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Abstract 

This paper describes and evaluates a modifica-
tion to the segmentation model used in the un-
supervised morphology induction system, Pa-
raMor. Our improved segmentation model 
permits multiple morpheme boundaries in a 
single word. To prepare ParaMor to effectively 
apply the new agglutinative segmentation 
model, two heuristics improve ParaMor’s pre-
cision. These precision-enhancing heuristics 
are adaptations of those used in other unsuper-
vised morphology induction systems, including 
work by Hafer and Weiss (1974) and Gold-
smith (2006). By reformulating the segmenta-
tion model used in ParaMor, we significantly 
improve ParaMor’s performance in all lan-
guage tracks and in both the linguistic evalua-
tion as well as in the task based information re-
trieval (IR) evaluation of the peer operated 
competition Morpho Challenge 2007. Para-
Mor’s improved morpheme recall in the lin-
guistic evaluations of German, Finnish, and 
Turkish is higher than that of any system which 
competed in the Challenge. In the three lan-
guages of the IR evaluation, our enhanced Pa-
raMor significantly outperforms, at average 
precision over newswire queries, a morpho-
logically naïve baseline; scoring just behind the 
leading system from Morpho Challenge 2007 
in English and ahead of the first place system 
in German.  

1 Unsupervised Morphology Induction 

Analyzing the morphological structure of words 
can benefit natural language processing (NLP) ap-
plications from grapheme-to-phoneme conversion 
(Demberg et al., 2007) to machine translation 
(Goldwater and McClosky, 2005). But many of the 

world’s languages currently lack morphological 
analysis systems. Unsupervised induction could fa-
cilitate, for these lesser-resourced languages, the 
quick development of morphological systems from 
raw text corpora. Unsupervised morphology induc-
tion has been shown to help NLP tasks including 
speech recognition (Creutz, 2006) and information 
retrieval (Kurimo et al., 2007b). In this paper we 
work with languages like Spanish, German, and 
Turkish for which morphological analysis systems 
already exist. 

The baseline ParaMor algorithm which we ex-
tend here competed in the English and German 
tracks of Morpho Challenge 2007 (Monson et al., 
2007b). The peer operated competitions of the 
Morpho Challenge series standardize the evalua-
tion of unsupervised morphology induction algo-
rithms (Kurimo et al., 2007a; 2007b). The ParaMor 
algorithm showed promise in the 2007 Challenge, 
placing first in the linguistic evaluation of German. 
Developed after the close of Morpho Challenge 
2007, our improvements to the ParaMor algorithm 
could not officially compete in this Challenge. 
However, the Morpho Challenge 2007 Organizing 
Committee (Kurimo et al., 2008) graciously over-
saw the quantitative evaluation of our agglutinative 
version of ParaMor.  

1.1 Related Work 

A variety of approaches to unsupervised morphol-
ogy induction have shown promise in past work: 
Here we highlight three techniques which have 
been used in a number of unsupervised morphol-
ogy induction algorithms. Since character se-
quences are less predictable at morpheme bounda-
ries than within any particular morpheme (see dis-
cussion in section 2.1), a first unsupervised mor-
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phology induction technique measures the predict-
ability of word-internal character sequences. Harris 
(1955) was the first to propose the branching factor 
of the character tree of a corpus vocabulary as a 
measure of character predictability. Character trees 
have been incorporated into a number of more re-
cently proposed unsupervised morphology induc-
tion systems (Schone and Jurafsky, 2001; Wicen-
towski, 2002; Goldsmith, 2006; Bordag, 2007). 
Johnson and Martin (2003) generalize from charac-
ter trees and model morphological character se-
quences with minimized finite state automata. 
Bernhard (2007) measures character predictability 
by directly computing transitional probabilities be-
tween substrings of words. 

A second successful technique has used the 
minimum description length principle to capture 
the morpheme as a recurrent structure of morphol-
ogy. The Linguistica system of Goldsmith (2006), 
the Morfessor system of Creutz (2006), and the 
system described in Brent et al. (1995) take this 
approach. 

A third technique leverages inflectional para-
digms as the organizational structure of morphol-
ogy. The ParaMor algorithm, which this paper ex-
tends, joins Snover (2002), Zeman (2007), and 
Goldsmith’s Linguistica in building morphology 
models around the paradigm.  

ParaMor tackles three challenges that face mor-
phology induction systems which Goldsmith's Lin-
guistica algorithm does not yet address. First, sec-
tion 2.2 of this paper introduces an agglutinative 
segmentation model. This agglutinative model seg-
ments words into as many morphemes as the data 
justify. Although Goldsmith (2001) and Goldsmith 
and Hu (2004) discuss ideas for segmenting indi-
vidual words into more than two morphemes, the 
implemented Linguistica algorithm, as presented in 
Goldsmith (2006), permits at most a single mor-
pheme boundary in each word. Second, ParaMor 
decouples the task of paradigm identification from 
that of word segmentation (Monson et al., 2007b). 
In contrast, morphology models in Linguistica in-
herently encode both a belief about paradigm 
structure on individual words as well as a segmen-
tation of those words. Without ParaMor’s decoup-
ling of paradigm structure from specific segmenta-
tion models, our algorithm for agglutinative seg-
mentation (section 2.2) would not have been possi-
ble. Third, the evaluation of ParaMor in this paper 
is over much larger corpora than any published 

evaluation of Linguistica. Goldsmith (2006) seg-
ments the Brown corpus of English, which, after 
discarding numbers and punctuation, has a vocabu-
lary size of 47,607 types. Using Linguistica, Creutz 
(2006) successfully segments a Finnish corpus of 
250,000 tokens (approximately 130,000 types), but 
Creutz notes that Linguistica is memory intensive 
and not runable for larger corpora. In the evalua-
tions of Morpho Challenge 2007, ParaMor seg-
mented the words from corpora with over 42 mil-
lion tokens and vocabularies as large as 2.2 million 
types.  

2 ParaMor 

This section briefly outlines the high level struc-
ture of ParaMor as described in detail in Monson et 
al. (2007a; 2007b). ParaMor takes the inflectional 
paradigm as the basic building block of morphol-
ogy. A paradigm is a mutually substitutable set of 
morphological operations. For example, most ad-
jectives in Spanish inflect for two paradigms. First, 
adjectives are marked for gender: an a suffix 
marks feminine, an o masculine. Then Spanish ad-
jectives mark number: an s suffix signals plural, 
while no marking, Ø in this paper, indicates singu-
lar. The four surface forms of the cross-product of 
the gender and number paradigms on the Spanish 
word for ‘beautiful’ are then: bello, bella, bellos, 
and bellas.  

ParaMor is a two stage algorithm. In the first 
stage, ParaMor identifies candidate paradigms 
which likely model suffixes of morphological pa-
radigms and their cross-products. Since some 70% 
of the world’s languages are significantly suffixing 
(Dryer, 2005), ParaMor only attempts to identify 
suffix paradigms. ParaMor’s first stage consists of 
three pipelined steps. In the first step, ParaMor 
searches a space of candidate partial paradigms, 
called schemes, for those which possibly model 
suffixes of true paradigms. The second step merges 
selected schemes which appear to model the same 
paradigm. And in the third step, ParaMor discards 
scheme clusters which likely do not model true 
paradigms.  

The second stage of the ParaMor algorithm 
segments word forms using the candidate para-
digms identified in the first stage. Section 2.2 of 
this paper introduces a new segmentation model 
for ParaMor’s second stage that allows more than 
one morpheme boundary in a single word—as is 
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needed to correctly segment Spanish plural adjec-
tives. As this agglutinative segmentation model re-
lies on the paradigms learned in ParaMor’s first 
stage, section 2.1 presents solutions to two types of 
paradigm model error that the baseline ParaMor 
system makes. The solutions to these two error 
types are similar in nature to ideas proposed in the 
unsupervised morphology induction work of Hafer 
and Weiss (1974) and Goldsmith (2006). 

2.1 Precision at Paradigm Identification 

Table 1 presents 14 of the more than 8000 schemes 
identified during one baseline run of ParaMor’s 
scheme search step. Each row of Table 1 lists a 
scheme that was selected while searching over a 
Spanish newswire corpus of 50,000 types. On the 
far left of Table 1, the Rank column states the or-
dinal rank at which that row’s scheme was selected 
during the search procedure: the first scheme Pa-
raMor selects is Ø.s; a.as.o.os is the second; ido.-
idos.ir.iré is the 1566th selected scheme, etc. The 
right four columns of Table 1, present raw data on 
the selected schemes, giving the number of can-
didate suffixes in that scheme, the proposed suf-
fixes themselves, the number of candidate stems in 
the scheme, and a sample of those candidate stems. 
Each candidate stem in a ParaMor scheme forms a 
word that occured in the input corpus with each 
candidate suffix belonging to that scheme; for 
example, from the first selected scheme, the candi-

date stem apoyada joins to the candidate suffix s to 
form the word apoyadas ‘supported (adjective 
feminine plural)’—a word which occured in the 
Spanish newswire corpus.  

Between the rank on the left and the scheme 
details on the right of Table 1, are columns which 
categorize the scheme on its success, or failure, to 
model a true paradigm of Spanish. A dot appears in 
the columns marked Noun, Adjective, or Verb if the 
majority of the candidate suffixes in a row’s 
scheme attempt to model suffixes in a paradigm of 
that part of speech. A dot appears in the Derivation 
column if one or more candidate suffixes of the 
scheme models a Spanish derivational suffix. The 
Good column is marked if the candidate suffixes of 
a scheme take the surface form of true paradig-
matic suffixes. Initially selected schemes in Table 
1 that correctly capture suffixes of real Spanish 
paradigms are the 1st, 2nd, 5th, 13th, 30th, and 1566th 
selected schemes. While some smaller paradigms 
of Spanish are perfectly identified (including Ø.s, 
which marks singular and plural on many nouns 
and adjectives, and the adjectival cross-product 
paradigm of gender and number, a.as.o.os) many 
selected schemes do not satisfactorily model Span-
ish suffixes. Incorrect schemes in Table 1 are 
marked in the Error columns.  

The vast majority of unsatisfactory paradigm 
models fail for one of two reasons. First, many 
schemes contain candidate suffixes which system-
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    2 Ø.s 5513 apoyada, barata, hombro, oficina, reo, … 
2  

●
     

●
    4 a.as.o.os 899 apoyad, captad, dirigid, junt, próxim, … 

3   
●

      
●

  14 Ø.ba.ban.da.das.do.dos.n.ndo.r.ron.rse.rá.rán 25 apoya, disputa, lanza, lleva, toma, … 
5   

●
    

●
    15 a.aba.aban.ada.adas.ado.ados.an.ando.ar.aron.arse.ará.arán.ó 24 apoy, desarroll, disput, lanz, llev, … 

11  
●

    
●

  
●

   5 ta.tamente.tas.to.tos 22 cier, direc, insóli, modes, sangrien, … 
12   

●
   

●
   

●
  14 Ø.ba.ción.da.das.do.dos.n.ndo.r.ron.rá.rán.ría 16 acepta, concentra, fija, provoca, … 

13   
●

    
●

    15 a.aba.ada.adas.ado.ados.an.ando.ar.aron.ará.arán.e.en.ó 20 apoy, declar, enfrent, llev, tom, … 
30    

●
 

●
  

●
    11 a.e.en.ida.idas.ido.idos.iendo.ieron.ió.ía 15 cumpl, escond, recib, transmit, vend, … 

1000          
●

 3 Ø.g.gs 4 h, k, on, s 
1566     

●
  

●
    4 ido.idos.ir.iré 6 conclu, cumpl, distribu, exclu, reun, segu 

2000      
●

  
●

   2 lia.liana 5 austra, ita, ju, sici, zu 
3000          

●
 3 Ø.a.anar 4 all, am, g, s 

4000          
●

 3 Ø.e.ince 4 l, pr, qu, v 
8000   

●
     

●
   2 trada.trarnos 3 concen, demos, encon 

               

 

Table 1. Candidate partial paradigms, or schemes, that the baseline ParaMor algorithm selected during its first step, 
search, of its first stage, paradigm identification. This baseline ParaMor run was over a Spanish newswire corpus of 
50,000 types. While some selected schemes contain suffixes from true paradigms, other schemes contain incorrectly 
segmented candidate suffixes. 
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atically misanalyze word forms. These schemes 
consistently hypothesize either stem-internal or 
suffix-internal morpheme boundaries. Schemes 
which hypothesize incorrect morpheme boundaries 
include the 3rd, 11th, 12th, 2000th, and 8000th se-
lected schemes of Table 1. Among these, the 3rd 
and 12th selected schemes place morpheme boun-
daries internal to true suffixes. For example, the 3rd 
selected scheme contains truncated forms of suf-
fixes that occur correctly in the 5th selected 
scheme. Symmetrically, the candidate suffixes in 
the 11th, 2000th, and 8000th selected schemes hy-
pothesize morpheme boundaries internal to true 
Spanish stems, inadvertently including portions of 
stems within their suffix lists. In a random sample 
of 100 schemes from the 8240 schemes that the 
baseline ParaMor algorithm selects over our Span-
ish corpus, 59 schemes hypothesized an incorrect 
morpheme boundary. 

The second most prevalent reason for model 
failure occurs when the candidate suffixes of a 
scheme are related not by belonging to the same 
paradigm, but rather by a chance co-occurrence on 
a few candidate stems of the text. Schemes which 
arise from chance string collisions in Table 1 in-
clude the 1000th, 3000th, and 4000th selected 
schemes. The string lengths of the candidate stems 
and candidate suffixes of these chance schemes are 
often quite short. The longest candidate stem in 
any of the three chance-error schemes of Table 1 is 
three characters long; and all three selected 
schemes propose the suffix Ø, which has length 
zero. Short stems and short suffixes in selected 
schemes are easily explained combinatorially: The 
inventory of possible strings grows exponentially 
with the length of the string. Because there just 
aren’t very many length one, length two, or even 
length three strings, it should come as no surprise 
when a variety of candidate suffixes happen to oc-
cur attached to the same set of short stems. In our 
random sample of 100 initially selected schemes, 
35 were erroneously selected as a result of a 
chance collision of word types. 

The next two sub-sections present solutions to 
the two types of paradigm model failure in the 
baseline algorithm that are exemplified in Table 1. 
These first two extensions aim to improve preci-
sion by reducing the number of schemes ParaMor 
erroneously selects. 

 

Correcting Morpheme Boundary Errors 

Most of the baseline selected schemes which incor-
rectly hypothesize a morpheme boundary do so at 
stem-internal positions. Indeed, in our random 
sample of 100 schemes, 51 of the 59 schemes with 
morpheme boundary errors incorrectly hypothe-
sized a boundary stem-internally. For this reason, 
the baseline ParaMor algorithm already discarded 
schemes that likely misplace a boundary stem-
internally (Monson et al., 2007b). Although there 
are fewer schemes that misplace a morpheme 
boundary suffix-internally, suffix-internal error 
schemes contain short suffixes that can generalize 
to segment a large number of word forms. (See 
section 2.2 for a description of ParaMor’s morpho-
logical segmentation model). To measure the in-
fluence of suffix-internal error schemes on mor-
pheme segmentation, we examined ParaMor’s 
baseline segmentations of a random sample of 100 
word forms from the 50,000 words of our Spanish 
corpus. In these 100 words, 82 morpheme bounda-
ries were introduced that should not have been. 
And 40 of these 82 incorrectly proposed bounda-
ries were placed by schemes which hypothesized a 
morpheme boundary internal to true suffixes.  

To address the problem of suffix-internal mis-
placed boundaries we adapt an idea originally pro-
posed by Harris (1955) and extended by Hafer and 
Weiss (1974): Take any string t. Let F be the set of 
strings such that for each Ff ∈ , t.f is a word form 
of a particular natural language. Harris noted that 
when the boundaries between t and each f fall at 
morpheme boundaries, the strings in F typically 
begin in a wide variety of characters; but when the 
t-f boundaries are morpheme-internal, each legiti-
mate word final string must first complete the er-
roneously split morpheme, and so the strings in F 
will begin with one of a very few characters. This 
argument similarly holds when the roles of t and f 
are reversed. Hafer and Weiss (1974) describe a 
number of variations to Harris’ letter variety algo-
rithm. Their most successful variation uses entropy 
to measure character variety.  

Goldsmith’s (2006) Linguistica algorithm pio-
neered the use of entropy in a paradigm-based un-
supervised morphology induction system. Linguis-
tica measures the entropy of stem-final characters 
in a set of initially selected paradigm models. 
When entropy falls below a threshold, Linguistica 
considers relocating the morpheme boundary of 
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each word covered by that paradigm model. If, af-
ter boundary relocation, the resulting description 
length of Linguistica’s morphology model de-
creases, Linguistica accepts the relocated bounda-
ries.  

To identify suffix-internal morpheme boundary 
errors among ParaMor’s initially selected schemes, 
we follow Hafer and Weiss (1974) and Goldsmith 
(2006) in using entropy as a measure of the variety 
in boundary-adjacent character distributions. In a 
ParaMor style scheme, the candidate stems form a 
set of word-initial strings, and the candidate suf-
fixes a set of word-final strings. If a scheme’s 
stems end in a very few unique characters, the 
scheme has likely hypothesized an incorrect suffix-
internal morpheme boundary. Consider the 3rd se-
lected scheme in Table 1. All 25 of the 3rd 
scheme’s stems end in the character ‘a’. Conse-
quently, we measure the entropy of the distribution 
of final characters in each scheme’s candidate 
stems. Where Linguistica modifies paradigm mod-
els which appear to incorrectly place morpheme 
boundaries, our extension to ParaMor permanently 
removes schemes. To avoid introducing a free pa-
rameter, our extension to ParaMor flags a scheme 
as a likely boundary error only when virtually all 
of that scheme’s candidate stems end in the same 
character. We flag a scheme if its entropy is below 
a threshold set close to zero, 0.5. The baseline Pa-
raMor algorithm discards schemes which it be-
lieves hypothesize an incorrect stem-internal mor-
pheme boundary only after the scheme clustering 
step of ParaMor’s paradigm identification stage. 
Our extension follows suit: If we flag more than 
half of the schemes in a cluster as likely proposing 
a suffix-internal boundary, then we discard that 
cluster. Referencing Table 1, this first extension to 
ParaMor successfully removes both the 3rd and the 
12th selected schemes.  

Correcting Chance String Collision Errors 

Scheme errors due to chance string collisions are 
the second most prevalent error type. As described 
above, the string lengths of the candidate stems 
and suffixes of chance schemes are typically short. 
When the stems and suffixes of a scheme are short, 
then the underlying types which support a scheme 
are also short. Where the baseline ParaMor algo-
rithm explicitly builds schemes over all types in a 
corpus, we modify ParaMor to exclude short types 
from the vocabulary during morphology induction. 

Goldsmith (2006) also uses string-length thresh-
olds to restrict what paradigm models the Linguis-
tica algorithm produces. 

Excluding short types during ParaMor’s mor-
phology induction stage does not preclude short 
types from being analyzed as containing multiple 
morphemes during ParaMor’s segmentation stage. 
As section 2.2 describes, ParaMor’s segmentation 
algorithm is independent of the set of types from 
which schemes and scheme clusters are built. 

The string length that types must meet to join 
the induction vocabulary is a free parameter. Pa-
raMor is designed to identify the productive inflec-
tional paradigms of a language. Unless a paradigm 
is restricted to occur only with short stems, a pos-
sible but unusual scenario (as with the English ad-
jectival comparative, c.f. faster but *exquisiter) we 
can expect a productive paradigm to occur with a 
reasonable number of longer stems in a corpus. 
Hence, ParaMor needn’t be overly concerned 
about discarding short types. A qualitative exam-
ination of Spanish data suggested discarding types 
five characters or less in length; we use this cutoff 
in all experiments described in this paper. 

Excluding short types from the paradigm induc-
tion vocabulary virtually eliminates the entire cate-
gory of chance scheme. In a random sample of 100 
schemes that ParaMor selected when short types 
were excluded, only one scheme contained types 
related only by chance string similarity, down from 
35 when short types were not excluded. Returning 
to Table 1, excluding types five characters or less 
in length bars ten of the twelve word types which 
support the erroneous 3000th selected scheme Ø.a.-
anar. Among the excluded types are valid Spanish 
words such as ganar ‘to gain’. But also eliminated 
are several meaningless acronyms such as the sin-
gle letters g and s. Without these short types, Pa-
raMor rightly cannot select the 3000th scheme. 

2.2 Segmentation 

An Agglutinative Model 

With the improvement in scheme precision that re-
sults from the two extensions discussed in section 
2.1, we are ready to propose a more realistic model 
of morphology. ParaMor’s baseline segmentation 
algorithm distrusts ParaMor’s induced scheme 
models. The baseline algorithm assumes each word 
form can contain at most a single morpheme 
boundary. If it detects more than one morpheme 
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boundary, then the baseline algorithm proposes a 
separate morphological analysis for each possible 
boundary. In contrast, our extended model of seg-
mentation vests more trust in the induced schemes, 
assuming that scheme clusters which propose dif-
ferent morpheme boundaries are simply modeling 
different valid morpheme boundaries. And our ex-
tension proposes a single morphological analysis 
containing all hypothesized morpheme boundaries.  

To detect morpheme boundaries, ParaMor 
matches each word, w, in the full vocabulary of a 
corpus against the clusters of schemes which are 
the final output of ParaMor’s paradigm identifica-
tion stage. When a suffix, f, of some scheme-
cluster, C, matches a word-final string of w, i.e. 

fuw .= , ParaMor attempts to replace f in turn with 
each suffix f ′  of C. If the string fu ′.  occurs in 
the full corpus vocabulary, then, on the basis of 
this paradigmatic evidence, ParaMor identifies a 
morpheme boundary in w between u and f . 

For example, to detect morpheme boundaries in 
the Spanish word apoyados ‘supports (adjective 
masculine plural)’ , ParaMor matches all word-
final strings of apoyados against the candidate suf-
fixes of ParaMor’s induced scheme clusters. The 
word-final strings of apoyados are s, os, dos, ados, 
yados, …. The scheme clusters that our extended 
version of ParaMor induces include clusters which 
contain schemes very similar to the 1st, 2nd, and 5th 
baseline selected schemes, see Table 1. In particu-
lar, our extended ParaMor identifies separate 
scheme clusters that contain the candidate suffixes: 
s and Ø; os and o; and ados and ado. Substituting 
Ø for s, o for os, or ado for ados yields the Spanish 
string apoyado ‘supports (adjective masculine sin-
gular)’. It so happens, that apoyado does occur in 
our Spanish corpus, and so ParaMor has found 
paradigmatic evidence for three morpheme boun-
daries. Crucially, our ParaMor extension from sec-
tion 2.1 that removes schemes which hypothesize 
suffix internal morpheme boundaries correctly dis-
cards all schemes which contained the candidate 
suffix dos. Consequently, no scheme cluster exists 
to incorrectly suggest the morpheme boundary 
*apoya + dos, as the 3rd baseline selected scheme 
would have. Where ParaMor’s baseline segmenta-
tion algorithm would propose three separate analy-
ses of apoyados, one for each detected morpheme 
boundary: apoy +ados, apoyad +os, and apoyado 
+s; our extended segmentation algorithm produces 
the single correct analysis: apoy +ad +o +s.  

It is interesting to note that although each of Pa-
raMor’s individual paradigm models proposes a 
single morpheme boundary, our agglutinative seg-
mentation model can recover multiple boundaries 
in a single word. Using this idea it may be possible 
to quickly adapt Linguistica for agglutinative lan-
guages. Instead of interpreting the sets of stems 
and affixes that Goldsmith’s Linguistica algorithm 
produces as immediate segmentations of words, 
these signatures can be thought of as models of 
paradigms that may generalize to new words. 

Augmenting ParaMor’s Segmentations 

With its focus on the paradigm, ParaMor special-
izes at analyzing inflectional morphology (Monson 
et al., 2007a). Morpho Challenge 2007 requires al-
gorithms to analyze both inflectional and deriva-
tional morphology (Kurimo et al., 2007a; 2007b). 
To compete in the challenge, we combine Pa-
raMor’s morphological segmentations with seg-
mentations from Morfessor (Creutz, 2006), an un-
supervised morphology induction algorithm which 
learns both inflectional and derivational morphol-
ogy. We incorporate the segmentations from Mor-
fessor into the segmentations that the ParaMor sys-
tem produces by straightforwardly adding the Mor-
fessor segmentation for each word as an additional 
separate analysis to those ParaMor produces (Mon-
son et al., 2007b). Morfessor has one free parame-
ter, which we optimize separately for each lan-
guage of Morpho Challenge 2007.  

ParaMor also has several free parameters, in-
cluding the type length parameter and the parame-
ter over stem-final character entropy described in 
section 2.1. We do not adjust any of ParaMor’s pa-
rameters from language to language, but fix them 
at values that produce reasonable Spanish para-
digms and segmentations. As in Monson et al. 
(2007b), to avoid adjusting ParaMor’s parameters 
we limit ParaMor’s paradigm induction vocabulary 
to 50,000 frequent types for each language.  

3 Evaluation 

To evaluate our extensions to the ParaMor algo-
rithm, we follow the methodology of the peer op-
erated Morpho Challenge 2007. All segmentations 
produced by our extensions were sent to the Mor-
pho Challenge Organizing Committee (Kurimo et 
al., 2008). The Organizing Committee evaluated 
our segmentations and returned the automatically 
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calculated quantitative results. Using the evalua-
tion methodology of Morpho Challenge 2007 per-
mits us to compare our algorithms against the un-
supervised morphology induction systems which 
competed in the 2007 Challenge. Of the many al-
gorithms for unsupervised morphology induction 
discussed with the related work in section 1.1, five 
participated in Morpho Challenge 2007. Unless an 
algorithm has been given an explicit name, mor-
phology induction algorithms will be denoted in 
this paper by the name of their lead author. The 
five algorithms which participated in the 2007 
Challenge are: Bernhard (2007), Bordag (2007), 
Zeman (2007), Creutz’s (2006) Morfessor, and Pa-
raMor (2007b). 

Morpho Challenge 2007 had participating algo-
rithms analyze words in four languages: English, 
German, Finnish, and Turkish. The Challenge 
evaluated each algorithm’s morphological analyses 
in two ways. First, a linguistic evaluation measured 
each algorithm’s precision, recall, and F1 at mor-
pheme identification against an answer key of mor-
phologically analyzed word forms. Scores were 
normalized when a system proposed multiple 
analyses of a single word, as our combined Pa-
raMor-Morfessor submissions do. For further de-
tails on the linguistic evaluation in Morpho Chal-
lenge 2007, see Kurimo et al. (2007a). The second 
evaluation of Morpho Challenge 2007 was a task 
based evaluation. Each algorithm’s analyses were 
imbedded in an information retrieval (IR) system. 
The IR evaluation consisted of queries over a lan-
guage specific collection of newswire articles. All 
word forms in all queries and all documents were 
replaced with the morphological decompositions of 
each individual analysis algorithm. Separate IR 
tasks were run for English, German, and Finnish, 
but not Turkish. For additional details on the IR 
evaluation of Morpho Challenge 2007 please refer-
ence Kurimo et al. (2007b). 

Tables 2 and 3 present, respectively, the lin-
guistic and IR evaluation results. In these two ta-
bles, the top two rows contain results for segmen-
tations produced by versions of ParaMor that in-
clude our extensions. The topmost row in each ta-
ble, labeled ‘+P +Seg’, gives the results for our 
fully augmented version of ParaMor, which in-
cludes our two extensions designed to improve 
precision as well as our new segmentation model 
which can propose multiple morpheme boundaries 
in a single analysis of a word form. The second 

row of each table, labeled ‘+P –Seg’, augments Pa-
raMor only with the two enhancements designed to 
improve precision. The third row of each table 
gives the Challenge results for the ParaMor base-
line algorithm. Rows four through seven of each 
table give scores from Morpho Challenge 2007 for 
the best performing unsupervised systems. If mul-
tiple versions of a single algorithm competed in the 
Challenge, the scores reported here are the highest 
F1 or Average Precision score of any algorithm 
variant at a particular task. In all test scenarios but 
Finnish IR, we produced Morfessor segmentations 
to augment ParaMor that are independent of the 
Morfessor runs which competed in Morpho Chal-
lenge. If our Morfessor runs gave a higher F1 or 
Average Precision, then we report this higher 
score. Finally, scores reported on rows eight and 
beyond are from reference algorithms that are not 
unsupervised. Reference algorithms appear in ital-
ics. A double line bisects both Table 2 and Table 3 
horizontally. All results which appear above the 
double line were evaluated after the final deadline 
of Morpho Challenge 2007. In particular, ParaMor 
officially competed only in the English and Ger-
man tracks of the Challenge.  

The Linguistic Evaluation 

Table 2 contains the results from the linguistic 
evaluation of Morpho Challenge. The Morpho 
Challenge Organizing Committee did not provide 
us with data on the statistical significance of the 
results for the enhanced versions of ParaMor. But 
most score differences are statistically signifi-
cant—All F1 differences of more than 0.5 between 
systems which officially competed in Morpho 
Challenge 2007 were statistically significant (Ku-
rimo et al., 2007a).  

In German, Finnish, and Turkish our fully en-
hanced version of ParaMor achieves a higher F1 
than any system that competed in Morpho Chal-
lenge 2007. In English, ParaMor’s precision score 
drags F1 under that of the first place system, Bern-
hard; In Finnish, the Bernhard system’s F1 is likely 
not statistically different from that of our system. 
Our final segmentation algorithm demonstrates 
consistent performance across all four languages. 
In Turkish, where the morpheme recall of other 
unsupervised systems is anomalously low, our al-
gorithm achieves a recall in a range similar to its 
recall scores for the other languages. ParaMor’s ul-
timate recall is double that of any other unsuper-
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vised Turkish system, leading to an improvement 
in F1 over the next best system, Morfessor alone, 
of 13.5% absolute or 22.0% relative.  

In all four languages, as expected, the combina-
tion of removing short types from the training data, 
and the additional filtering of scheme clusters, 
‘+P’, significantly improves precision scores over 
the ParaMor baseline. Allowing multiple mor-
pheme boundaries in a single word, ‘+Seg’, in-
creases the number of words ParaMor believes 
share a morpheme. Some of these new words do in 
fact share a morpheme, some, in reality do not. 
Hence, our extension of ParaMor to agglutinative 
sequences of morphemes increases recall but low-
ers precision across all four languages. The effect 
of agglutinative segmentations on F1, however, dif-
fers with language. For the two languages which 
make limited use of suffix sequences, English and 
German, a model which hypothesizes multiple 
morpheme boundaries can only moderately in-
crease recall and does not justify, by F1, the many 
incorrect segmentations which result. On the other 
hand, an agglutinative model significantly im-
proves recall for true agglutinative languages like 
Finnish and Turkish, more than compensating in F1 
for the drop in precision over these languages. But 
in all four languages, the agglutinative version of 
ParaMor outperforms the baseline unenhanced ver-
sion at F1. 

The final row of Table 2 is the evaluation of a 
reference algorithm submitted by Tepper (2007). 
While not an unsupervised algorithm, Tepper’s 

reference parallels ParaMor in augmenting seg-
mentations produced by Morfessor. Where Pa-
raMor augments Morfessor with special attention 
to inflectional morphology, Tepper augments Mor-
fessor with hand crafted morphophonology rules 
that conflate multiple surface forms of the same 
underlying suffix. Like ParaMor, Tepper’s algo-
rithm significantly improves on Morfessor’s recall. 
With two examples of successful system augmen-
tation, we suggest that future research take a closer 
look at building on existing unsupervised mor-
phology induction systems. 

The IR Evaluation 

Turn now to results from the IR evaluation in Ta-
ble 3. Although ParaMor does not fair as well in 
Finnish, in German, the fully enhanced version of 
ParaMor places above the best system from the 
2007 Challenge, Bernhard, while our score on 
English rivals this same best system. Morpho Chal-
lenge 2007 did not measure the statistical signifi-
cance of uninterpolated average precision scores in 
the IR evaluation. It is not clear what feature of Pa-
raMor’s Finnish analyses causes comparatively 
low average precision. Perhaps it is simply that Pa-
raMor attains a lower morpheme recall over Fin-
nish than over English or German. And unfortu-
nately, Morpho Challenge 2007 did not run IR ex-
periments over the other agglutinative language in 
the competition, Turkish. When ParaMor does not 
combine multiple morpheme boundaries into a sin-
gle analysis, as in the baseline and ‘+P –Seg’ sce-

Table 2. Unsupervised morphology induction systems evaluated for precision (P), recall (R), and F1 at morpheme 
identification using the methodology of the linguistic competition of Morpho Challenge 2007. 

English German Finnish Turkish 
 P R F1 P R F1 P R F1 P R F1 

 +P +Seg 50.6 63.3 56.3 49.5 59.5 54.1 49.8 47.3 48.5 51.9 52.1 52.0 

 +P –Seg 56.2 60.9 58.5 57.4 53.5 55.4 60.5 33.9 43.5 62.0 38.2 47.3 

ParaMor  
&        

Morfessor 
Baseline 41.6 65.1 50.7 51.5 55.6 53.4 55.0 35.6 43.2 53.2 41.6 46.7 

Bernhard 61.6 60.0 60.8 49.1 57.4 52.9 59.7 40.4 48.2 73.7 14.8 24.7 

Bordag 59.7 32.1 41.8 60.5 41.6 49.3 71.3 24.4 36.4 81.3 17.6 28.9 

Morfessor 82.2 33.1 47.2 67.6 36.9 47.8 76.8 27.5 40.6 73.9 26.1 38.5 

Zeman 53.0 42.1 46.9 52.8 28.5 37.0 58.8 20.9 30.9 65.8 18.8 29.2 

Tepper 69.2 52.6 59.8 - - - 62.0 46.2 53.0 70.3 43.0 53.3 
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narios, average precision is comparatively poor. 
Where the linguistic evaluation did not always pe-
nalize a system for proposing multiple partial 
analyses, real NLP applications, such as IR, can. 

The reference algorithms for the IR evaluation 
are: Dummy, no morphological analysis; Oracle, 
where all words in the queries and documents for 
which the linguistic answer key contains an entry 
are replaced with that answer; Porter, the standard 
English Porter stemmer; and Tepper described 
above. While the hand built Porter stemmer still 
outperforms the best unsupervised systems on Eng-
lish, these same best unsupervised systems outper-
form both the Dummy and Oracle references for all 
three evaluated languages—strong evidence that 
unsupervised induction algorithms are not only 
better than no morphological analysis, but that they 
are better than incomplete analysis as well.  

4 Conclusions and Future Directions 

Augmenting ParaMor with an agglutinative model 
of segmentation produces an unsupervised mor-
phology induction system with consistent and 

strong performance at morpheme identification 
across all four languages of Morpho Challenge 
2007. By first cleaning up the paradigm models 
that ParaMor learns, we raise ParaMor’s segmenta-
tion precision and allow the agglutinative model to 
significantly improve ParaMor’s morpheme recall.  

Looking forward to future improvements, we 
examined by hand the final set of scheme clusters 
that the current version of ParaMor produces over 
our newswire corpus of 50,000 Spanish types. Pa-
raMor’s paradigm identification stage outputs 41 
separate clusters. Among these final scheme clus-
ters are those which model all major productive 
paradigms of Spanish. In fact, there are often mul-
tiple scheme clusters which model portions of the 
same true paradigm. As an extreme case, 12 sepa-
rate scheme clusters contain suffixes from the 
Spanish ar verbal paradigm. Relaxing restrictions 
on ParaMor’s clustering algorithm (Monson et al., 
2007a) may address this paradigm fragmentation.  

The second significant shortcoming which sur-
faces among ParaMor’s 41 final scheme clusters is 
that ParaMor currently does not address morpho-
phonology. Among the final scheme clusters, 12 
attempt to model morphophonological change by 
incorporating the phonological change either into 
the stems or into the suffixes of the scheme cluster. 
But ParaMor currently has no mechanism for de-
tecting when a cluster is modeling morphophonol-
ogy. Perhaps ideas on morphophonology from 
Goldsmith (2006) could be adapted to work with 
the ParaMor algorithm. Finally, we plan to look at 
scaling the size of the vocabulary used both during 
paradigm induction and during morpheme segmen-
tation. We are particularly interested in the possi-
bility that ParaMor may  be able to identify para-
digms from much less data than 50,000 types. 
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Table 3. Unsupervised morphology induction sys-
tems evaluated for uninterpolated average precision 
using the methodology of the IR competition of 
Morpho Challenge 2007. These results use Okapi 
term weighting (Kurimo et al., 2008b). 

*Only a subset of the words which occurred in the 
IR evaluation of this language was analyzed by this 
system.  

 Eng. Ger. Finn. Tur.  

 +P +Seg 39.3 48.4 42.6 - 

 +P –Seg 35.1 43.1 37.1 - 
ParaMor 

&        
Morfessor 

Baseline 34.4 40.1 35.9 - 

Bernhard 39.4 47.3 49.2 - 

Bordag 34.0 43.1 43.1 - 

Morfessor 38.8 46.0 44.1 - 

Zeman  26.7*  25.7*  28.1* - 

Dummy 31.2 32.3 32.7 - 

Oracle 37.7 34.7 43.1 - 

Porter 40.8 - - - 

Tepper  37.3* - - - 
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