes the text until the size re-

quirement is met. Piwek and van Deemter (2007)

expand this approach to handle more than a single

global constraint, exemplifying using both global

length and communicative effectiveness as (some-

times) contradictory goals. Their approach is to

generate a single starting text, and then apply revi-

sion operations to work towards an optimal text.

If one sees a revision operation as similar to the

text mutations applied above, then it seems the re-

vision approach is not so different to the genetic

algorithm approach above. One difference is that

the revision approach uses procedural means to

generate a reasonable starting text, while the sto-

chastic approaches generally start with easy-to-

generate texts and mutate these towards higher

complexity and optimality. Another important dif-

ference, at least in the work of Piwek and van

Deemter, is that they apply their revisions exhaus-

tively, looking at all possible combinations of revi-

sions to locate the optimal one. For more complex

text planning tasks, this may become less tractable.

3 How do we tell if a text is good?

One of the consequences of using genetic algo-

rithms for text planning is that much of one’s effort

is spent on developing the evaluation function, de-

fining the formulas used to decide how good a par-

ticular text is. The main focus in building a text

planner thus moves from deciding how do we com-

pose the text? to one of deciding: how do we tell if

a text is good?

The important point here is that with procedural

planners, we need to take a cognitive approach,

trying to perceive how a text is constructed from

scratch, which decisions are made, and in what

order. Using an evolutionary approach, we can ig-

nore the process of writing, and focus on the prod-

ucts of writing. We can then function as linguists:

our concern is to decide what makes a text function

well, and what interferes with its success. These

are more important, more abstract questions to ad-

dress.

Of the systems discussed above, the evaluation

functions vary. The system of Zukerman and

McConachy (1993) introduced the idea of global

criteria for evaluating text, such as conciseness

(meeting the informational goals of the system in

the fewest facts), and ILEX used text length as a

global criteria. Marcu (1997) set the goal of maxi-

mising ‘global coherence’ of the text, which basi-

cally amounts to maximising the sum of local

decisions made throughout the tree. Marcu used a

corpus study to determine how flexible the adja-

cency and ordering constraints of each relation

were, and penalised instances of the relation which

did not meet the constraint, the size of the penalty

depending on the observation in the corpus.

He does however mention that his approach

could be set up to “ensure that the resulting plans

satisfy multiple high-level communicative goals”

(p629).

The evaluation function of Mellish et al. (1998)

also was calculated over a sum of local features of

the tree, although a wider set of features were in-

volved. These included: rewarding ‘interesting’

relations and penalising the Joint relation; penalis-

ing separation between a nucleus and satellite; pe-

nalising unsatisfied precondition of a relation;

rewarding good focus movements and penalising

bad ones.

While it is clear each of these criteria is con-

tributory to good text, the numbers used were

125

made up. Basing these numbers on a corpus study

of good texts may be useful for future work.

Following on from Mellish et al., some work

took place focusing on improving the evaluation

function, for instance Cheng and Mellish (2000)

expanded on the criteria for evaluating focus

movement (there called ‘discourse topic move-

ment’), and also allowed for embedding of facts in

others, providing criteria for evaluating how good

an embedding is. Karamanis also examined focus

movement (or as he calls it, entity coherence) in

text evaluation (Karamanis and Manurung 2002;

Karamanis 2003; Karamanis et al. 2004; Kara-

manis and Mellish 2005). He proposes dropping

the use of rhetorical structure, and taking the goal

of text planning as sequencing facts so as to

achieve smooth focus movement. Mutations thus

change the ordering of facts in a given sequence

(as in the Mellish work), but evaluation is applied

directly to the fact sequence, penalising discon-

tinuous focus movements.

In summary of this section, the movement to

search-based text planning allowed the researcher

to move away from issues regarding how to pro-

gram a system to generate texts, focusing instead

on the problems of deciding how to evaluate the

quality of a text.

4 How good is this text?

A major problem with the search-based systems

described above is that the system-maker needs to

formulate the evaluation function: to specify the

criteria used to determine how good a text is. This

is a difficult problem, with no simple answers.

In some cases, corpus studies have been per-

formed to find the patterns used in good texts, and

base the evaluation metric on these results. How-

ever, this approach requires significant amounts of

time spent on corpus analysis.

One way around this problem is the use of ma-

chine learning (ML). The basic idea in ML is to

provide the computer with lots of example texts,

along with the classification of the text. The sys-

tem then builds a classification model from the

training data. This classification model can then be

applied to previously unseen examples to assign a

class.

Applying ML to text planning, we provide the

computer with a corpus of finished texts, each

rated from 0 to 10 in terms of quality, and leave the

computer to work out an evaluation function on its

own. This step would move the work of the inves-

tigator from deciding how to evaluate a text to a far

simpler one, of just saying if each text is good or

not, something we all can do with or without lin-

guistic training.

The problem here is that ML techniques can

only function on the range of features that they

have access to. In the worst case, only the surface

text is provided to the system. Some approaches

work simply with the n-gram sequences of words,

for instance, to select between alternative sen-

tences generated to express some content (e.g.,

Langkilde and Knight 1998). N-grams have even

been used to assess the global quality of texts, not

for text planning, but to assess student exam ques-

tions (Pérez et al. 2004). However, the sequence of

words within a sentence cannot tell us anything

about the quality of the text structure.

In recent years, there has been substantial work

that assumes that the quality of a text can be

judged in relation to the degree to which the se-

quence of sentences in the generated text corre-

sponds to a ‘golden standard’ (Lapata 2003;

Dimitromanolaki and Androutsopoulos 2003;

Karamanis et al. 2004). This work, referred to as

‘Input Ordering’, assumes that content selection is

done as a separate task, and the role of text plan-

ning can be seen as simply ordering the facts out-

put from content planning. A corpus of human-

written texts, (in most approaches tagged by pro-

positional content), is provided. These represent a

“golden standard”. Text plans generated by the

computer are evaluated in terms of the degree to

which the terminals of the text structures occur in

the same order as the golden standard.

For me, this approach is problematic: two texts

may have the same surface ordering of facts, yet

very different rhetorical structure. One text may be

well structured, and the other badly structured. The

surface ordering of facts is by itself a poor indica-

tor of the overall quality of the text.

This recent focus on input ordering results

partly from the fact that it is an aspect of text that

can easily be recognised. Focusing on input order

just because it is easy is something like looking for

your watch under the street-light, even though you

lost it in the dark alley. The looking might be eas-

ier, but if the answers are in the dark, then that is

where we should be looking.

126

Rather than explore surface features of lan-

guage which are easier to recognise, I believe we

should be either:

• building discourse-level tree-banks of real

texts, to provide real information to inform the

automatic derivation of evaluation functions,

or,

• building tools to automatically recognise dis-

course structure of text, (RST, focus move-

ment, etc.)

Daniel Marcu has been a leader in both directions,

working both on building an RST-tagged corpus,

and also exploring the automatic recognition of

rhetorical structure (Marcu 2000). In regards to the

latter, unfortunately, the results have not so far

been useful for real applications. If one wants to

rhetorically annotate a corpus, one needs to do it

by hand, which involves a substantial investment

of time. The case is similar for annotation of other

discourse structures, such as focus movement.

Within the context of NLG, another approach is

possible. For each generated text, we have at hand

the deeper structure which was produced in con-

structing the text. In the case of ILEX for instance,

a side-product of generating a text is the rhetorical

structure of the text, information regarding co-

identity of the entities mentioned in the text, etc.

The machine-learning program can thus be pro-

vided with all of this information as input, as well

as derived focus-movement, etc. We can produce a

corpus of generated texts, tagged with structural

information, and ask a human, to assign a level of

goodness to each text. The program can then de-

rive an evaluation function of its own.

The work of the human in the process thus be-

comes simply to assign a level of goodness as-

sessment to each of the texts in the training set.

5 What features of a text are critical in

evaluating worth?

The effectiveness of any machine leaning program

is very limited by the value of the text features it

receives. While the previous point started out with

a focal question How good is this text?, we saw

that the real question becomes: What factors do we

feed the system to optimise classification?

In a sense, this is a movement back towards ques-

tion 3: How do we tell if a text is good? However,

note the difference: question 3 concerns the inves-

tigator assigning values to particular text features,

typically making them up as they go.

With this new question however, the investiga-

tor is not assigning values to text features. Rather,

the investigator need only include the feature in the

data, and it is up to the learning algorithm to de-

cide to what degree that feature improves or wors-

ens the text quality. The investigator only needs to

hypothesise whether the text feature could be in-

fluential in this decision.

The main advantage here is the movement away

from investigators making up evaluation function

in their heads, or performing corpus studies. In the

machine learning approach, we need only include

the feature in the corpus. For instance, the evalua-

tion function of Mellish et al. (1998) assigned +3

for each instance of subject-repetition. In an ML

system, the human just decides that subject-

repetition should be considered, and the system

derives an appropriate parameter for this feature.

It is possible that many of the features we pro-

vide to the system are not actually used by the sys-

tem. If we use an ML approach which allows

access to its evaluation model in an understandable

form, then the approach has the added value of

revealing to the investigator which of the features

provided to the system are important to text value,

and which are not. One product of this approach,

apart from an improved text generator, will be an

improved understanding of what it is that makes a

text good or bad.

Early approaches to applying ML in this way

are calculating the relative frequency of particular

discourse features (e.g., of types of focus move-

ments, of types of rhetorical relations and their or-

dering). Each generated text can then be evaluated

in terms of the relative frequency of its discourse

features in comparison with the tagged corpus.

One problem with this approach is that many

aspects of text structure cannot be said to be good

or bad per se, it is only in relation to the context of

use that such can be judged. Almost any RST rela-

tion can appear in a text, and the value of the use

needs to be judged in the context of its appearance.

However, it is difficult for a machine learning sys-

tem to infer in which contexts the use of a particu-

lar relation is good and in which it is bad.

We have assumed a supervised learning ap-

proach, where a human evaluated the quality of

each text in the corpus. Because there is a cost to

producing such a corpus (human evaluation of

127

each text), some prefer an unsupervised approach,

whereby the input at the training phase is not val-

ued: it is assumed that all of the texts in the train-

ing corpus are good representatives of the genre.

6 Summary

We have represented recent developments in text

planning in terms of an evolution in the principle

question addressed. While earlier work in text

planning addressed the question of how we com-

pose texts, the movement into search-based plan-

ning split the question into two parts: how we

search the space of possible texts, and how we

evaluate a text.

The second of these questions has been increas-

ingly in focus, and the need to move away from

made-up evaluation functions leads to the corpus-

based derivation of text metrics. At first glance,

this seems to leave the analyst with the simple task

of evaluating the overall quality of a text, and leav-

ing it to the machine to derive the evaluation func-

tion (the question thus becomes: how good is this

text?).

However, on deeper analysis, the learning sys-

tem needs to be fed structured input to be able to

derive intelligent evaluation functions. The focal

question thus needs to shift to considering what

features of discourse structure need to be provided

to the ML system.

The field of search-based text planning is still

young, and evolving quickly. In the last 10 years,

the focal questions have evolved rapidly. The ques-

tion is, what will we be asking in another 10 years?

References

H. Cheng and C. Mellish. 2000. Capturing the Interac-

tion between Aggregation and Text Planning in Two

Generation Systems. Proceedings of the 1
st
 Int. NLG

Conference, Mitzpe Ramon, Israel, 108-115.

A. Dimitromanolaki and I. Androutsopoulos. 2003.

Learning to order facts for discourse planning in

natural language generation. Proceedings of the 9th

European Workshop on NLG.

C. DiMarco, G. Hirst and E. Hovy. 1997. Generation by

selection and repair as a method for adapting text for

the individual reader. Proceedings Workshop on

Flexible Hypertext, 8th ACM International Hypertext

Conference, Southampton, U.K., April 1997, 20-23.

E. Hovy. 1988. Planning coherent multisentential text.

Proceedings of the 26th Annual Meeting of ACL,

163-169.

N. Karamanis. 2003. Entity Coherence for Descriptive

Text Structuring. Ph.D. thesis, Informatics, Univer-

sity of Edinburgh.

N. Karamanis and H. Manurung. 2002. Stochastic Text

Structuring using the Principle of Continuity. Pro-

ceedings of the 2nd Int. NLG Conference.

N. Karamanis, C. Mellish, J. Oberlander and M. Poesio.

2004. A corpus-based methodology for evaluating

metrics of coherence for text structuring. Proceed-

ings of INLG04, Brockenhurst, 90-99.

I. Langkilde and K. Knight. 1998. The Practical Value

of N-Grams in Generation. Proceedings of the 9th

Int. Workshop on NLG, Ontario, Canada, 1998.

M. Lapata. 2003. Probabilistic text structuring: Experi-

ments with sentence ordering. Proceedings of ACL

2003, 545-552.

D. Marcu. 1997. From local to global coherence: A bot-

tom-up approach to text planning. Proceedings of the

National Conference on Artificial Intelligence

(AAAI'97), 629-635.

D. Marcu. 2000. The Rhetorical Parsing of Unrestricted

Texts: a Surface-Based Approach. Computational

Linguistics, 26 (3), 395-448.

K. McKeown. 1985. Text Generation. Cambridge Uni-

versity Press, Cambridge.

C. Mellish, A. Knott, J. Oberlander and M. O'Donnell.

1998. Experiments using stochastic search for text

planning. Proceedings of the 9th Int. Workshop on

NLG, Ontario, Canada, 98-107.

M. Milosavljevic. 1999. The automatic generation of

comparisons in descriptions of entities. PhD Thesis.

Department of Computing, Macquarie University,

Australia.

M. O'Donnell, C. Mellish, J. Oberlander and A. Knott.

2001. ILEX: An architecture for a dynamic hypertext

generation system. Natural Language Engineering 7,

225-250.

D. Pérez, E. Alfonseca, and P. Rodríguez. 2004. Appli-

cation of the BLEU method for evaluating free-text

answers in an e-learning environment. Proceedings

of the Language Resources and Evaluation Confer-

ence (LREC-2004), Portugal.

P. Piwek and K. van Deemter. 2007. Generating under

Global Constraints: the Case of Scripted Dialogue.

Journal of Research on Language and Computation,

5(2):237-263.

E. Reiter. (2000). Pipelines and Size Constraints. Com-

putational Linguistics. 26:251-259.

J. Robin and K. McKeown. 1996. Empirically designing

and evaluating a new revision-based model for sum-

mary generation’, Artificial Intelligence. 85(1-2).

I. Zukerman and R. McConachy. 1994. Discourse Plan-

ning as an Optimization Process. Proceedings of the

7th Int. Workshop on NLG, Kennebunkport, Maine,

37-44.

128

