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Abstract

This paper describes and evaluates a modifica-
tion to the segmentation model used in the un-
supervised morphology induction system, Pa-
raMor. Our improved segmentation model
permits multiple morpheme boundaries in a
single word. To prepare ParaMor to effectively
apply the new agglutinative segmentation
model, two heuristics improve ParaMor’s pre-
cision. These precision-enhancing heuristics
are adaptations of those used in other unsuper-
vised morphology induction systems, including
work by Hafer and Weiss (1974) and Gold-
smith (2006). By reformulating the segmenta-
tion model used in ParaMor, we significantly
improve ParaMor’s performance in all lan-
guage tracks and in both the linguistic evalua-
tion as well as in the task based information re-
trieval (IR) evaluation of the peer operated
competition Morpho Challenge 2007. Para-
Mor’'s improved morpheme recall in the lin-
guistic evaluations of German, Finnish, and
Turkish is higher than that of any system which
competed in the Challenge. In the three lan-
guages of the IR evaluation, our enhanced Pa-
raMor significantly outperforms, at average
precision over newswire queries, a morpho-
logically naive baseline; scoring just behind the
leading system from Morpho Challenge 2007
in English and ahead of the first place system
in German.
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world’s languages currently lack morphological
analysis systems. Unsupervised induction could fa-
cilitate, for these lesser-resourced languages, the
quick development of morphological systems from
raw text corpora. Unsupervised morphology induc-
tion has been shown to help NLP tasks including
speech recognition (Creutz, 2006) and information
retrieval (Kurimo et al., 2007b). In this paper we
work with languages like Spanish, German, and
Turkish for which morphological analysis systems
already exist.

The baseline ParaMor algorithm which we ex-
tend here competed in the English and German
tracks of Morpho Challenge 2007 (Monson et al.,
2007b). The peer operated competitions of the
Morpho Challenge series standardize the evalua-
tion of unsupervised morphology induction algo-
rithms (Kurimo et al., 2007a; 2007b). The ParaMor
algorithm showed promise in the 2007 Challenge,
placing first in the linguistic evaluation of German.
Developed after the close of Morpho Challenge
2007, our improvements to the ParaMor algorithm
could not officially compete in this Challenge.
However, the Morpho Challenge 2007 Organizing
Committee (Kurimo et al., 2008) graciously over-
saw the quantitative evaluation of our agglutinative
version of ParaMor.

1.1 Related Work

A variety of approaches to unsupervised morphol-

1 Unsupervised Morphology Induction ogy induction have shown promise in past work:
Here we highlight three techniques which have
Analyzing the morphological structure of wordsyeen used in a number of unsupervised morphol-
can benefit natural language processing (NLP) apgy induction algorithms. Since character se-
plications from grapheme-to-phoneme conversioguences are less predictable at morpheme bounda-
(Demberg et al.,, 2007) to machine translatiofes than within any particular morpheme (see dis-

(Goldwater and McClosky, 2005). But many of theyssion in section 2.1), a first unsupervised mor-
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phology induction technique measures the prediatvaluation of Linguistica. Goldsmith (2006) seg-
ability of word-internal character sequences. Harriments the Brown corpus of English, which, after
(1955) was the first to propose the branching factdiscarding numbers and punctuation, has a vocabu-
of the character tree of a corpus vocabulary aslay size of 47,607 types. Using Linguistica, Creutz
measure of character predictability. Character tre€8006) successfully segments a Finnish corpus of
have been incorporated into a number of more rg50,000 tokens (approximately 130,000 types), but
cently proposed unsupervised morphology indu€reutz notes that Linguistica is memory intensive
tion systems (Schone and Jurafsky, 2001; Wiceand not runable for larger corpora. In the evalua-
towski, 2002; Goldsmith, 2006; Bordag, 2007)tions of Morpho Challenge 2007, ParaMor seg-
Johnson and Martin (2003) generalize from charamented the words from corpora with over 42 mil-
ter trees and model morphological character sken tokens and vocabularies as large as 2.2 million
guences with minimized finite state automataypes.

Bernhard (2007) measures character predictability

by directly computing transitional probabilities be2 ParaMor

tween substrings of words. _ _ ) _ _

A second successful technique has used tA@is section briefly outllrjes t.he hlgh 'Ievel struc-
minimum description length principle to capturdure of ParaMor as described in detall |n'Mons.on et
the morpheme as a recurrent structure of morphdl (2007a; 2007b). ParaMor takes the inflectional
ogy. The Linguistica system of Goldsmith (2006)Paradigm as the basic building block of morphol-
the Morfessor system of Creutz (2006), and thedy- A pargdlgm is a'mutually substitutable set of
system described in Brent et al. (1995) take thfgorphological operations. For example, most ad-
approach. jectives in Spanish inflect for two paradigms. _Flrst,

A third technique leverages inflectional para2diectives are marked fogender an a suffix
digms as the organizational structure of morphofarksfemining ano masculine Then Spanish ad-
ogy. The ParaMor algorithm, which this paper ex€ctives marknumber an s suffix signalsplural,
tends, joins Snover (2002), Zeman (2007), anthile no marking@ in this paper, indicatesingu-
Goldsmith’s Linguistica in building morphology'ar- The four surface forms c_)f the cross-produqt of
models around the paradigm. the genderand n_umberparadlgms on the Spanish

ParaMor tackles three challenges that face mgiord for ‘beautiful’ are thenbello, bella, bellos
phology induction systems which Goldsmith's Linandbellas _ ]
guistica algorithm does not yet address. First, sec- ParaMor is a two stage algorithm. In the first
tion 2.2 of this paper introduces an agglutinativétage, ParaMor identifies candidate paradigms
segmentation model. This agglutinative model segthich likely model suffixes of morphological pa-
ments words into as many morphemes as the d&gligms and their cross-products. Since some 70%
justify. Although Goldsmith (2001) and Goldsmithof the world’s languages are significantly suffixing
and Hu (2004) discuss ideas for segmenting indiPryer. 2005), ParaMor only attempts to identify
vidual words into more than two morphemes, thauffix paradigms. ParaMor’s first stage consists of
implemented Linguistica algorithm, as presented #rée pipelined steps. In the first step, ParaMor
Goldsmith (2006), permits at most a single moiSearches a space of candidate partial paradigms,
pheme boundary in each word. Second, ParaM@?”?d schemes, for.those which possibly model
decouples the task of paradigm identification froruffixes of true paradigms. The second step merges
that of word segmentation (Monson et al., 2007b§elected schemes which appear to model the same
In contrast, morphology models in Linguistica inParadigm. And in the third step, ParaMor discards
herently encode both a belief about paradigﬁ?’Phe”_‘e clusters which likely do not model true
structure on individual words as well as a segmeRaradigms. _
tation of those words. Without ParaMor’s decoup- 1he second stage of the ParaMor algorithm
ling of paradigm structure from specific segmentss€gments word forms using the candidate para-
tion mode|3, our a|go|'ithm for agg|utinative Segdlgms |den1€|f|ed in the first Stage. SeCtl(?n 2.2 of
mentation (section 2.2) would not have been posdflis _paper introduces a new segmentation model
ble. Third, the evaluation of ParaMor in this papeier ParaMor's second stage that allows more than
is over much larger corpora than any publishe@ne morpheme boundary in a single word—as is
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1le o . 2 @.s 5513 apoyada, barata, hombro, oficina, reo, ...
2 ° . 4 a.85.0.08 899 apoyad, captad, dirigid, junt, proxim, ...
3 ° . 14 @.ba.ban.da.das.do.dos.n.ndo.r.ron.rse.ré.ran 25 apoya, disputa, lanza, lleva, toma, ...
5 ° . 15 a.aba.aban.ada.adas.ado.ados.an.ando.ar.aron.arse.ard.aran.6| 24  apoy, desarroll, disput, lanz, llev, ...
1 ° ° . 5 ta.tamente.tas.to.tos 22 cier, direc, insdli, modes, sangrien, ...
12 . ° . 14 @.ba.cién.da.das.do.dos.n.ndo.r.ron.ra.ran.ria 16  acepta, concentra, fija, provoca, ...
13 ° . 15  a.aba.ada.adas.ado.ados.an.ando.ar.aron.ard.aran.e.en.d 20  apoy, declar, enfrent, llev, tom, ...
30 o o . 11 a.e.en.ida.idas.ido.idos.iendo.ieron.ié.ia 15 cumpl, escond, recib, transmit, vend, ...
1000 o] 3 d.9.9s 4 h,k,on, s
1566 . . 4 ido.idos.ir.iré 6 conclu, cumpl, distribu, exclu, reun, segu
2000 . . 2 lia.liana 5 austra, ita, ju, sici, zu
3000 o] 3 @.a.anar 4 all,am, g, s
4000 o] 3 @.e.ince 4 I, pr, qu, v
8000 . . 2 trada.trarmos 3 concen, demos, encon

Table 1. Candidate partial paradigms, or scherhasttie baseline ParaMor algorithm selected dutinfiyst step,
search, of its first stage, paradigm identificatidhis baseline ParaMor run was over a Spanishwaesorpus of
50,000 types. While some selected schemes contHires from true paradigms, other schemes contaiarrectly
segmented candidate suffixes.

needed to correctly segment Spaniiral adjec- date stenapoyadgjoins to the candidate suffixto
tives. As this agglutinative segmentation model rdoerm the word apoyadas ‘supported (adjective

lies on the paradigms learned in ParaMor’s firdeminine plural))—a word which occured in the
stage, section 2.1 presents solutions to two typesS@hanish newswire corpus.

paradigm model error that the baseline ParaMor Between the rank on the left and the scheme
system makes. The solutions to these two errdetails on the right of Table 1, are columns which
types are similar in nature to ideas proposed in tloategorize the scheme on its success, or failure, to
unsupervised morphology induction work of Hafemodel a true paradigm of Spanish. A dot appears in

and Weiss (1974) and Goldsmith (2006). the columns markeNoun Adjective or Verbif the
o _ o majority of the candidate suffixes in a row’s
2.1 Precision at Paradigm Identification scheme attempt to model suffixes in a paradigm of

Table 1 presents 14 of the more than 8000 scheniBgt part of speech. A dot appears inErezivation
identified during one baseline run of ParaMor§olumn if one or more candidate suffixes of the
scheme search step. Each row of Table 1 listssgheme models a Spanish derivational suffix. The
scheme that was selected while searching overGoodcolumn is marked if the candidate suffixes of
Spanish newswire corpus of 50,000 types. On tife Scheme take the surface form of true paradig-
far left of Table 1, thdRankcolumn states the or- matic suffixes. Initially selected schemes in Table
dinal rank at which that row’s scheme was selectéd that correctly capture suffixes of real Spanish
during the search procedure: the first scheme Fradigms are the'12, 5", 13" 30", and 1566
raMor selects i€9.5 a.as.0.0ss the seconddo.- selected schemes. While some smaller paradigms
idos.ir.iré is the 1568 selected scheme, etc. The?f Spanish are perfectly identified (includiggs

right four columns of Table 1, present raw data ofhich marks singular and plural on many nouns
the selected schemes, giving the number of caf?d adjectives, and the adjectival cross-product
didate suffixes in that scheme, the proposed suaradigm of gender and numberas.o.op many
fixes themselves, the number of candidate stems$@lected schemes do not satisfactorily model Span-
the scheme, and a sample of those candidate stelf. Suffixes. Incorrect schemes in Table 1 are
Each candidate stem in a ParaMor scheme formgn@rked in theerror columns. _
word that occured in the input corpus with each The vast majority of unsatisfactory paradigm
candidate suffix belonging to that scheme; fofodels fail for one of two reasons. First, many
example, from the first selected scheme, the candchemes contain candidate suffixes which system-
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atically misanalyze word forms. These schemes Correcting Morpheme Boundary Errors

consistently hypothesize either stem-internal cwlos.t of the baseline selected schemes which incor-

suffix-internal  morpheme boundaries. Scheme .
which hypothesize incorrect morpheme boundarié%Ctly hypothesize a morpheme boundary do so at

. th h Stem-internal positions. Indeed, in our random
include the 8, 11", 12", 2000, and 8000 se- ample of 100 schemes, 51 of the 59 schemes with

fﬁéegfszg?gfj dosfc-r:Zrtm)wlgsl' Iggog%rthﬁ:ri’efﬁ%u%_orpheme boundary errors incorrectly hypothe-
P P 3is"lzed a boundary stem-internally. For this reason,

daries internal to true su_fflxes. For example, the he baseline ParaMor algorithm already discarded
selected scheme contains truncated forms of s%f-

: . th chemes that likely misplace a boundary stem-
fixes that occur correctly in the "5selected internally (Monson et al., 2007b). Although there

scherghe. Syrgmetrically,ghe candidate suffixes IQre fewer schemes that misplace a morpheme
thoethtsi’zezor%o; %gﬂqgogou?ﬂ;ﬁ;d iﬁfgriglefoh{r'boundary suffix-internally, suffix-internal error
P P l%%hemes contain short suffixes that can generalize

Spanish stems, inadvertently including portions qL segment a large number of word forms. (See
stems within their suffix lists. In a random sampl%b '

ection 2.2 for a description of ParaMor’s morpho-
T e e e nemes 12 Wial seqmentaion mocel). To messure th in
9 paﬁ ence of suffix-internal error schemes on mor-

ish corpus, 59 schemes hypothesized an incorr%(#eme segmentation, we examined ParaMor’s

moﬁ??&gﬁg”?ﬁgg& revalent reason for mo db seline segmentations of a random sample of 100
b ord forms from the 50,000 words of our Spanish

failure occurs when the candidate suffixes of Sorpus. In these 100 words, 82 morpheme bounda-
SChe”.‘e are related not by belonging to the SaM&s were introduced that should not have been.
paradigm, but rather by a chance co-occurrence

: Ad 40 of these 82 incorrectly proposed bounda-
a few candidate stems of thg text. Schemes Wh'ﬁ s were placed by schemes which hypothesized a
arise from chance string collisions in Table 1 in-

morpheme boundary internal to true suffixes.
clude the 1000 3000", and 4000 selected To address the problem of suffix-internal mis-

schemes. The string lengths of the candidate ste%d/aced boundaries we adapt an idea originally pro-

and candidate suffixes of these chance schemes .
often quite short. The longest candidate stem n[)%ed by Haris (1955) and extended by Hafer and

eiss (1974): Take any stringLet F be the set of
&nr)égf Tﬁ;ﬁgﬁgrgh?gﬁefer;zgscglfqﬁfezf Tsaetl)(leectles ings such that for eachOF , t.f is a word form
<chemes pronose theg’sufﬁ, which has lenath 2" & particular natural language. Harris noted that
prop . X 9 when the boundaries betweemnd each fall at
zero. Short stems and short suffixes in select

. . ) . orpheme boundaries, the strings Rntypicall
schemes are easily explained combinatorially: Trl)eegiel in a wide variety of charactgrS' bl)ﬁ)whe)ﬁ\ the

inventory of possible strings grows exponentiall¥_f boundaries are morpheme-internal, each legiti-

\z:lvrlctsr;l":hveerlenrgg]n oflet:ethstéll?g. |S§C&ufvioth§:ee\%%ate word final string must first complete the er-
y y 'eng €Ny ’ .Poneously split morpheme, and so the stringE in

length threg strings, it .ShOUId come as no Surprgg, begin with one of a very few characters. This
when a variety of candidate suffixes happen to Ogc;fr'gument similarly holds when the rolestaindf

cur attached to the same set of short stems. In 0a"f'e reversed. Hafer and Weiss (1974) describe a

Rumber of variations to Harris’ letter variety algo-
rithm. Their most successful variation uses entropy
{8 measure character variety.

Goldsmith’s (2006) Linguistica algorithm pio-
eered the use of entropy in a paradigm-based un-
upervised morphology induction system. Linguis-
ca measures the entropy of stem-final characters
M a set of initially selected paradigm models.
When entropy falls below a threshold, Linguistica
considers relocating the morpheme boundary of

random sample of 100 initially selected scheme
35 were erroneously selected as a result of
chance collision of word types.

The next two sub-sections present solutions
the two types of paradigm model failure in th
baseline algorithm that are exemplified in Table ?;
These first two extensions aim to improve preck;
sion by reducing the number of schemes ParaM
erroneously selects.
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each word covered by that paradigm model. If, atsoldsmith (2006) also uses string-length thresh-
ter boundary relocation, the resulting descriptionlds to restrict what paradigm models the Linguis-
length of Linguistica’s morphology model de-tica algorithm produces.
creases, Linguistica accepts the relocated bounda-Excluding short types during ParaMor’s mor-
ries. phology induction stage does not preclude short
To identify suffix-internal morpheme boundarytypes from being analyzed as containing multiple
errors among ParaMor’s initially selected schemesjorphemes during ParaMor’s segmentation stage.
we follow Hafer and Weiss (1974) and GoldsmitlAs section 2.2 describes, ParaMor’'s segmentation
(2006) in using entropy as a measure of the variet§ygorithm is independent of the set of types from
in boundary-adjacent character distributions. In @hich schemes and scheme clusters are built.
ParaMor style scheme, the candidate stems form aThe string length that types must meet to join
set of word-initial strings, and the candidate suthe induction vocabulary is a free parameter. Pa-
fixes a set of word-final strings. If a scheme’saMor is designed to identify the productive inflec-
stems end in a very few unique characters, thi@nal paradigms of a language. Unless a paradigm
scheme has likely hypothesized an incorrect suffixs restricted to occur only with short stems, a pos-
internal morpheme boundary. Consider tffesg- sible but unusual scenario (as with the English ad-
lected scheme in Table 1. All 25 of thé® 3 jectival comparative, c.fasterbut*exquisitel) we
scheme’s stems end in the character ‘a’. Consean expect a productive paradigm to occur with a
guently, we measure the entropy of the distributioreasonable number of longer stems in a corpus.
of final characters in each scheme’s candidatéence, ParaMor needn’t be overly concerned
stems. Where Linguistica modifies paradigm modabout discarding short types. A qualitative exam-
els which appear to incorrectly place morphemimation of Spanish data suggested discarding types
boundaries, our extension to ParaMor permanentiiye characters or less in length; we use this cutoff
removes schemes. To avoid introducing a free parall experiments described in this paper.
rameter, our extension to ParaMor flags a scheme Excluding short types from the paradigm induc-
as a likely boundary error only when virtually alltion vocabulary virtually eliminates the entire cate-
of that scheme’s candidate stems end in the sagary of chance scheme. In a random sample of 100
character. We flag a scheme if its entropy is beloschemes that ParaMor selected when short types
a threshold set close to zero, 0.5. The baseline Reere excluded, only one scheme contained types
raMor algorithm discards schemes which it berelated only by chance string similarity, down from
lieves hypothesize an incorrect stem-internal moB5 when short types were not excluded. Returning
pheme boundary only after the scheme clusteriig Table 1, excluding types five characters or less
step of ParaMor’s paradigm identification stagen length bars ten of the twelve word types which
Our extension follows suit: If we flag more thansupport the erroneous 300gelected schenf®.a.-
half of the schemes in a cluster as likely proposirgnar. Among the excluded types are valid Spanish
a suffix-internal boundary, then we discard thatords such aganar ‘to gain’ But also eliminated
cluster. Referencing Table 1, this first extension tare several meaningless acronyms such as the sin-
ParaMor successfully removes both tffeadid the gle lettersg ands. Without these short types, Pa-
12" selected schemes. raMor rightly cannot select the 3008cheme.

Correcting Chance String Collision Errors 2.2 Segmentation

Scheme errors due to chance string coIIisions_ are ap Agglutinative Model

the second most prevalent error type. As described _ _ o

above, the string lengths of the candidate stenf¥ith the improvement in scheme precision that re-

and suffixes of chance schemes are typ|ca”y shoﬂ:”ts from the two extensions discussed in section
When the stems and suffixes of a scheme are sh@ril, We are ready to propose a more realistic model
then the underlying types which support a schen® morphology. ParaMor’s baseline segmentation

are also short. Where the baseline ParaMor algdlgorithm distrusts ParaMor’s induced scheme

rithm explicitly builds schemes over all types in anodels. The baseline algorithm assumes each word
corpus, we modify ParaMor to exclude short type/®rm can contain at most a single morpheme

from the vocabulary during morphology inductionboundary. If it detects more than one morpheme
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boundary, then the baseline algorithm proposes a It is interesting to note that although each of Pa-
separate morphological analysis for each possiblaMor’s individual paradigm models proposes a
boundary. In contrast, our extended model of segingle morpheme boundary, our agglutinative seg-
mentation vests more trust in the induced schemesentation model can recover multiple boundaries
assuming that scheme clusters which propose dift a single word. Using this idea it may be possible
ferent morpheme boundaries are simply modeling quickly adapt Linguistica for agglutinative lan-
different valid morpheme boundaries. And our exguages. Instead of interpreting the sets of stems
tension proposes a single morphological analysand affixes that Goldsmith’s Linguistica algorithm
containing all hypothesized morpheme boundarieproduces as immediate segmentations of words,
To detect morpheme boundaries, ParaMdhese signatures can be thought of as models of
matches each wordy, in the full vocabulary of a paradigms that may generalize to new words.
corpus against the clusters of schemes which are
the final output of ParaMor's paradigm identifica-
tion stage. When a suffix, of some scheme- With its focus on the paradigm, ParaMor special-
cluster, C, matches a word-final string of, i.e. izes at analyzing inflectional morphology (Monson
w=u.f , ParaMor attempts to replati turn with et al., 2007a). Morpho Challenge 2007 requires al-
each suffix f' of C. If the stringu.f' occurs in gorithms to analyze both inflectional and deriva-
the full corpus vocabulary, then, on the basis dfonal morphology (Kurimo et al., 2007a; 2007b).
this paradigmatic evidence, ParaMor identifies &0 compete in the challenge, we combine Pa-
morpheme boundary v betweeru andf . raMor’s morphological segmentations with seg-
For example, to detect morpheme boundaries imentations from Morfessor (Creutz, 2006), an un-
the Spanish wordapoyados‘supports (adjective supervised morphology induction algorithm which
masculine plural)’, ParaMor matches all word- learns both inflectional and derivational morphol-
final strings ofapoyadosagainst the candidate suf-ogy. We incorporate the segmentations from Mor-
fixes of ParaMor's induced scheme clusters. THessor into the segmentations that the ParaMor sys-
word-final strings ofapoyadosares, os, dos ados, tem produces by straightforwardly adding the Mor-
yados, ... The scheme clusters that our extenddéssor segmentation for each word as an additional
version of ParaMor induces include clusters whickeparate analysis to those ParaMor produces (Mon-
contain schemes very similar to th§ P9 and 8 son et al., 2007b). Morfessor has one free parame-
baseline selected schemes, see Table 1. In partitg, which we optimize separately for each lan-
lar, our extended ParaMor identifies separaguage of Morpho Challenge 2007.
scheme clusters that contain the candidate suffixes: ParaMor also has several free parameters, in-
s andd; os ando; andadosandado. Substituting cluding the type length parameter and the parame-
@ for s, o for os, or adofor adosyields the Spanish ter over stem-final character entropy described in
string apoyado‘supports(adjectivemasculinesin- ~ section 2.1. We do not adjust any of ParaMor’s pa-
gular). It so happens, thapoyadodoes occur in rameters from language to language, but fix them
our Spanish corpus, and so ParaMor has fouadl values that produce reasonable Spanish para-
paradigmatic evidence for three morpheme boudigms and segmentations. As in Monson et al.
daries. Crucially, our ParaMor extension from sed2007b), to avoid adjusting ParaMor’s parameters
tion 2.1 that removes schemes which hypothesizee limit ParaMor’s paradigm induction vocabulary
suffix internal morpheme boundaries correctly disto 50,000 frequent types for each language.
cards all schemes which contained the candidate
suffix dos Consequently, no scheme cluster exis§ Evaluation
to incorrectly suggest the morpheme boundar_}/ _
*apoya + dos as the % baseline selected scheme'© evaluate our extensions to the ParaMor algo-
would have. Where ParaMor’s baseline segmentdthm, we follow the methodology of the peer op-
tion algorithm would propose three separate anal§fatéd Morpho Challenge 2007. All segmentations
ses ofapoyados one for each detected morphem&roduced by our extensions were sent to the Mor-
boundary:apoy +ados apoyad +os andapoyado pho Challenge Organizing Committee (Kurimo et

+s; our extended segmentation algorithm producéd» 2008). The Organizing Committee evaluated
the single correct analysiapoy +ad +0 +s our segmentations and returned the automatically

Augmenting ParaMor’s Segmentations
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calculated quantitative results. Using the evaluaew of each table, labeled ‘+P —Seg’, augments Pa-
tion methodology of Morpho Challenge 2007 perraMor only with the two enhancements designed to
mits us to compare our algorithms against the uimmprove precision. The third row of each table
supervised morphology induction systems whichives the Challenge results for the ParaMor base-
competed in the 2007 Challenge. Of the many dine algorithm. Rows four through seven of each
gorithms for unsupervised morphology inductiortable give scores from Morpho Challenge 2007 for
discussed with the related work in section 1.1, fivehe best performing unsupervised systems. If mul-
participated in Morpho Challenge 2007. Unless atiple versions of a single algorithm competed in the
algorithm has been given an explicit name, mohallenge, the scores reported here are the highest
phology induction algorithms will be denoted inF; or Average Precision score of any algorithm
this paper by the name of their lead author. Thariant at a particular task. In all test scenarios but
five algorithms which participated in the 2007Finnish IR, we produced Morfessor segmentations
Challenge are: Bernhard (2007), Bordag (2007 augment ParaMor that are independent of the
Zeman (2007), Creutz’s (2006) Morfessor, and P&orfessor runs which competed in Morpho Chal-
raMor (2007b). lenge. If our Morfessor runs gave a higherof
Morpho Challenge 2007 had participating algoAverage Precision, then we report this higher
rithms analyze words in four languages: Englisiscore. Finally, scores reported on rows eight and
German, Finnish, and Turkish. The Challengbeyond are from reference algorithms that are not
evaluated each algorithm’s morphological analysesisupervised. Reference algorithms appeataln
in two ways. First, a linguistic evaluation measureits. A double line bisects both Table 2 and Table 3
each algorithm’s precision, recall, ang & mor- horizontally. All results which appear above the
pheme identification against an answer key of modouble line were evaluated after the final deadline
phologically analyzed word forms. Scores weref Morpho Challenge 2007. In particular, ParaMor
normalized when a system proposed multiplefficially competed only in the English and Ger-
analyses of a single word, as our combined Paian tracks of the Challenge.
raMor-Morfessor submissions do. For further de-
tails on the linguistic evaluation in Morpho Chal-
lenge 2007, see Kurimo et al. (2007a). The seconeble 2 contains the results from the linguistic
evaluation of Morpho Challenge 2007 was a tagkvaluation of Morpho Challenge. The Morpho
based evaluation. Each algorithm’s analyses we@hallenge Organizing Committee did not provide
imbedded in an information retrieval (IR) systemus with data on the statistical significance of the
The IR evaluation consisted of queries over a lanesults for the enhanced versions of ParaMor. But
guage specific collection of newswire articles. Almost score differences are statistically signifi-
word forms in all queries and all documents wereant—All F, differences of more than 0.5 between
replaced with the morphological decompositions afystems which officially competed in Morpho
each individual analysis algorithm. Separate IRhallenge 2007 were statistically significant (Ku-
tasks were run for English, German, and Finnishimo et al., 2007a).
but not Turkish. For additional details on the IR In German, Finnish, and Turkish our fully en-
evaluation of Morpho Challenge 2007 please refefanced version of ParaMor achieves a higher F
ence Kurimo et al. (2007b). than any system that competed in Morpho Chal-
Tables 2 and 3 present, respectively, the lilenge 2007. In English, ParaMor’s precision score
guistic and IR evaluation results. In these two tatags k under that of the first place system, Bern-
bles, the top two rows contain results for segmeiard; In Finnish, the Bernhard systemisis-likely
tations produced by versions of ParaMor that irmot statistically different from that of our system.
clude our extensions. The topmost row in each t&ur final segmentation algorithm demonstrates
ble, labeled ‘+P +Seg’, gives the results for outonsistent performance across all four languages.
fully augmented version of ParaMor, which indn Turkish, where the morpheme recall of other
cludes our two extensions designed to improwgnsupervised systems is anomalously low, our al-
precision as well as our new segmentation modgbrithm achieves a recall in a range similar to its
which can propose multiple morpheme boundariggcall scores for the other languages. ParaMor’s ul-
in a single analysis of a word form. The secontimate recall is double that of any other unsuper-

The Linguistic Evaluation
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English German Finnish Turkish
P R Fy P R F, P R F P R F

ParaMor +P +Seqd 50.6 63.3 56.3 495595 54.1| 49.8 47.3 48.5|/ 519 52.1 52.0

& +P —Sed 56.2 609 585 574 535554605 339 435 620 382 473
Morfessor ,

Baseline] 41.6 65.1 50.7| 51.5 55.6 534 550 356 43.2| 53.2 41.6 46.7

Bernhard 61.6 60.0 60.8| 49.1 57.4 529 59.7 40.448.2| 73.7 148 247

Bordag 59.7 321 418 605 416 49|13 713 244 3p.4 81361289

Morfessor 822 331 47241 676 369 47|18 768 275 406 73.8.12385

Zeman 53.0 421 469 528 285 37/0 588 209 309 65881292
Tepper 69.2 52.6 59.8 - - - 62.0 46.2 530 70.3 43.0 53.3

Table 2. Unsupervised morphology induction systemauated for precision (P), recall (R), andaBEmorpheme
identification using the methodology of the lingidgssompetition of Morpho Challenge 2007.

vised Turkish system, leading to an improvememeference parallels ParaMor in augmenting seg-
in F, over the next best system, Morfessor alonejentations produced by Morfessor. Where Pa-
of 13.5% absolute or 22.0% relative. raMor augments Morfessor with special attention
In all four languages, as expected, the combinss inflectional morphology, Tepper augments Mor-
tion of removing short types from the training dataessor with hand crafted morphophonology rules
and the additional filtering of scheme clusterghat conflate multiple surface forms of the same
‘+P’, significantly improves precision scores oveunderlying suffix. Like ParaMor, Tepper's algo-
the ParaMor baseline. Allowing multiple mor-rithm significantly improves on Morfessor’s recall.
pheme boundaries in a single word, ‘+Seg’, inWith two examples of successful system augmen-
creases the number of words ParaMor believéation, we suggest that future research take a closer
share a morpheme. Some of these new words ddaok at building on existing unsupervised mor-
fact share a morpheme, some, in reality do ngthology induction systems.
Hence, our extension of ParaMor to agglutinative
sequences of morphemes increases recall but low-
ers precision across all four languages. The effeEurn now to results from the IR evaluation in Ta-
of agglutinative segmentations on Rowever, dif- ble 3. Although ParaMor does not fair as well in
fers with language. For the two languages whichkinnish, in German, the fully enhanced version of
make limited use of suffix sequences, English arfdaraMor places above the best system from the
German, a model which hypothesizes multipl@007 Challenge, Bernhard, while our score on
morpheme boundaries can only moderately irEnglish rivals this same best system. Morpho Chal-
crease recall and does not justify, by fhe many lenge 2007 did not measure the statistical signifi-
incorrect segmentations which result. On the otheance of uninterpolated average precision scores in
hand, an agglutinative model significantly im-he IR evaluation. It is not clear what feature of Pa-
proves recall for true agglutinative languages likeaMor’'s Finnish analyses causes comparatively
Finnish and Turkish, more than compensating,in Fow average precision. Perhaps it is simply that Pa-
for the drop in precision over these languages. BtaMor attains a lower morpheme recall over Fin-
in all four languages, the agglutinative version afish than over English or German. And unfortu-
ParaMor outperforms the baseline unenhanced vexately, Morpho Challenge 2007 did not run IR ex-
sion at k. periments over the other agglutinative language in
The final row of Table 2 is the evaluation of @he competition, Turkish. When ParaMor does not
reference algorithm submitted by Tepper (2007%ombine multiple morpheme boundaries into a sin-
While not an unsupervised algorithm, Tepper'gle analysis, as in the baseline and ‘+P —Seg’ sce-
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Eng. | Ger. | Finn. [ Tur.

ParaMor TP *Seg| 39.3 | 48.4| 426 | -
& +P —Seg| 35.1| 43.1 37.1 -
Morfessor= - coinel 3a.4 | 401]| 359 -
Bernhard 39.4| 473 | 49.2| -
Bordag 34.0 | 43.1( 431 -
Morfessor 38.8 | 46.0( 44.1 -
Zeman 26.7%| 25.7*| 28.1* -
Dummy 31.2 32.3 32.7 -
Oracle 377 | 34.7| 43.1 -
Porter 40.8 - - -
Tepper 37.3%| - - -

Table 3. Unsupervised morphology induction sys-

tems evaluated for uninterpolated average precision

using the methodology of the IR competition of
Morpho Challenge 2007. These results use Okapi
term weighting (Kurimo et al., 2008b).

*Only a subset of the words which occurred in the

IR evaluation of this language was analyzed by this

system.

strong performance at morpheme identification
across all four languages of Morpho Challenge
2007. By first cleaning up the paradigm models
that ParaMor learns, we raise ParaMor’s segmenta-
tion precision and allow the agglutinative model to
significantly improve ParaMor’'s morpheme recall.
Looking forward to future improvements, we
examined by hand the final set of scheme clusters
that the current version of ParaMor produces over
our newswire corpus of 50,000 Spanish types. Pa-
raMor’s paradigm identification stage outputs 41
separate clusters. Among these final scheme clus-
ters are those which model all major productive
paradigms of Spanish. In fact, there are often mul-
tiple scheme clusters which model portions of the
same true paradigm. As an extreme case, 12 sepa-
rate scheme clusters contain suffixes from the
Spanishar verbal paradigm. Relaxing restrictions
on ParaMor’s clustering algorithm (Monson et al.,
2007a) may address this paradigm fragmentation.
The second significant shortcoming which sur-
faces among ParaMor’s 41 final scheme clusters is
that ParaMor currently does not address morpho-
phonology. Among the final scheme clusters, 12
attempt to model morphophonological change by
incorporating the phonological change either into
the stems or into the suffixes of the scheme cluster.

narios, average precision is comparatively pooBut ParaMor currently has no mechanism for de-
Where the linguistic evaluation did not always petecting when a cluster is modeling morphophonol-
nalize a system for proposing multiple partiabgy. Perhaps ideas on morphophonology from
analyses, real NLP applications, such as IR, can. Goldsmith (2006) could be adapted to work with
The reference algorithms for the IR evaluatiothe ParaMor algorithm. Finally, we plan to look at
are: Dummy, no morphological analysis; Oraclescaling the size of the vocabulary used both during
where all words in the queries and documents fparadigm induction and during morpheme segmen-
which the linguistic answer key contains an entriation. We are particularly interested in the possi-
are replaced with that answer; Porter, the standdvdity that ParaMor may be able to identify para-
English Porter stemmer; and Tepper describetigms from much less data than 50,000 types.
above. While the hand built Porter stemmer still
outperforms the best unsupervised systems on Efgcknowledgements
lish, these same best unsupervised systems outper- ) , )
form both the Dummy and Oracle references for afVe kindly thank Mikko Kurimo, Ville Turunen,
three evaluated languages—strong evidence tH4itti Varjokallio, and the full Organizing Com-

unsupervised induction algorithms are not onl{

ittee of Morpho Challenge 2007, for running the

better than no morphological analysis, but that th@/aluations of ParaMor. These dedicated workers
are better than incomplete analysis as well.

4 Conclusions and Future Directions

produced impressively fast turn around for evalua-
tions on sometimes rather short notice.

The research described in this paper was sup-
ported by NSF grants 11S-0121631 (AVENUE) and

Augmenting ParaMor with an agglutinative modellS-0534217 (LETRAS), with supplemental fund-
of segmentation produces an unsupervised mang from NSF’'s Office of Polar Programs and Of-
phology induction system with consistent andice of International Science and Education.
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