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Introduction

We are pleased to present the Proceedings of the Tenth Meeting of the ACL Special Interest Group on
Computational Morphology and Phonology (SIGMORPHON), to be held on June 19, 2008 at Ohio
State University in Columbus, Ohio.

The purpose of SIGMORPHON is to foster computational research on the phonological, morphological,
and phonetic properties of human language. All three of these sub-areas deal largely with the local
structure of words and so share many technical methods. Furthermore, computational work that
models empirical data must often draw on at least two of these areas, with explicit consideration of
the morphology-phonology or phonology-phonetics interface.

Morphology and phonetics were officially added to the SIG’s charter only in 2006, when the SIG
membership voted to amend the SIG’s constitution and change its name from SIGPHON. This
expansion of the SIG’s mission beyond phonology was supported and subsequently approved by the
ACL. The new name (suggested by Johanna Moore) is pronounced “SIG more fun,” which we hope is
an accurate assessment.

Since SIGMORPHON’s 2007 workshop was a special-topic workshop on computing and historical
phonology, the present 2008 workshop is the first that reflects the breadth of the new charter. In
particular, we are pleased to include two papers on unsupervised morphological analysis, and an invited
talk on articulatory modeling for speech recognition.

We are grateful to the program committee for their careful and thoughtful reviews and discussions of
the papers submitted this year. Just over half of the submissions were accepted on first review, with
an additional submission accepted after revisions. We also thank this year’s invited speakers, Karen
Livescu and Jason Riggle, for presenting their noteworthy work to the SIGMORPHON community.

We hope that you enjoy the workshop and these proceedings.

Jason Eisner
Jeffrey Heinz
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Invited Talk:
Phonological Models in Automatic Speech Recognition

Karen Livescu
Toyota Technological Institute at Chicago

1427 E. 60th St., Chicago, IL 60637
klivescu@tti-c.org

Abstract

The performance of automatic speech recognition systems varies widely across different contexts. Very
good performance can be achieved on single-speaker, large-vocabulary dictation in a clean acoustic environ-
ment, as well as on very small vocabulary tasks with much fewer constraints on the speakers and acoustic
conditions. In other domains, speech recognition is still far from usable for real-world applications. One
domain that is still elusive is that of spontaneous conversational speech. This type of speech poses a number
of challenges, such as the presence of disfluencies, a mix of speech and non-speech sounds such as laughter,
and extreme variation in pronunciation. In this talk, I willfocus on the challenge of pronunciation variation.
A number of analyses suggest that this variability is responsible for a large part of the drop in recognition
performance between read (dictated) speech and conversational speech.

I will describe efforts in the speech recognition communityto characterize and model pronunciation
variation, both for conversational speech and in general. The work can be roughly divided into several types
of approaches, including: augmentation of a phonetic pronunciation lexicon with phonological rules; the use
of large (syllable- or word-sized) units instead of the moretraditional phonetic ones; and the use ofsmaller
units, such as distinctive or articulatory features. Of these, the first is the most thoroughly studied and
also the most disappointing: Despite successes in a few domains, it has been difficult to obtain significant
recognition improvements by including in the lexicon thosephonetic pronunciations that appear to exist in
the data. In part as a reaction to this, many have advocated the use of a “null pronunciation model,” i.e. a
very limited lexicon including only canonical pronunciations. The assumption in this approach is that the
observation model—the distribution of the acoustics givenphonetic units—will better model the “noise”
introduced by pronunciation variability.

I will advocate an alternative view: that the phone unit may not be the most appropriate for modeling the
lexicon. When considering a variety of pronunciation phenomena, it becomes apparent that phonetic tran-
scription often obscures some of the fundamental processesthat are at play. I will describe approaches using
both larger and “smaller” units. Larger units are typicallysyllables or words, and allow greater freedom to
model the component states of each unit. In the class of “smaller” unit models, ideas from articulatory and
autosegmental phonology motivate multi-tier models in which different features (or groups of features) have
semi-independent behavior. I will present a particular model in which articulatory features are represented
as variables in a dynamic Bayesian network.

Non-phonetic pronunciation models can involve significantly different model structures than those typi-
cally used in speech recognition, and as a result they may also entail modifications to other components such
as the observation model and training algorithms. At this point it is not clear what the “winning” approach
will be. The success of a given approach may depend on the domain or on the amount and type of training
data available. I will describe some of the current challenges and ongoing work, with a particular focus on
the role of phonological theories in statistical models of pronunciation (and vice versa?).
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Bayesian Learning Over Conflicting Data:
Predictions for language change

Rebecca Morley
Cognitive Science Department

Johns Hopkins University
3400 N. Charles St.

Baltimore, MD 21218
morley@cogsci.jhu.edu

Abstract

This paper is an analysis of the claim that a
universal ban on certain (‘anti-markedness’)
grammars is necessary in order to explain their
non-occurrence in the languages of the world.
To assess the validity of this hypothesis I ex-
amine the implications of one sound change (a
> ) for learning in a specific phonological
domain (stress assignment), making explicit
assumptions about the type of data that results,
and the learning function that computes over
that data.  The preliminary conclusion is that
restrictions on possible end-point languages
are unneeded, and that the most likely outcome
of change is a lexicon that is inconsistent with
respect to a single generating rule.

1 Introduction

The basic tenet of Evolutionary Phonology is that
the observed universal commonalities in
phonological systems of the world arise from the
universal commonality of the way listeners and
speakers produce and perceive sound structures
(Blevins, 2004). Diachronic processes operating
via the transmission of the speech signal act with-
out regard for the subsequent system they create.
Alternate theories in the tradition of Chomsky ar-
gue for universal prohibitions which would serve
to ban or repair certain changes just in case they
would result in a ‘disallowed’ system (Kiparsky
2004, 2006).  In Optimality Theoretic terms, this
would be a grammar that violates the canonical set
of universal markedness constraints. I will call this
claim the Universal-Grammar-Delimited Hypothe-
sis  Space (UG-Delimited H) Principle.

Without this check, Kiparsky argues, common
and natural sound changes (‘blind’ Evolutionary
Phonology) would frequently produce unnatural
and in fact unobserved ‘anti-markedness’ lan-
guages (such as a system in which lower sonority
vowels were stressed in preference to higher so-
nority vowels).

An analysis of the properties of possible
grammars is an analysis that involves explicitly
characterizing the properties of the learner, as well
as of the data to which the learner is exposed.  The
work in this paper is, to my knowledge, the first
attempt to do exactly this kind of analysis, for ex-
actly the type of scenario in which a dispreferred,
but hypothetically learnable, grammar might arise.

Diachronic changes that are caused by factors
outside of the grammar have the capability of dis-
rupting a categorical rule system, introducing ir-
regularities into a previously regular pattern. These
irregularities may have an ‘unnatural’ or anti-
markedness character, but typically, they will co-
exist alongside remnants of the prior natural pat-
tern.  That is the first observation.  The second is
that if learners are allowed to adopt mixed-
grammar hypotheses (‘co-phonologies’ (Inkelas
1997), ‘stratal faithfulness’ (Ito and Mester 2001),
‘lexical indexation’ (Pater 2000)), then under a
posterior-maximizing learning model, these hybrid
systems are the most likely outcome (rather than a
categorical ‘anti-markedness’ grammar).

I will work through a case study of sonority
sensitive stress, paying special attention to the
lexicon that would be produced after a hypothetical
sound change of the type Kiparsky proposes.  By
examining the output of Bayesian hypothesis test-
ing in this domain I will conclude that for the pure
anti-markedness grammar to arise, not only is a
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certain type of diachronic change necessary, but
also a certain type of non-uniform lexical distribu-
tion. To first approximation, this confluence of
circumstances appears rather rare, leading me to
tentatively reject the hypothesis that categorical
bans on allowed grammars are necessary to explain
the distribution of the world’s languages.

2 Gujarati Phonology

Kiparsky uses Gujarati to provide a concrete illus-
tration of the relevant phonological paradigm: a
sonority-sensitive stress system that respects the
posited universal implicational hierarchy.  There
are eight vowels in Gujarati, corresponding to three
sonority tiers: low: (), mid: (i,e,,o,,u), and high:
(a).  The stress system is described as conforming
to the following position- and sonority- dependent
rules.

[1]   GUJARATI: Sonority & Position -to-Stress
• stress penultimate [a] (the most sonorous vowel)
• otherwise stress ante-penultimate [a]
• otherwise stress final [a]
• otherwise stress penultimate mid-sonority vowel

(any of [i,e,,o,,u])
• otherwise stress ante-penultimate mid-sonority

vowel
• otherwise stress the penultimate position (which

must be [] (the lowest sonority vowel))

This type of system is easily describable within
a standard OT framework (Prince and Smolensky
1993/2004) that utilizes a universally ordered so-
nority scale with respect to the markedness of (or
dispreference for) stressing a particular vowel.
Crucially, however, the reverse type of system, in
which lower sonority vowels are the ones that at-
tract stress, is so far unattested, and predicted,
within the same framework, to be impossible.

2.1 Gujarati′

In stating his claim about the necessity of intrinsic
bans on possible grammars, Kiparsky makes the
following assumption: A common and natural type
of sound change is one in which all a’s of a lan-
guage change to ’s 1.  I will adopt this assumption

                                                  
1 In fact, it is not clear how likely an internally motivated la n-
guage change of a completely general nature is.  What might

as well for the sake of argument, leaving aside a
discussion of the evidence for how plausible it may
be.  It should be kept in mind that this particular
change is being considered only as a stand-in for a
class of possible sound changes that could produce
similar outcomes with respect to markedness im-
plications.

A change in vowel quality (with unchanged
stress placement) will alter the make-up of the
Gujarati lexicon, and raise the possibility of a sys-
tem in which stress preferentially falls on the low-
est-sonority vowel, [] (formerly [a], the most so-
norous vowel)2. This new lexicon will, in turn, act
as the input to the learner of Gujarati′. To deter-
mine the outcome of learning over this data set,
some sort of characterization of the learner’s hy-
pothesis space is necessary.  The list in [2] repre-
sents the full hypothesis set considered in this pa-
per3.  To begin, I will consider only hypotheses 1)-
3), leaving aside the discussion of hypotheses 4)
and 5) until Section 3.3.

[2]  H :Hypothesis Space
1) PENULT: Stress Penultimate Vowel
2) GUJARATI: Sonority & Position  -to-Stress
3) GUJARATI*: Reversed-Sonority & Position -to-

Stress4

4) NULL(G*/G): GUJARATI* and G UJARATI equally
likely generators of data

5) MAX(G*/G): mixed-grammar of GUJARATI* and
GUJARATI with variable weights

                                                                               
be more plausible is that such changes would depend very
heavily on context, with tokens that were less fully realized
(e.g., shorter) being more likely to undergo the change than
more fully /a/-like tokens.  This, of course, would be corre-
lated with their stress status.
2 An alternative traditional generativist account, rather than
admitting an anti-markedness hypothesis, might propose a
difference between stress-attracting ’s and non-stress-
attracting ’s based on differences in their underlying repre-
sentations, effectively encoding the diachronic change within
the synchronic grammar.  This type of analytic bias will im-
pede or prevent changes from affecting the rule system
(grammar) of a language, and thus it is  not pursued in the
present work.
3 This is clearly far from the only way in which the learning
problem can be formulated.  Given that this is, to my knowl-
edge, the first study of its kind, a number of somewhat arbi-
trary representational decisions had to be made.  For the pur-
poses of this work the given H-space is the result of  what I
view as a minimal departure from the standard formalisms
both of  linguistic theory and Bayesian learning.
4 As in [1], but with the sonority classes reversed.
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2.2 Evidence to the Learner: Gujarati Lexicon

The hypothetical lexicon of Gujarati′ (L′) depends
on the inventory of the old Gujarati (L ).  For a
given possible Gujarati, L is mapped to L′ via the
sound change a > . To construct the space of L I
start by making a list of all possible word types,
where the type depends on features that are rele-
vant to the hypotheses under consideration, namely
the vowel identities.  This listing also corresponds
to a particular lexicon LMU ∈  L; this is the word
inventory under what I will call the Minimal Lexi-
con Uniformity assumption: that all types are rep-
resented in equal numbers, and each type occurs
exactly once. For 3-syllable words and an 8 vowel
inventory, there are 83, or 512 distinct types.  For
2-syllable words, there are 82, or 64 types.

Table 1 lists the word types for 3-syllable
words.  ‘Case’ refers to the type (vowel make-up)
of the word before the hypothetical sound change
(where M indicates any of the mid-sonority vowel
class {i,e,,o,,u}).  We will restrict ourselves for
the moment to considering only the first three hy-
potheses in the space: PENULT(P ), GUJARATI(G),
and GUJARATI*(G*)).

Case Gujarati Example
L > L′

# types
H

1 (,(,M),a)
(M,,a)
(a,,M)
(a,,(,a))

[pika]>[prik] 21

2 (M,M,a)
(a,M,(M,a,))

[hoija]>[hoijr] 84
G*

3 (M,a,(,M,a)) [mubak]>[mubk] 48
G*,P

4 ((,M), M,)
(,M,M)

[tumot]>[tumot] 78
G,P

5 (M,,M)
(M,,)

[kojldi]>[kojldi] 42
G

6 (a,a,(a,M))
(,(a,),(a,,M))
(M,M,M)

[awana]>[wn] 239
G,G*,P

Table 1. Uniform Gujarati Lexicon: three-syllable
words (words taken from de Lacy (2006))

Each row represents positive evidence for
some subset of the three hypotheses under consid-
eration; the hypotheses consistent with a given

case are specified in the last column below the type
counts. For example, in Row 3, the word
[muba k] in Gujarati, with stress determined by
the markedness-abiding grammar described in [1]
has become [mubk] in Gujarati′.  This form
now exhibits stress on the lowest (rather than the
highest) sonority vowel in the word.  This pattern
is consistent with the anti-markedness grammar
GUJARATI*.  However, the stress placement in this
word is also consistent with the simple positional
grammar PENULT.  If we indicate the number of
types that support none of the hypotheses as A
(=arbitrary), and the number that support all hy-
potheses as N (= neutral), then we can calculate the
total type counts in support of each hypothesis
(A=21; G*=371; G=359; N=239; P=365;
T=512).  Note that G*  exceeds P by six word
types.

3 The Bayesian Learner

The numbers in Table 1 represent the make-up of a
possible lexicon of Gujarati′, namely, LMU′.  This
will act as the initial input to our Bayesian learner
(for simplicity, all calculations in this section will
be performed only for 3-syllable words).

The Bayesian model has been extensively ap-
plied to learning scenarios in a number of cognitive
domains (e.g., Chater et al., 2006; Kemp et al.,
2007; Kording and Wolpert, 2006; Tenenbaum et
al., 2007), and involves a fairly minimal and intui-
tive apparatus.  Bayes theorem, which provides a
formula for computing the posterior probability of
a hypothesis given the data, and thus a method for
evaluating competing grammars, is given in (1).

€ 

p(h | d) =
p(d | h)p(h)

p(d )
          (1)

For the problem at hand, the members of d are
stress assignments corresponding to each of the n
words of the lexicon. The conditional probability
of a stress assignment di under hypothesis h is
more properly written as p(di|h,yi), where stress
assignment (as can be seen from Table 1) depends
on the particular word type yi. I will assume that
the conditional probability of each surface stressed
form is independent of any other.  The probability
of the set d given h and y (where h = GUJARATI*,
PENULT, or GUJARATI) can then be expanded as the
product of the probability of each member of d
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given h and each member of  y (see Equation (2)).

3.1 ‘Non-Deterministic’ Hypothesis Space

Applying Bayes Theorem to the first three hy-
potheses of [2] returns a value of p(h|d)=0 for each
grammar.  To avoid this collapse (due to the exis-
tence of contradictory data), let us assign a small
probability of error (2α) under each hypothesis.
For a given 3-syllable word type, y, there are three
stress possibilities: C = {1,2,3}, and the stress class
assigned by a given hypothesis Hi is written as a
function of the input word type: Hi(y) ∈ C.  For the
Non-Deterministic version of the same hypothesis,
written as Hi

α, stress will be assigned to the con-
sistent position (c=Hi(y)) with probability 1-2α,
and to either of the two inconsistent positions with
probability α. See [3].

[3] Hi
α : Non-Deterministic Version of Hi

€ 

p(c |Hi
α ,y) =

1−2α c = Hi(y)
α c ≠ Hi(y)

 
 
 

We are assessing the consequences of learning
with no markedness biases, so we will let the prior
probability in Equation (1) be uniform over the
hypothesis space. Since we are concerned with the
winner in any two-hypothesis competition, we will
work with the ratio of their posteriors. Here the
hypotheses GUJARATI*α,  GUJARATIα and P ENULTα

are the Non-Deterministic counterparts of the pre-
viously introduced hypotheses of the same names,
and the numerical values of G*, P and T are ex-
tracted from Table 1, under LMU′ (and given at the
end of Section 2.1).

€ 

p(GUJARATI *α | d)
p(PENULT α | d)

=
p(di |GUJARATI

*α , yi )
i
∏

p(di | PENULT
α , yi )

i
∏

  

€ 

α
[di ≠G

* ( yi )]
∏ (1− 2α)

[di =G
* ( yi )]
∏

α
[di ≠P ( yi )]
∏ (1− 2α)

[ di =P ( yi )]
∏

=
α T−G* (1− 2α)G*

α T−P (1− 2α)P
        (2)

As we can see from Equation (2), the relative
probability advantage is highly dependent on the
magnitude of α. Since α is an error term, it should
remain relatively small. Within this constraint, we
could allow the learner to fit this parameter based
on maximizing hypothesis likelihood.  For the 3-
syllable uniform lexicon, αML computed with re-

spect to GUJARATI* is approximately .14.  Using
this value in Equation (2) we find that GUJARATI*α

wins out over both GUJARATIα and PENULTα  by
s e v e r a l  o r d e r s  o f  m a g n i t u d e :

€ 

p(G* | d)
p(P | d)

≈1.85×104 ;

€ 

p(G* | d)
p(G | d)

≈ 3.4 ×108  .

This initial result seems to provide strong sup-
port for The UG-Delimited H  Principle: the
GUJARATI* grammar seems overwhelmingly likely
to arise, and yet is unattested.  However, it is in-
structive to consider the inherent sensitivity of the
Bayesian learner to quite small differences be-
tween the linguistic hypotheses in question. A dis-
crepancy between data coverage of a mere 6
words, as seen in the above case, can lead to a hy-
pothesis advantage of four orders of magnitude.
And, in fact, a discrepancy of even 1 word can give
a posterior advantage on the order of a factor of 5
or greater (depending on the value of α).  This re-
sult is the consequence of the extreme probability
distribution over only two types of data (consistent
and inconsistent -- with values close to 1 in the
first case, and close to 0 in the second). Since the
probability of an independent collection of out-
comes (a particular input lexicon) is computed via
multiplication, each additional difference in data
coverage compounds the single point case, such
that the ratio grows exponentially.

If this behavior is indeed a problem for our
linguistic domain (where different sub-regions of
phonological regularity are often observed to co-
exist stably in natural language (Inkelas 1997))
then there are various means at our disposal to
modify the learning model. In the following sec-
tion I will consider an alternative weighted deci-
sion metric; in Section 3.3 I will expand the hy-
pothesis space to include mixed-grammar com-
petitors; and in Section 4 I will alter the parameters
of the learning rule to provide a more stringent
threshold for success in hypothesis competition.

3.2 Optimal Bayes Classifier

So far, we have been implicitly assuming a winner-
take-all classification strategy whereby the hy-
pothesis with the highest likelihood given the data
is the one selected by the learner, and all others
discarded.  Let us now consider, instead, the Opti-
mal Bayes Classifier which categorizes new in-
stances of data by taking a weighted sum of the
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predictions of all hypotheses in the space.
As expressed in Equation (3), the probability

that a new word y will be assigned to category cm
(stress syllable m), given the body of training data
d — p(cm|d,y) — is the weighted sum of the prob-
ability each hypothesis gives of cm classification —
p(cm|Hs,y ) — where each of these terms is
weighted by the a posteriori probability of the par-
ticular hypothesis given the training data, p(Hs | d).

€ 

p(cm | d,y) = p(cm
Hs

∑ |Hs ,y)p(Hs | d)       (3)

Consider now the situation where there are
three hypotheses in the space: Hi

α, Hj
α, and Hk

α.
The formulation of the selector function in Equa-
tion (3) allows for the possibility of a ganging-up
effect whereby Hj

α and Hk
α, even if they individu-

ally have lower posterior probability over d than
does Hi

α, can act together to influence the classifi-
cation of a new data point y.  We can choose the
lexicon in this example so as to showcase the larg-
est possible effect these two subordinate rules
could have by making the difference in consistent
data between the (deterministic) hypotheses as
small as possible, such that Hi   has a coverage ad-
vantage of only one data point over both Hj and Hk.
We will also consider those words for which Hj
and Hk differ from the classification predicted by
Hi (H i(y)=c1), but agree with one another in se-
lecting c2 with the highest probability (H j(y)=
Hk(y)= c2).

From Equation (2), with G*-P=1,

€ 

p(H j / k
α | d) =

α
1−2α

p(Hi
α | d)          (4a)

Substituting (4a) into Equation (3) gives the prob-
ability that classification will occur in line with the
dominant hypothesis Hi:

€ 

p(c1 | d , y) = (1− 2α)P(Hi
α | d) +α

α
1− 2α

P(Hi
α | d )

       

€ 

+ α
α

1− 2α
P(Hi

α | d )             (4b)

And the probability that classification will occur in
line with the subordinate, but mutually reinforcing,
Hj and Hk can be calculated similarly.

The ratio of the probability of categorizing the
new item consistently with Hi to that of categoriz-
ing consistently with Hj and Hk can then be shown
to be

€ 

p(c1 | d , y)
p(c2 | d , y)

=
6α 2 − 4α +1
3α(1− 2α)

          (5)

Now take Hi = GUJARATI*, Hj= GUJARATI, and Hk
= PENULT; y is a new word of the type in Row 4 of
Table 1.  The gang-up phenomenon, where
GUJARATI and PENULT collude to move stress away
from the position preferred by GUJARATI*, may be
seen to have any kind of appreciable effect (where

€ 

p(c1 | d,y)
p(c2 | d,y)

≤1.5 ) only in the region .17 < α < .4

(relatively large values for α). Outside of this re-
gion GUJARATI* dominates. And keep in mind, the
advantage to GUJARATI* only gets higher for larger
differences in coverage (in Equation (5) only a sin-
gle data point separates the three hypotheses), and
for instances of lexical items where GUJARATI and
PENULT disagree (Row 5 of Table 1).

So far we have seen that the Bayesian frame-
work exhibits a potential over-sensitivity when
applied to problems of the type formulated in this
paper: learning over a space of quasi-categorical,
contradictory hypotheses.  This is true whether we
consider learning to result in a single winner-take-
all hypothesis, or instead opt for the weighted deci-
sion metric of the Optimal Bayes Classifier.  We
will return to this issue in Section 4.  First, how-
ever, I will expand the hypothesis space under con-
sideration, in Section 3.3, and introduce, in Section
3.4, a non-uniform prior, adding principled biases
on the selection of those different hypotheses.

3.3 Mixed-Grammar Hypotheses

Before we can assess the performance of the Baye-
sian learner with respect to the UG-Delimited H
Principle we must make sure we consider all po-
tential competitor hypotheses that might be better
predictors of the data than those examined so far.
In particular, it is instructive to introduce some-
thing like a class of null hypotheses: hybrid gram-
mars which explicitly encode equality between any
pair of competing alternatives’ ability to explain
the data5.

                                                  
5 The effect of mixed-grammar hypotheses can also be
realized by allowing a selection procedure over a set of simple
grammars, as described in Section 3.2, but, crucially, with the
weights calculated under the assumption that data are
generated by a combination of grammars (see, for example,
the variational model proposed by Yang (1999), or the
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I define this class as follows:  the posterior
probability that the hypothesis NULL(i/j)α assigns to
a stress class c is calculated by allotting equal
probability to selecting the Hi

α or the H j
α rule to

produce an output of that class:

€ 

p(c | NULL(i / j)α , y) = wi p(c |Hi
α , y) + w j p(c |H j

α , y) (6)

where wi = wj =  .5.  From Equation (6) and the
definition in [3], we can compute the probability
distribution of stress assignment c given the appli-
cation of NULL(i/j)α to a particular word, y

[4] NULL(i/j)α: ‘Null Hypothesis’

€ 

p(c | NULL(i / j)α , y) =

1− 2α c = Hi (y) = H j (y)
1−α
2

c = Hi (y) XOR c = H j (y)

α c ≠ Hi (y) &c ≠ H j (y)

 

 
 

 
 

It can be shown that, for LMU′ (the Gujarati′
lexicon generated from the Gujarati minimum uni-
form lexicon), the null hypothesis, NULL(G*/G)α,
is the decisive winner over GUJARATI*α (by ap-
proximately 30 orders of magnitude).  With this
broader consideration of the hypothesis space, the
anti-markedness grammar is no longer the outcome
of learning.  And it turns out that we can specify
another hypothesis that gives an even higher likeli-
hood over the data.

The ‘maximum likelihood’ hypotheses are
specified by allowing all three parameters (wi, wj,
and α  (now σ)) in Equation (6) to be estimated
from the data. MAX(i/j)σ is defined explicitly below
in [5] for any given weighted combination of Hi

σ

and Hj
σ.

[5] MAX(i/j)σ: ‘Maximum Likelihood’

€ 

p(c |MAX (i / j)σ , y) =

         

€ 

(wi + w j )(1− 2σ ) c = Hi (y) = H j (y)
(1− 2σ )wi +σw j c = Hi (y) &c ≠ H j (y)
(1− 2σ )w j +σwi c = H j (y) &c ≠ Hi (y)
(wi + w j )σ c ≠ Hi (y) &c ≠ H j (y)

 

 
 
 

 
 
 

When Hi = GUJARATI* and Hj = GUJARATI,
MAX(G*/G)σ assigns the highest posterior of any
we have seen so far (approximately 56 orders of
magnitude larger than G*).  This is because, within
the space of candidates, it gives the highest likeli-
hood to the observed data, and the prior probability
                                                                               
probabilistic version of Optimality Theory over rankings
utilized by Jarosz (2006)).

(assumed so far to be uniform) plays no role in this
calculation.  As the hypotheses we are considering
become more complicated, however, we are led to
consider an alternative to this assumption, one in
which hypotheses with longer description lengths,
or greater complexity, are penalized (Rissanen
1989).

3.4 Non-Uniform Prior: Hypothesis Description
Length

Under the uniform prior assumption, only with a
lexicon in which GUJARATI* accounts for at least
44 times as much data as does GUJARATI will
MAX(G*/G)σ be defeated.  In this section I will
show how that result would be altered by consid-
ering a better approximation to the prior probabil-
ity distribution over those hypotheses. MAX(G*/G)σ

and GUJARATI*α can be seen to differ in a basic
way related to the number of parameters and rules
they must each keep track of.  A domain-
independent means of determining a prior prob-
ability based on this difference in size, or com-
plexity, can be found in the information theoretic
notion of coding cost, or description length.

Each hypothesis uses a particular labeling
strategy to encode the input data (which can be
quantified by the number of binary pieces of in-
formation, or bits needed to transmit that informa-
tion to a waiting decoder).  In addition, a certain
number of bits is needed to encode the hypothesis
itself. The total description length for a string (or
set of data) d and a particular hypothesis H is given
by the following general formula for two-part
coding.

€ 

L(d,H ) = L(d |H ) + L(H)         (7)

The relation of (7) to Bayes Theorem becomes
clear when we introduce the fundamental trans-
formation from probability to optimal code length
given by

      

€ 

L(x) = − logP(x)             (8)

Intuitively, Equation (8) calls for assigning shorter
length codes to higher probability symbols x
which, on average, will minimize the code length
for a string, d, of symbols drawn from distribution
P(x).  The ability to transform between length and
probability allows for the conceptualization of the
prior probabilities over the hypothesis space as
biases against complexity.
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We can think of the hypotheses in H as deci-
sion trees which produce stressed outputs from
input words.  In order to encode such decision trees
we need something like the binary coding scheme
given in Rissanen (1989, section 7.2).

€ 

L(T ) = log
kT +mT − 2

kT

 

 
 

 

 
         (9)

Here kT is the number of internal (non-terminal)
nodes in the tree and mT is the number of leaf (ter-
minal) nodes.  Equation (9) provides a measure of
how much the grammar compresses its input – or
how many classes it must keep track of to produce
the correct output.  For a series of decisions, based
on querying for a series of features at a series of
internal nodes, there will be a particular outcome at
a particular leaf node.  For the GUJARATI* gram-
mar, kT=5 (corresponding to the relevant questions
about vowel identity listed in definition [1] above),
and mT=6 (corresponding to the possible stress
decisions resulting from the answers to each of
those questions).

Additionally, all Non-Deterministic hypothe-
ses require the estimation of at least one error term.
I will approximate the coding length for a set of k
free parameters (

€ 

ˆ θ ), estimated over a string of
length n, by Equation (10) (Rissanen 1989, section
3.1).

€ 

L( ˆ θ ) =
k
2

logn      (10)

Since I am only interested here in computing
the length associated with the hypotheses them-
selves (the negative log of their prior probability),
we will focus on the second term of Equation (7),
which can be written as the sum of (9) and (10).

MAX(G*/G)σ consists of a decision tree that is
twice as large as that of GUJARATI*α (since it keeps
track of both GUJARATI*α  and GUJARATIα). Addi-
tionally, the combination hypothesis makes use of
one more estimated parameter (wG*).

Under LMU′, where n=512 words, the prior
probability ratio6 of MAX(G*/G)σ to GUJARATI*α is
1.7x104. From this result we can calculate that the
type of lexicon in which the mixed-grammar hy-
pothesis would be rejected is one in which the
GUJARATI* hypothesis accounts for at least eight

                                                  
6 the contribution of the hypotheses lengths,  converted back to
probability via Equation (8)

times more data than does GUJARATI (G*/G = 8).
This value must be regarded as an approxima-

tion due to its dependence on the particular coding
scheme used7.  It is, however, likely the best and
most principled estimate of the linguistic-bias-free
prior we can achieve8.

Under the information theoretic treatment, its
lower probability prior is still not enough to pre-
vent MAX(G*/G)σ from winning under LMU′ (by 52
orders of magnitude over GUJARATI*α). The pro-
ductions of a learner who has converged on this
grammar would not be obviously consistent with a
reversed sonority-to-stress output (since many
words would show a stress pattern that is incom-
patible with that hypothesis), but neither would
those productions be inconsistent with such a
grammar (since a (slim) majority of words provide
positive evidence for such a hypothesis).  The ty-
pological status of such languages will be dis-
cussed in the following section.

4 Discussion & Conclusion

The foregoing analysis has served to address the
question of whether the observed frequency of oc-
currence (approximately never) of anti-markedness
systems (such as a grammar with a preference for
stressing low sonority vowels over high) requires
an active constraint that removes those grammars
from the learner’s hypothesis space.  The central
claim within this paper has been that attempts to
answer this question must involve a careful exami-
nation and specification of the learning process, as
well as the inputs to the learner.

Given that systems, at any particular time, tend

                                                  
7 In practice, a code length exactly equal to the negative log of
the probability of a particular symbol may be unattainable, and
the relationship in Equation (8) becomes an approximation
which may be better in some cases than others.  Due to this
limitation, it is not clear how much the exact magnitude of a
result obtained with this method can be relied upon (for a brief
discussion of this issue see, for example, Brent (1999).)
8 An alternative to this approach is to imagine all grammars as
potential mixtures, and to stipulate a prior probability distri-
bution over the possible weight values.  Each grammar in this
view is equally complex, but certain weight combinations may
be more likely than others (such as the ‘simple’ 0/100% distri-
bution over weights).  Conceptually this seems at least as rea-
sonable as the current approach.  We are still left, however,
with the problem of determining the prior probability distribu-
tion over the weights, in a manner which, ideally, would be
independent of the problem at hand.
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to be in a state in which higher sonority vowels
attract stress (due to assumed perceptual factors),
the hypothetical sound change that disrupts the
natural order must act over forms that are origi-
nally markedness-abiding.  Thus, there will be a
residue of those forms in the language even after
the change has occurred (those in which //’s not
derived from /a/’s fail to attract stress in the pres-
ence of mid-sonority vowels).  If this residue is
small enough then the anti-markedness hypothesis
might emerge as the winner.  In turn, for this resi-
due to be small, the lexicon before the change must
exhibit a certain make-up, such that some word
types either fail to appear or occur with much
lower frequency than others.

In order to approximate these conditions I cre-
ated 1000 (x5) simulated lexicons by sampling
(without replacement) from the uniform word in-
ventory (LMU) at five different rates; for 3-syllable
words: 1% (=5 types), 3% (=15 types), 5% (=26
types), 7% (=36 types), and 10% (=51 types).
Higher sampling rates meant a greater likelihood
of reproducing the underlying uniform type distri-
bution over the 1000 trials, while lower sampling
rates (under-sampling) allowed for a higher likeli-
hood of departure from uniformity, and a greater
chance for skewed, or outlier, lexicons to emerge.

These simulations were done for the full set of
both 3-syllable and 2-syllable words (a more real-
istic distribution of input to the learner). To com-
bine the two word lengths, with differing numbers
of types, I scaled selection from the two classes.  A
cursory examination of the online English database
CELEX (1993) gives a count of 45,652 for 3-
syllable words, and 61,738 for 2-syllable words, a
1:1.4 relationship.  Using this as a rough guide, and
since the ratio of total types between 3-syllable and
2-syllable words is 512:64, a 1:10 scale was used
(giving a proportion of 512:640=1:1.25). Each of
the five sampling rates maintained this 1:10 scaling
factor, such that the lexicon containing 3-syllable
word types sampled at 7%, also contained 2-
syllable word types sampled at 70%; this is the
lexicon of 36 3-syllable word types (out of a possi-
ble total of 512) and 45 2-syllable word types (out
of a possible total of 64) (Row 5: [36,45] in Table
2).

Each lexicon, L, at a particular sampling rate,
was transformed to its L ′ counterpart (via the
change a>), and the coverage ratio between hy-

potheses GUJARATI* and GUJARATI over L ′ was
computed.  As given at the end of Section 3.4 for
the description-length prior, a value greater than
G*/G = 8 is needed for a GUJARATI* outcome.
Here, due to concerns about the sensitivity of the
Bayesian learner, and the degree of uncertainty in
the calculation of the prior, I relax this criterion.
The last four columns of Table 2 correspond to
four (largely arbitrary) values for the G*/G ratio
which were stipulated as thresholds (or possible
prior probability ratios) that would allow GU-
JARATI* to beat MAX(G*/G)σ.  Each cell contains
the percentage of anti-markedness outcomes (cal-
culated from 1000 runs) for a given threshold, at a
given sampling rate.

G*/GSampling

Rate

[3,2]-syllable

word types 5 2.5 1.7 1.25

1%,10% [5,6] 0 0 .4% 6.4%

3%,30% [15,19] 0 0 0 .9%

5%,50% [26,32] 0 0 0 .1%

7%,70% [36,45] 0 0 0 0

10%,100% [51,64] 0 0 0 0

Table 2: Estimated probabilities of learned anti-
markedness grammar: under 5 different sampling rates
(given as [number of 3-syllable,2-syllable word types]),
for four different threshold coverage ratios.

The very low occurrence rates of Table 2 show
that changing our assumptions about the make-up
of the lexicon (departing from uniformity) do not
qualitatively alter the results of the previous sec-
tions.  A pure anti-markedness grammar (GU -
JARATI*) seems to be a relatively rare outcome as
compared to a mixed-grammar competitor
(MAX(G*/G)σ), even under relaxed acceptance cri-
teria.

The above work relies heavily on the existence
of a residue of natural patterns in a post-sound
change language.  Under circumstances in which
sound change is non-neutralizing (that is,  is ab-
sent from the inventory of Gujarati before the
sound change), there will be no contradictory evi-
dence to the learner of Gujarati′: all data is consis-
tent with the GUJARATI* hypothesis.  Furthermore,
there is a long-standing intuition in the literature
that the most likely sound changes might actually
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be of this type (Martinet 1955)9.
Under these circumstances we might expect

GUJARATI* to emerge as the clear winner.  This
will depend critically on whether or not we con-
sider the lack of conflicting data to be an over-
whelming factor in hypothesis selection.  If, in-
stead, we maintain our space of non-deterministic
hypotheses, then there is still competition from the
mixed-grammar alternatives. Under the non-
neutralizing scenario, Gujarati has 7 vowels (rather
than 8); for 3-syllable words, all 343 types support
the G UJARATI*α hypothesis, while 265 are also
consistent with PENULTα.  And G*/P = 1.3. 2-
syllable words will provide somewhat less of an
advantage to the anti-markedness grammar
(49:46~1.13), and with a larger weight (10 times
greater frequency to approximate the CELEX ra-
tios), giving an adjusted ratio of roughly 1.15.
Whether this is enough of an advantage to cause
GUJARATI* to be selected will depend on the pa-
rameters of our learner, as well as the prior prob-
ability ratio between the two hypotheses: the dif-
ference in complexity between the GUJARATI* rule,
which computes stress location based on both po-
sition and sonority, and the PENULT rule, which
only computes over position.

What the above discussion illustrates is that the
actual form of common or likely sound changes
can significantly alter the outcome of analysis.  If
non-neutralizing sound changes are the norm, then
the dispreferred grammar might have a higher pre-
dicted likelihood than that calculated here.  Alter-
natively, if chain shifts predominate, whereby all
the vowels in the system undergo related incre-
mental changes in quality, the outcome might be
different again.  And if realistic sound changes op-
erate on a word by word basis, as predicted by
Evolutionary Phonology, such that results are even
less consistent in terms of sonority class, an even
lower likelihood for a true anti-markedness gram-
mar might be the result10.

                                                  
9 Thanks to Adam Albright for bringing this to my attention.
10 Another issue so far undiscussed is the aptness of describing
the GUJARATI* hypothesis as a reversed sonority-to-stress
scale.  In either instantiation of Gujarati′ (deriving either from
the 7- or 8-vowel system) there are only two operable sonority
categories {MID,}.  Stressing  preferentially over a higher-
sonority mid vowel is already dispreferred behavior from a
universalist perspective, but it is qualitatively different than a
hypothesis that targets sonority as the deciding factor (rather
than vowel identity).  This second hypothesis, for example,

This work has been a preliminary attempt to
accurately lay out the methodological requirements
for addressing questions of how grammars arise.
Further research ought to be concerned with ex-
actly the complications to the question just raised.
For present purposes, however, there are two gen-
eral points to be made.  The first is that, in order to
determine what any theory predicts in this domain,
one has to make assumptions about what consti-
tutes a realistic language learner, as well as estab-
lish estimates of the normal state of lexical statis-
tics.  The second point is that determining those
predictions tells us what the relevant typological
facts are.  The work here suggests that it is the oc-
currence, not so much of  pure anti-markedness
systems, but of partial anti-markedness (mixed-
grammar) systems that is the critical issue.  It may
turn out to be the case that these systems are also
very rare, and the over-prediction claim holds in its
revised form.  However, the true distribution of
these types of  languages seems far from clear at
the present time, and work will have to be done to
establish the fact of the matter11.
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would avoid stressing newly encountered a’s, precisely be-
cause of the high sonority of the vowel.  The likelihood of
achieving a true sonority scale reversal seems even lower than
that of learning the ‘stress-’ rule.  This is because the strong-
est evidence for a sonority-sensitive scale involves multiple
tiers or classes of sonority (probably at least three).  However,
the more different classes of vowels (the more complications
to the calculation of stress) the less likely it seems that an
indirect sound change (one that does not target sonority itself)
will produce a clean reversal of the pattern.  Again, disorder,
or proliferating ‘co-phonologies’ seem more likely to carry the
day.
11 In the first place, it is not a given that pure anti-markedness
systems are completely  non-occurring (see, for example,
Poppe (1960); McLendon (1975); Breen and Pensalfini
(1999)).  As for potential mixed-grammar languages, these
might include systems that have been analyzed as exhibiting
high degrees of lexical exceptionality, or gone largely un-
analyzed due to what is perceived as patternless behavior.
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Abstract

A stochastic approach to learning phonology.
The model presented captures 7-15% more
phonologically plausible underlying forms
than a simple majority solution, because it
prefers “pure” alternations. It could be use-
ful in cases where an approximate solution is
needed, or as a seed for more complex mod-
els. A similar process could be involved in
some stages of child language acquisition; in
particular, early learning of phonotactics.

1 Introduction

Sound changes in natural language, such as stem
variation in inflected forms, can be described as
phonological processes. These are governed by a
constraint hierarchy as in Optimality Theory (OT),
or by a set of ordered rules. Both rely on a sin-
gle lexical representation of each morpheme (i.e., its
underlying form), and context-sensitive transforma-
tions to surface forms. Phonological changes often
affect segments near morpheme boundaries, but can
also apply over an entire prosodic word, as in vowel
harmony.

It does not seem straightforward to incorporate
context into a Bayesian model of phonology, al-
though a clever solution may yet be found. A
standard way of incorporating conditioning envi-
ronments is to treat them as factors in a Gibbs
model (Liang and Klein, 2007), but such models
require an explicit calculation of the partition func-
tion. Unless the rule contexts possess some kind of
locality, we don’t know how to compute this par-
tition function efficiently. Some context could be

captured by generating underlying phonemes from
an n-gram model, or by annotating surface forms
with neighborhood features. However, the effects of
autosegmental phonology and other long-range de-
pendencies (like vowel harmony) cannot be easily
Bayesianized.

1.1 Related Work

In the last decade, finite-state approaches to phonol-
ogy (Gildea and Jurafsky, 1996; Beesley and Kart-
tunen, 2000) have effectively brought theoretical lin-
guistic work on rewrite rules into the computational
realm. A finite-state approximation of optimality
theory (Karttunen, 1998) was later refined into a
compact treatment of gradient constraints (Gerde-
mann and van Noord, 2000).

Recent work on Bayesian models of morpholog-
ical segmentation (Johnson et al., 2007) could be
combined with phonological rule induction (Gold-
water and Johnson, 2004) in a variety of ways,
some of which will be explored in our discussion
of future work. Also, the Hierarchical Bayes Com-
piler (Daume III, 2007) could be used to generate a
model similar to the one presented here, but less con-
strained1 which makes correspondingly more ran-
dom, less accurate predictions.

1.2 Dataset

As we describe the model and its implementation in
this and subsequent sections, we will refer to a sam-

1Recent updates to HBC, inspired by discussions with the
author, have addressed some of these limitations.
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ple dataset (in Figure 1), consisting of a paradigm2

of verb stems and person/number suffixes. The
head of each row or column is an /underlying/ form,
which in 3rd person singular is a phonologically null
segment (represented as /ø/). In [surface] forms, the
realization of each morpheme is affected by phono-
logical processes. For example, in the combination
of /tietä/ + /vat/, the result is [tietä+vät], where the
3rd person plural /a/ becomes [ä] due to vowel har-
mony.

1.3 Bayesian Approach

As a baseline model, we select the most frequently
occurring allophone as the underlying form. Our
goal is to outperform this baseline using a Bayesian
model. In other words, what patterns in phonologi-
cal processes can be inferred with such a statistical
model? This simple framework begins learning with
the assumption that the underlying forms are faithful
to the surface (i.e., without considering markedness
or phonotactics).

We model the generation of surface forms from
underlying ones on the segmental (character) level.
Input is an inflectional paradigm, with tokens of the
form stem+suffix. Morphology is limited to a
single suffix (no agglutination), and is already iden-
tified. Each character of an underlying stem or suf-
fix (ui) generates surface characters (sij) in an entire
row or column of the input.

To capture the phonology of a variety of lan-
guages with a single model, we need constraints
from linguistically plausible priors (universal gram-
mar). We prefer that underlying characters be pre-
served in surface forms, especially when there is no
alternation. It is also reasonable that there be fewer
underlying forms (phonemes) than surface forms
(phones, phonetic inventory), to account for allo-
phones. We expect to be able to capture a signifi-
cant subset of phonological processes using a simple
model (only faithfulness constraints).

1.4 Pure Generators

Our model has an advantage over the baseline in its
preference for “purity” in underlying forms. Each
underlying segment should generate as few distinct

2The paradigm format lends itself to analysis of word types,
but if supplemented with surface counts, can also handle tokens.

surface segments as possible: if it generates non-
alternating (identical) segments, it will be less likely
to generate an alternation in addition. This means
that when two segments alternate, the underlying
form should be the one that appears less frequently
in other contexts, irrespective of the majority within
the alternation.

In the first stem of our Finnish verb conjugation
(Figure 1), we see a [t,d] alternation (a case of con-
sonant gradation), as well as unalternating [t]. If we
isolate three of the surface forms where /tietä/ is in-
flected (1st person singular, and 3rd person singular
and plural), and consider only the dental segments in
the stem of each, we have two underlying segments.
Here, we use question marks to indicate unknown
underlying segments.

/??/ [dt] [tt] [tt]

In this subset of the data, the reasonable candidate
underlying forms are /t/ and /d/. These two compete
to explain the observed data (surface forms). The na-
ture of the prior probability distribution determines
whether the majority is hypothesized for each under-
lying form, so /t/ produces both alternating and unal-
ternating surface segments, or /d/ is hypothesized as
the source of the alternation (and /t/ remains “pure”).
In a Bayesian setting, we impose a sparse prior over
underlying forms conditioned on the surface forms
they generate.

If u2 is hypothesized to be /t/, the posterior prob-
ability of u1 being /t/ goes down:

P (u1 = /t/|u2 = /t/) < P (u1 = /t/)

The probability of u1 being the competitor, /d/, cor-
respondingly increases:

P (u1 = /d/|u2 = /t/) > P (u1 = /d/)

Even though the majority in this case would be /t/,
the favored candidate for the alternating form was
/d/. This happened because of how we defined the
model’s prior, in combination with the evidence that
/t/ (assigned to u2) generated the sequence of [t]. So
selection bias prefers /d/ as the source of an ambigu-
ous segment, leaving /t/ to always generate itself.

A similar effect can occur if there are both unal-
ternating [t]’s and [d]’s on the surface, in addition to
the [t,d] alternation. The candidate (/t/ or /d/) that is
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a

a
a

aa

StemSuffix /n/ (1s) /t/ (2s) /ø/ (3s) /mme/ (1p) /tte/ (2p) /vat/ (3p)

/tietä/ [tiedä+n] [tiedä+t] [tietä+ä] [tiedä+mme] [tiedä+tte] [tietä+vät]
/aiko/ [aiøo+n] [aiøo+t] [aiko+o] [aiøo+mme] [aiøo+tte] [aiko+vat]
/luke/ [luøe+n] [luøe+t] [luke+e] [luøe+mme] [luøe+tte] [luke+vat]

/puhu/ [puhu+n] [puhu+t] [puhu+u] [puhu+mme] [puhu+tte] [puhu+vat]
/saa/ [saa+n] [saa+t] [saa+ø] [saa+mme] [saa+tte] [saa+vat]
/tule/ [tule+n] [tule+t] [tule+e] [tule+mme] [tule+tte] [tule+vat]

/pelkää/ [pelkää+n] [pelkää+t] [pelkää+ø] [pelkää+mme] [pelkää+tte] [pelkää+vät]

Figure 1: Sample dataset (constructed by hand): Finnish verbs, with inflection for person and number.

generating fewer unalternating segments is preferred
to explain the alternation. For example, if there were
1000 cases of [t], 500 [d] and 500 [t,d], we would ex-
pect the following hypotheses: /t/ → [t], /d/ → [d]
and /d/ → [t, d]. This is because one of the two
candidates must be responsible for both unalternat-
ing and alternating segments, but we prefer to have
as much “‘purity” as possible, to minimize ambigu-
ity.

With this solution, we still have 1000 pure /t/ →
[t], and only the 500 /d/ → [d] are now indistinct
from /d/ → [t, d]. If we had selected /t/ as the
source of the alternation, there would be only 500
remaining “pure” (/d/) segments, and 1500 ambigu-
ous /t/. Our Bayesian model should prefer the less
ambiguous (“purer”) solution, given an appropriate
prior.

2 Model

We will use boldface to indicate vectors, and sub-
scripts to identify an element from a vector or ma-
trix. The variable N(u) is a vector of observed
counts with the current underlying form hypothe-
ses. The notation we use for a vector u with one
element i removed is u−i, so we can exclude the
counts associated with a particular underlying form
by indicating that in the parenthesized variable (i.e.,
N(u−4) is all the counts except those associated with
the fourth underlying form). Ni(u) is the number of
times character i is used as an underlying form, and
Nij(u) is the number of times character i generated
surface character j.

The priors over surface s and underlying u seg-
ments in Figure 2 are captured by Dirichlet priors
α and β, which generate the multinomial distribu-
tions θ and φ, respectively (see Figure 3). The

prior over underlying form encourages sparse solu-
tions, so βu < 1 for all u. The prior over surface
form given underlying encourages identity mapping,
/x/ → [x], so αxx > 1, and discourages different
segments, /x/ → [y], so αxy < 1 for all x 6= y.

nc

θ

α

nu

mnu

s

u

φ

β

Figure 2: Bayesian network: α and β are vectors of hy-
perparameters, and θi (for i ∈ {1, . . . , nc}) and φ are
distributions. u is a vector of underlying forms, generated
from φ, and si (for i ∈ nu) is a set of observed surface
forms generated from the hidden variable ui according to
θi

Phones and phonemes are drawn from a set of
characters (e.g., IPA, unicode) C used to represent
them. φi is the probability of a character (Ci for
i ∈ nc) being an underlying form, irrespective of
current alignments or its position in the paradigm.
θij is the conditional probability of a surface char-
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θc | α ∼ DIR(α), c = 1, . . . , nc

φ | β ∼ DIR(β)
ui | φi ∼ MULTI(φi), i = 1, . . . , nu

sij | ui,θui
∼ MULTI(θui

), i = 1, . . . , nu,
j = 1, . . . ,mi

Figure 3: Model parameters: nc is # different segments,
nu is # underlying segments

acter (skn = Cj for j ∈ nc, n ∈ mk) given the
underlying character it is generated from (uk = Ci

for i ∈ nc, k ∈ nu), which is determined by its po-
sition in the paradigm.

In our Finnish example (Figure 1), if k = 1, we
are looking at the first underlying character, which
is /t/ (from /tietä/), so assuming our character set is
the Finnish alphabet, of which ‘t’ is the 20th char-
acter, u1 = C20 = t. It generates the first character
of each inflected form (1st, 2nd, 3rd person, singu-
lar and plural) of that stem, so m1 = 6, and since
there is no alternation s1n = t (for n ∈ {1, . . . , 6}).
Given the phonologically plausible (gold) underly-
ing forms, the probability of /t/ is φ20 = 7/41.

On the other hand, k = 33 identifies the 3rd per-
son singular /ø/, which inflects each of the seven
stems, so m33 = 7. Since we need our alpha-
bet to identify a null character, we’ll give it in-
dex zero (i.e., u33 = C0 = ø). For each of the
(underlying, surface) alignments in this alternation
(caused by vowel gemination), we can identify the
probability in θ. For 3rd person singular [tietä+ä],
where s33,1 = C28 = ä, the conditional probability
θ0,28 = 1/7.

The prior hyperparameters can be understood as
follows. As βi gets smaller, an underlying form uk

is less likely to be Ci. As αij gets smaller, an un-
derlying uk = Ci is less likely to generate a surface
segment skn = Cj ∀n ∈ mk. In our experiments,
we will vary αi=j (prior over identity map from un-
derlying to surface) and αi6=j .

Our implementation of this model uses Gibbs
sampling (c.f., (Bishop, 2006), pp 542-8), an algo-
rithm that produces samples from the posterior dis-
tribution. Each sample is an assignment of the hid-
den variables, u (i.e., a set of hypothesized underly-
ing forms). Our sampler initializes u from a uniform
distribution over segments in the training data, and
resamples underlying forms in a fixed order, as in-

put in the paradigm. Rather than reestimate θ and
φ at each iteration before sampling from u, we can
marginalize these intermediate probability distribu-
tions in order to ease implementation and speed con-
vergence.

Our search procedure tries to sample from the
posterior probability, according to Bayes’ rule.

posterior ∝ likelihood ∗ prior

P (u, s|β,α) ∝ P (u|β)P (s, u|α)

Each of these probabilities is drawn from a Dirichlet
distribution, which is defined in terms of the multi-
variate Beta function, C . The prior β added to un-
derlying counts N(u) forms the posterior Dirichlet
corresponding to P (u|β). In P (s|u,α), each αi

vector is supplemented by the observed counts of
(underlying, surface) pairs N(si).

P (u, s|β,α) =
C(β + N(u))

C(β)
nc∏

c=1

C(αc +
∑

i:ui=c N(si))

C(α)

The collapsed update procedure consists of re-
sampling each underlying form, u, incorporating the
prior hyperparameters α,β and counts N over the
rest of the dataset. The relevant counts for a can-
didate k being the underlying form ui are Nk(u−i)
and Nksij

(u−i) for j ∈ mi. P (ui = k|u−i,α,β) is
proportional to the probability of generating ui = k,
given the other u−i and all sij (for j ∈ mi), given
s−i and u−i.

P (ui = c|u−i,α,β) ∝
Nc(u−i) + βc

n− 1 + β•

C(α +
∑

i′ 6=i:ui′=c N(s′i) + N(si))

C(α +
∑

i′ 6=i:ui′=c N(s′i))

Suppose we were updating this sampler running
on the Finnish verb inflections. If we had all seg-
ments as in Figure 1, but wanted to resample u31 (1st
person singular /n/), we would consider the counts
N excluding that form (i.e., under u−31). The prior
for /n/, β14, is fixed, and there are no other occur-
rences, so N14(u−31) = 0. Another potential un-
derlying form, like /t/, would have higher uncondi-
tioned posterior probability, because of the counts

15



(7, in this case) added to its prior from β. Then, we
have to multiply by the probability of each generated
surface segment (all are [n], so 7 ∗ P ([n]|c,α) for a
given hypothesis u31 = c).

We select a given character c ∈ C for u31 from a
distribution at random. Depending on the prior, /n/
will be the most likely choice, but other values are
still possible with smaller probability. The counts
used for the next resampling, N(u−31), are affected
by this choice, because the new identity of u31 has
contributed to the posterior distribution. After un-
bounded iterations, Gibbs sampling is guaranteed to
converge and produce samples from the true poste-
rior (Geman and Geman, 1984).

3 Evaluation

This model provides a language agnostic solution to
a subset of phonological problems. We will first
examine performance on the sample Finnish data
(from Figure 1), and then look more closely at the is-
sue of convergence. Finally, we present results from
larger corpora 3.

3.1 Finnish
Output from a trial run on Finnish verbs (from Fig-
ure 1) follows, with hyperparameters αij{100 ⇐⇒
i = j, 0.05 ⇐⇒ i 6= j} and βi = {0.1}.

In the paradigm (a sample after 1000 iterations),
each [sur+face] form is followed by its hypothesized
/under/ + /lying/ morphemes.

[tiedä+n] : /tiedä/ + /n/
[tiedä+t] : /tiedä/ + /t/
[tietä+ä] : /tiedä/ + /ä/
[tiedä+mme] : /tiedä/ + /mme/
[tiedä+tte] : /tiedä/ + /tte/
[tietä+vät] : /tiedä/ + /vät/
[aiøo+n] : /aiøo/ + /n/
...
[pelkää+vät] : /pelkää/ + /vat/

With strong enough priors (faithfulness con-
straints), our sampler often selects the most com-
mon surface form aligned with an underlying seg-
ment. Although [vat] is more common than [vät],
we choose the latter as the purer underlying form.
So /a/ is always [a], but /ä/ can be either [ä] or [a].

32.8 million word types from Morphochallenge2007 (Ku-
rimo et al., 2007)

3.2 Convergence

Testing convergence, we run again on the sample
data (Figure 1), using αij = 0.1 when i 6= j and
10 when i = j and β = 0.1, starting from different
initializations, we get the same solution.
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Figure 4: Posterior likelihood at each of the first 100 iter-
ations, from 4 runs (with different random seeds) on 10%
of the Morphochallenge dataset (αi6=j = 0.001, αi=j =
100, β = 0.1), indicating convergence within the first 15
iterations.

To confirm that the sampler has converged, we
output and plot trace statistics at each iteration, in-
cluding marginal probability, log likelihood, and
changes in underlying forms (i.e., variables resam-
pled). If the sampler has converged, there should no
longer be a trend (consistent slope) in any of these
statistics (as in Figure 4).

Examining the posterior probability of each se-
lected underlying form reveals interesting patterns
that also help explain the variation. In the above run,
the ambiguous segments (with surface alternations)
were drawn from the distributions (with improbable
segments elided) in Figure 5.

We expect this model to maximize the probabil-
ity of either the “majority” solution or a solution
demonstrating selection bias. We compare likeli-
hood of the posterior sample with that of a “phono-
logically plausible” solution (in which underlying
forms are determined by referring to formal lin-
guistic accounts of phonological derivation) and a
“majority solution” (see Figure 6 for a log-log plot,
where lower is more likely).

The posterior sample has optimal likelihood with
each parameter setting, as expected. The majority
parse is selected with αi6=j = 0.5 With lower val-
ues of αi6=j , the “phonologically plausible” parse is
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u4=/d/ s4=[d,d,t,d,d,t]
P (ui = c) ≈

d 0.99968
t 0.00014

u8=/k/ s8=[ø,ø,k,ø,ø,k]
(same behavior as u12)

P (ui = c) ≈
ø 0.642
k 0.124

u33=/e/ s33=[ä,o,e,u,ø,e,ø]
P (ui = c) ≈

ä,o,u 0.0029
ø 0.215
a 0.0003
e 0.297

Figure 5: Resampling probabilities for alternations, after
1000 iterations.
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Figure 6: Parse likelihood

more likely than the majority. However, the sam-
pler does not converge to this solution, because in
this [t,d] alternation, the “phonologically plausible”
solution identifies /t/, but neither selection bias nor
majority rules would lead to that with the given data.

3.3 Morphologically segmented corpora

In our search for appropriate data for additional,
larger-scale experiments, we found several vi-
able alternatives. The correct morphological seg-
mentations for Finnish data used in Morphochal-
lenge2007 (Kurimo et al., 2007) provide a rich and
varied set of words, and are readily analyzable by
our sampler. Rather than associating each surface
form with a position in the paradigm, we use the an-

Majority Bayesian
types 50.84 69.53

tokens 65.23 72.11

Figure 7: Accuracy of underlying segment hypotheses.

notated morphemes.
For example, the word ajavalle is listed in the cor-

pus as follows:
ajavalle aja:ajaa|V va:PCP1 lle:ALL The

word is segmented into a verb stem, ‘aja’ (drive),
a present participle marker ‘va’, and the allative suf-
fix (“for”). Each surface realization of a given mor-
pheme is identified by the same tag (e.g., PCP1).
However, in this corpus, insertion and deletion are
not explicitly marked (as they were in the paradigm,
by ø). Rather than introduce another component
to determine which segments in the form were
dropped, we ignore these cases.

The sampling algorithm proceeds as described in
section 2. To run on tokens (as opposed to types), we
incorporate another input file that contains counts
from the original text (ajavalle appeared 8 times).
The counts of each morpheme’s surface forms then
reflect the number of times that form appeared in any
word in the corpus.

3.3.1 Type or Token
In Finnish verb conjugation, 3rd person (esp. sin-

gular) forms have high frequency and tend to be un-
marked (i.e., closer to underlying). In types, un-
marked is a minority (one third), but incorporat-
ing token frequency shifts that balance, benefiting
the “majority learner.” Among noun inflections, un-
marked has higher frequency in speech, but marked
tokens may still dominate in text. We might expect
that it is easier to learn from tokens than types, in
part because more data is often helpful.

Testing on half of the Morphochallenge 2007
Finnish data (1M word types, 5M morph types,
17.5M word tokens, 48M morph tokens), we ran
both our Bayesian model and a majority solver on
the morphological analyses, and compared against
phonologically plausible (gold) underlying forms.
Results are reported in Figure 7.

The Bayesian estimate consistently outperformed
the majority solution, and cases where the two differ
could often be ascribed to the preference for “pure”
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analyses.

4 Conclusion

We have described a model where surface forms
are generated from underlying representations seg-
ment by segment. Taking this approach allowed us
to investigate the properties of a Bayesian statistical
learner, and how these can be useful in the context
of sound systems, a basic component of language.
Experiments with our implementation of a collapsed
sampler have produced results largely confirming
our hypotheses.

Without context, we can often learn about 60 to 80
percent of the mapping from underlying phonemes
to surface phones. Especially with lower values of
αi6=j , closer to 0, our model does prefer pure alter-
nations. Gibbs sampling tends to select the major-
ity underlying form, particularly with αi6=j relatively
high, closer to 1. So, a sparser prior leads us further
from the baseline, and often closer to a phonologi-
cally plausible solution.

4.1 Directions

In future research, we hope to integrate morpholog-
ical analysis into this sort of a treatment of phonol-
ogy. This is a natural approach for children learn-
ing their first language. They intuitively discover
phonotactics, and how it affects the prosodic shape
of each word, as they learn meaningful units and
compose them together. It is clear that many lay-
ers of linguistic information interact in the early
stages of child language acquisition (Demuth and
Ellis, 2005 in press), so they should also interact
in our models. As discussed above, the present
model should be applicable to analysis of language-
learners’ speech errors, and this connection should
be explored in greater depth.

It might be interesting to predispose the sampler
to select underlying forms from open syllables. That
is, set α to increase the probability of matching
one of the surface segments if its context (feature
annotations) includes a vocalic segment or a word
boundary immediately following. The probability
of phonological processes like assimilation could be
similarly modeled, with the prior higher for choos-
ing a segment that appears on the surface in a con-
trastive context (where it shares few features with

neighboring segments).
If we define a MaxEnt distribution over Optimal-

ity Theoretic constraints, we might use that to in-
form our selection of underlying forms. In (Gold-
water and Johnson, 2003), the learning algorithm
was given a set of candidate surface forms asso-
ciated with an underlying form, and tried to opti-
mize the constraint weights. In addition to the con-
straint weights, we must also optimize the underly-
ing form, since our goal is to take as input only ob-
servable data. Sampling from this type of complex
distribution is quite difficult, but some approaches
(e.g., (Murray et al., 2006)) may help reduce the in-
tractability.
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Abstract

This paper describes a variety of non-
parametric Bayesian models of word segmen-
tation based onAdaptor Grammarsthat model
different aspects of the input and incorporate
different kinds of prior knowledge, and ap-
plies them to the Bantu language Sesotho.
While we find overall word segmentation ac-
curacies lower than these models achieve on
English, we also find some interesting dif-
ferences in which factors contribute to better
word segmentation. Specifically, we found lit-
tle improvement to word segmentation accu-
racy when we modeled contextual dependen-
cies, while modeling morphological structure
did improve segmentation accuracy.

1 Introduction

A Bayesian approach to learning (Bishop, 2006) is
especially useful for computational models of lan-
guage acquisition because we can use it to study
the effect of different kinds and amounts ofprior
knowledgeon the learning process. The Bayesian
approach is agnostic as to what this prior knowl-
edge might consist of; the prior could encode the
kinds of rich universal grammar hypothesised by
e.g., Chomsky (1986), or it could express a vague
non-linguistic preference for simpler as opposed to
more complex models, as in some of the grammars
discussed below. Clearly there’s a wide range of
possible priors, and one of the exciting possibilities
raised by Bayesian methods is that we may soon be
able to empirically evaluate the potential contribu-
tion of different kinds of prior knowledge to lan-
guage learning.

The Bayesian framework is surprisingly flexible.
The bulk of the work on Bayesian inference is on
parametric models, where the goal is to learn the
value of a set of parameters (much as in Chomsky’s
Principles and Parameters conception of learning).
However, recently Bayesian methods fornonpara-
metric inferencehave been developed, in which the
parameters themselves, as well as their values, are
learned from data. (The term “nonparametric” is
perhaps misleading here: it does not mean that the
models have no parameters, rather it means that the
learning process considers models with different sets
of parameters). One can think of the prior as pro-
viding an infinite set of possible parameters, from
which a learner selects a subset with which to model
their language.

If one pairs each of these infinitely-many pa-
rameters with possible structures (or equivalently,
rules that generate such structures) then these non-
parametric Bayesian learning methods can learn
the structures relevant to a language. Determining
whether methods such as these can in fact learn lin-
guistic structure bears on the nature vs. nurture de-
bates in language acquisition, since one of the argu-
ments for the nativist position is that there doesn’t
seem to be a way to learn structure from the input
that children receive.

While there’s no reason why these methods can’t
be used to learn the syntax and semantics of human
languages, much of the work to date has focused on
lower-level learning problems such as morphologi-
cal structure learning (Goldwater et al., 2006b) and
word segmentation, where the learner is given un-
segmented broad-phonemic utterance transcriptions
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and has to identify the word boundaries (Goldwater
et al., 2006a; Goldwater et al., 2007). One reason for
this is that these problems seem simpler than learn-
ing syntax, where the non-linguistic context plausi-
bly supplies important information to human learn-
ers. Virtually everyone agrees that the set of possible
morphemes and words, if not infinite, is astronom-
ically large, so it seems plausible that humans use
some kind of nonparametric procedure to learn the
lexicon.

Johnson et al. (2007) introducedAdaptor Gram-
mars as a framework in which a wide variety
of linguistically-interesting nonparametric inference
problems can be formulated and evaluated, includ-
ing a number of variants of the models described by
Goldwater (2007). Johnson (2008) presented a vari-
ety of different adaptor grammar word segmentation
models and applied them to the problem of segment-
ing Brent’s phonemicized version of the Bernstein-
Ratner corpus of child-directed English (Bernstein-
Ratner, 1987; Brent, 1999). The main results of that
paper were the following:

1. it confirmed the importance of modeling con-
textual dependencies above the word level for
word segmentation (Goldwater et al., 2006a),

2. it showed a small but significant improvement
to segmentation accuracy by learning the possi-
ble syllable structures of the language together
with the lexicon, and

3. it found no significant advantage to learning
morphological structure together with the lex-
icon (indeed, that model confused morphologi-
cal and lexical structure).

Of course the last result is a null result, and it’s pos-
sible that a different model would be able to usefuly
combine morphological learning with word segmen-
tation.

This paper continues that research by applying
the same kinds of models to Sesotho, a Bantu lan-
guage spoken in Southern Africa. Bantu languages
are especially interesting for this kind of study, as
they have rich productive agglutinative morpholo-
gies and relatively transparent phonologies, as com-
pared to languages such as Finnish or Turkish which
have complex harmony processes and other phono-
logical complexities. The relative clarity of Bantu

has inspired previous computational work, such as
the algorithm for learning Swahili morphology by
Hu et al. (2005). The Hu et al. algorithm uses
a Minimum Description Length procedure (Rissa-
nen, 1989) that is conceptually related to the non-
parametric Bayesian procedure used here. However,
the work here is focused on determining whether the
word segmentation methods that work well for En-
glish generalize to Sesotho and whether modeling
morphological and/or syllable structure improves
Sesotho word segmentation, rather than learning
Sesotho morphological structure per se.

The rest of this paper is structured as follows.
Section 2 informally reviews adaptor grammars and
describes how they are used to specify different
Bayesian models. Section 3 describes the Sesotho
corpus we used and the specific adaptor grammars
we used for word segmentation, and section 5 sum-
marizes and concludes the paper.

2 Adaptor grammars

One reason why Probabilistic Context-Free Gram-
mars (PCFGs) are interesting is because they are
very simple and natural models of hierarchical struc-
ture. They are parametric models because each
PCFG has a fixed number of rules, each of which
has a numerical parameter associated with it. One
way to construct nonparametric Bayesian models is
to take a parametric model class and let one or more
of their components grow unboundedly.

There are two obvious ways to construct nonpara-
metric models from PCFGs. First, we can let the
number of nonterminals grow unboundedly, as in the
Infinite PCFG, where the nonterminals of the gram-
mar can be indefinitely refined versions of a base
PCFG (Liang et al., 2007). Second, we can fix the
set of nonterminals but permit the number of rules
or productions to grow unboundedly, which leads to
Adaptor Grammars (Johnson et al., 2007).

At any point in learning, an Adaptor Grammar has
a finite set of rules, but these can grow unbound-
edly (typically logarithmically) with the size of the
training data. In a word-segmentation application
these rules typically generate words or morphemes,
so the learner is effectively learning the morphemes
and words of its language.

The new rules learnt by an Adaptor Grammar are
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compositions of old ones (that can themselves be
compositions of other rules), so it’s natural to think
of these new rules as tree fragments, where each
entire fragment is associated with its own proba-
bility. Viewed this way, an adaptor grammar can
be viewed as learning the tree fragments or con-
structions involved in a language, much as in Bod
(1998). For computational reasons adaptor gram-
mars require these fragments to consist of subtrees
(i.e., their yields are terminals).

We now provide an informal description of Adap-
tor Grammars (for a more formal description see
Johnson et al. (2007)). An adaptor grammar con-
sists of terminalsV , nonterminalsN (including a
start symbolS), initial rulesR and rule probabilities
p, just as in a PCFG. In addition, it also has a vec-
tor of concentration parametersα, whereαA ≥ 0 is
called the(Dirichlet) concentration parameterasso-
ciated with nonterminalA.

The nonterminalsA for which αA > 0 are
adapted, which means that each subtree forA that
can be generated using the initial rulesR is consid-
ered as a potential rule in the adaptor grammar. If
αA = 0 thenA is unadapted, which means it ex-
pands just as in an ordinary PCFG.

Adaptor grammars are so-called because they
adapt both the subtrees and their probabilities to the
corpus they are generating. Formally, they are Hi-
erarchical Dirichlet Processes that generate a distri-
bution over distributions over trees that can be de-
fined in terms of stick-breaking processes (Teh et al.,
2006). It’s probably easiest to understand them in
terms of their conditional or sampling distribution,
which is the probability of generating a new treeT
given the trees(T1, . . . , Tn) that the adaptor gram-
mar has already generated.

An adaptor grammar can be viewed as generating
a tree top-down, just like a PCFG. Suppose we have
a nodeA to expand. IfA is unadapted (i.e.,αA = 0)
thenA expands just as in a PCFG, i.e., we pick a
rule A → β ∈ R with probabilitypA→β and recur-
sively expandβ. If A is adapted and has expanded
nA times before, then:

1. A expands to a subtreeσ with probability
nσ/(nA+αA), wherenσ is the number of times
A has expanded to subtreeσ before, and

2. A expands toβ whereA → β ∈ R with prob-

ability αA pA→β/(nA + αA).

Thus an adapted nonterminalA expands to a previ-
ously expanded subtreeσ with probability propor-
tional to the numbernσ of times it was used before,
and expands just as in a PCFG (i.e., usingR) with
probability proportional to the concentration param-
eterαA. This parameter specifies how likelyA is to
expand into a potentially new subtree; asnA andnσ

grow this becomes increasingly unlikely.
We used the publically available adaptor gram-

mar inference software described in Johnson et al.
(2007), which we modified slightly as described be-
low. The basic algorithm is a Metropolis-within-
Gibbs or Hybrid MCMC sampler (Robert and
Casella, 2004), which resamples the parse tree for
each sentence in the training data conditioned on the
parses for the other sentences. In order to produce
sample parses efficiently the algorithm constructs a
PCFG approximation to the adaptor grammar which
contains one rule for each adapted subtreeσ, and
uses a Metropolis accept/reject step to correct for the
difference between the true adaptor grammar dis-
tribution and the PCFG approximation. With the
datasets described below less than 0.1% of proposal
parses from this PCFG approximation are rejected,
so it is quite a good approximation to the adaptor
grammar distribution.

On the other hand, at convergence this algorithm
produces a sequence of samples from the posterior
distribution over adaptor grammars, and this poste-
rior distribution seems quite broad. For example,
at convergence with the most stable of our models,
each time a sentence’s parse is resampled there is
an approximately 25% chance of the parse chang-
ing. Perhaps this is not surprising given the com-
paratively small amount of training data and the fact
that the models only use fairly crude distributional
information.

As just described, adaptor grammars require the
user to specify a concentration parameterαA for
each adapted nonterminalA. It’s not obvious how
this should be done. Previous work has treatedαA

as an adjustable parameter, usually tying all of the
αA to some shared value which is adjusted to opti-
mize task performance (say, word segmentation ac-
curacy). Clearly, this is undesirable.

Teh et al. (2006) describes how to learn the con-
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centration parametersα, and we modified their pro-
cedure for adaptor grammars. Specifically, we put
a vagueGamma(10, 0.1) prior on eachαA, and af-
ter each iteration through the training data we per-
formed 100 Metropolis-Hastings resampling steps
for eachαA from an increasingly narrowGamma
proposal distribution. We found that the perfor-
mance of the models with automatically learned
concentration parametersα was generally as good
as the models whereα was tuned by hand (although
admittedly we only tried three or four different val-
ues forα).

3 Models of Sesotho word segmentation

We wanted to make our Sesotho corpus as similar
as possible to one used in previous work on word
segmentation. We extracted all of the non-child
utterances from the LI–LV files from the Sesotho
corpus of child speech (Demuth, 1992), and used
the Sesotho gloss as our gold-standard corpus (we
did not phonemicize them as Sesotho orthography
is very close to phonemic). This produced 8,503
utterances containing 21,037 word tokens, 30,200
morpheme tokens and 100,113 phonemes. By com-
parison, the Brent corpus contains 9,790 utterances,
33,399 word tokens and 95,809 phonemes. Thus
the Sesotho corpus contains approximately the same
number of utterances and phonemes as the Brent
corpus, but far fewer (and hence far longer) words.
This is not surprising as the Sesotho corpus involves
an older child and Sesotho, being an agglutinative
language, tends to have morphologically complex
words.

In the subsections that follow we describe a vari-
ety of adaptor grammar models for word segmenta-
tion. All of these models were given same Sesotho
data, which consisted of the Sesotho gold-standard
corpus described above with all word boundaries
(spaces) and morpheme boundaries (hyphens) re-
moved. We computed the f-score (geometric aver-
age of precision and recall) with which the models
recovered the words or the morphemes annotated in
the gold-standard corpus.

3.1 Unigram grammar

We begin by describing an adaptor grammar that
simulates the unigram word segmentation model

Model word f-score morpheme f-score
word 0.431 0.352
colloc 0.478 0.387
colloc2 0.467 0.389
word − syll 0.502 0.349
colloc− syll 0.476 0.372
colloc2− syll 0.490 0.393
word −morph 0.529 0.321
word − smorph 0.556 0.378
colloc− smorph 0.537 0.352

Table 1: Summary of word and morpheme f-scores for
the different models discussed in this paper.

proposed by Goldwater et al. (2006a). In this model
each utterance is generated as a sequence of words,
and each word is a sequence of phonemes. This
grammar contains three kinds of rules, including
rules that expand the nonterminal Phoneme to all of
the phonemes seen in the training data.

Sentence→ Word+

Word→ Phoneme+

Adapted non-terminals are indicated by underlin-
ing, so in theword grammar only the Wordnonter-
minal is adapted. Our software doesn’t permit reg-
ular expressions in rules, so we expand all Kleene
stars in rules into right-recursive structures over new
unadapted nonterminals. Figure 1 shows a sample
parse tree generated by this grammar for the sen-
tence:

u-
SM-

e-
OM-

nk-
take-

il-
PERF-

e
IN

kae
where

“You took it from where?”

This sentence shows a typical inflected verb, with a
subject marker (glossedSM), an object marker (OM),
perfect tense marker (PERF) and mood marker (IN).
In order to keep the trees a managable size, we only
display the root node, leaf nodes and nodes labeled
with adapted nonterminals.

The word grammar has a word segmentation f-
score of43%, which is considerably below the56%
f-score the same grammar achieves on the Brent cor-
pus. This difference presumably reflects the fact that
Sesotho words are longer and more complex, and so
segmentation is a harder task.

We actually ran the adaptor grammar sampler for
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Sentence

Word

u e n k i l e

Word

k a e

Figure 1: A sample (correct) parse tree generated by the
word adaptor grammar for a Sesotho utterance.

theword grammar four times (as we did for all gram-
mars discussed in this paper). Because the sampler
is non-deterministic, each run produced a different
series of sample segmentations. However, the av-
erage segmentation f-score seems to be very stable.
The accuracies of the final sample of the four runs
ranges between42.8% and 43.7%. Similarly, one
can compute the average f-score over the last 100
samples for each run; the average f-score ranges be-
tween 42.6% and 43.7%. Thus while there may
be considerable uncertainty as to where the word
boundaries are in any given sentence (which is re-
flected in fact that the word boundaries are very
likely to change from sample to sample), the aver-
age accuracy of such boundaries seems very stable.

The final sample grammars contained the initial
rulesR, together with between 1,772 and 1,827 ad-
ditional expansions for Word, corresponding to the
cached subtrees for the adapted Word nonterminal.

3.2 Collocation grammar

Goldwater et al. (2006a) showed that incorporating a
bigram model of word-to-word dependencies signif-
icantly improves word segmentation accuracy in En-
glish. While it is not possible to formulate such a bi-
gram model as an adaptor grammar, Johnson (2008)
showed that a similar improvement can be achieved
in an adaptor grammar by explicitly modeling col-
locations or sequences of words. Thecolloc adaptor
grammar is:

Sentence→ Colloc+

Colloc→ Word+

Word→ Phoneme+

This grammar generates a Sentence as a sequence
of Colloc(ations), where each Colloc(ation) is a se-
quence of Words. Figure 2 shows a sample parse tree
generated by thecolloc grammar. In terms of word
segmentation, this grammar performs much worse

Sentence

Colloc

Word

u e

Word

n

Word

k i l e

Colloc

Word

k a

Colloc

Word

e

Figure 2: A sample parse tree generated by thecolloc

grammar. The substrings generated by Wordin fact tend
to be morphemes and Colloctend to be words, which is
how they are evaluated in Table 1.

than theword grammar, with an f-score of27%.
In fact, it seems that the Wordnonterminals typ-

ically expand to morphemes and the Collocnonter-
minals typically expand to words. It makes sense
that for a language like Sesotho, when given a gram-
mar with a hierarchy of units, the learner would use
the lower-level units as morphemes and the higher-
level units as words. If we simply interpret the Word
trees as morphemes and the Colloctrees as words
we get a better word segmentation accuracy of48%
f-score.

3.3 Adding more levels

If two levels are better than one, perhaps three levels
would be better than two? More specifically, per-
haps adding another level of adaptation would per-
mit the model to capture the kind of interword con-
text dependencies that improved English word seg-
mentation. Ourcolloc2 adaptor grammar includes
the following rules:

Sentence→ Colloc+

Colloc→ Word+

Word→ Morph+

Morph→ Phoneme+

This grammar generates sequences of Words
grouped together in collocations, as in the previous
grammar, but each Word now consists of a sequence
of Morph(emes). Figure 3 shows a sample parse tree
generated by thecolloc2 grammar.

Interestingly, word segmentation f-score is
46.7%, which is slightly lower than that obtained
by the simplercolloc grammar. Informally, it seems
that when given an extra level of structure the
colloc2 model uses it to describe structure internal
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Sentence

Colloc

Word

Morph

u

Morph

e

Word

Morph

n k i

Morph

l e

Word

Morph

k a

Morph

e

Figure 3: A sample parse tree generated by thecolloc2

grammar.

to the word, rather than to capture interword depen-
dencies. Perhaps this shouldn’t be surprising, since
Sesotho words in this corpus are considerably more
complex than the English words in the Brent corpus.

4 Adding syllable structure

Johnson (2008) found a small but significant im-
provement in word segmentation accuracy by using
an adaptor grammar that models English words as
a sequence of syllables. Theword− syll grammar
builds in knowledge that syllables consist of an op-
tional Onset, a Nuc(leus) and an optional Coda, and
knows that Onsets and Codas are composes of con-
sonants and that Nucleii are vocalic (and that syl-
labic consonsants are possible Nucleii), and learns
the possible syllables of the language. The rules in
the adaptor grammars that expand Wordare changed
to the following:

Word→ Syll+

Syll → (Onset) Nuc(Coda)
Syll → SC
Onset→ C+

Nuc→ V+

Coda→ C+

In this grammar C expands to any consonant and V
expands to any vowel, SC expands to the syllablic
consonants ‘l’, ‘ m’ ‘ n’ and ‘r’, and parentheses indi-
cate optionality. Figure 4 shows a sample parse tree
produced by theword − syll adaptor grammar (i.e.,
where Words are generated by a unigram model),
while Figure 5 shows a sample parse tree generated
by the correspondingcolloc− syll adaptor grammar
(where Words are generated as a part of a Colloca-
tion).

Sentence

Word

Syll

u

Syll

e

Syll

n k i

Syll

l e

Word

Syll

k a e

Figure 4: A sample parse tree generated by the
word− syll grammar, in which Words consist of se-
quences of Syll(ables).

Sentence

Colloc

Word

Syll

u

Word

Syll

e

Word

Syll

n k i

Syll

l e

Colloc

Word

Syll

k a e

Figure 5: A sample parse tree generated by the
colloc− syll grammar, in which Colloc(ations) consist of
sequences of Words, which in turn consist of sequences
of Syll(ables).

Building in this knowledge of syllable struc-
ture does improve word segmentation accuracy,
but the best performance comes from the simplest
word − syll grammar (with a word segmentation f-
score of50%).

4.1 Tracking morphological position

As we noted earlier, the variousColloc grammars
wound up capturing a certain amount of morpholog-
ical structure, even though they only implement a
relatively simple unigram model of morpheme word
order. Here we investigate whether we can im-
prove word segmentation accuracy with more so-
phisticated models of morphological structure.

Theword−morph grammar generates a word as
a sequence of one to five morphemes. The relevant
productions are the following:

Word→ T1(T2(T3(T4(T5))))
T1→ Phoneme+

T2→ Phoneme+

T3→ Phoneme+

T4→ Phoneme+

T5→ Phoneme+
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Sentence

Word

T1

u e

T2

n k i l e

T3

k a e

Figure 6: A sample parse tree generated by the
word−morph grammar, in which Words consist of mor-
phemes T1–T5, each of which is associated with specific
lexical items.

While each morpheme is generated by a unigram
character model, because each of these five mor-
pheme positions is independently adapted, the gram-
mar can learn which morphemes prefer to appear in
which position. Figure 6 contains a sample parse
generated by this grammar. Modifying the gram-
mar in this way significantly improves word seg-
mentation accuracy, achieving a word segmentation
f-score of53%.

Inspired by this, we decided to see what would
happen if we built-in some specific knowledge of
Sesotho morphology, namely that a word consists of
a stem plus an optional suffix and zero to three op-
tional prefixes. (This kind of information is often
built into morphology learning models, either ex-
plicitly or implicitly via restrictions on the search
procedure). The resulting grammar, which we call
word − smorph, generates words as follows:

Word→ (P1(P2(P3))) T (S)
P1→ Phoneme+

P2→ Phoneme+

P3→ Phoneme+

T→ Phoneme+

S→ Phoneme+

Figure 7 contains a sample parse tree generated
by this grammar. Perhaps not surprisingly, with this
modification the grammar achieves the highest word
segmentation f-score of any of the models examined
in this paper, namely55.6%.

Of course, this morphological structure is per-
fectly compatible with models which posit higher-
level structure than Words. We can replace the Word
expansion in thecolloc grammar with one just given;
the resulting grammar is calledcolloc− smorph,
and a sample parse tree is given in Figure 8. Interest-

Sentence

Word

P1

u

P2

e

T

n k

S

i l e

Word

T

k a

S

e

Figure 7: A sample parse tree generated by the
word− smorph grammar, in which Words consist of up
to five morphemes that satisfy prespecified ordering con-
straints.

Sentence

Colloc

Word

P1

u e

T

n

S

k i l e

Word

T

k a

S

e

Figure 8: A sample parse tree generated by the
colloc− smorph grammar, in which Colloc(ations) gen-
erate a sequence of Words, which in turn consist of up
to five morphemes that satisfy prespecified ordering con-
straints.

ingly, this grammar achieves a lower accuracy than
either of the two word-based morphology grammars
we considered above.

5 Conclusion

Perhaps the most important conclusion to be drawn
from this paper is that the methods developed for
unsupervised word segmentation for English also
work for Sesotho, despite its having radically dif-
ferent morphological structures to English. Just as
with English, more structured adaptor grammars can
achieve better word-segmentation accuracies than
simpler ones. While we find overall word segmen-
tation accuracies lower than these models achieve
on English, we also found some interesting differ-
ences in which factors contribute to better word seg-
mentation. Perhaps surprisingly, we found little
improvement to word segmentation accuracy when
we modeled contextual dependencies, even though
these are most important in English. But includ-
ing either morphological structure or syllable struc-
ture in the model improved word segmentation accu-
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racy markedly, with morphological structure making
a larger impact. Given how important morphology is
in Sesotho, perhaps this is no surprise after all.
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Abstract

In this talk, I present a recursive algorithm to calculate the number of rankings that are consistent with a
set of data (optimal candidates) in the framework of Optimality Theory (OT; Prince and Smolensky 1993).1

Computing this quantity, which I call r-volume, makes possible a simple and effective Bayesian heuristic in
learning – all else equal, choose candidates that are preferred by the highest number of rankings consistent
with previous observations. This heuristic yields an r-volume learning algorithm (RVL) that is guaranteed
to make fewer than k lg k errors while learning rankings of k constraints. This log-linear error bound is
an improvement over the quadratic bound of Recursive Constraint Demotion (RCD; Tesar and Smolensky
1996) and it is within a logarithmic factor of the best possible mistake bound for any OT learning algorithm.

Computing r-volume: The violations in an OT tableau can be given as a [n × k] array of integers in
which the first row t1 corresponds to the winner. Following Prince (2002), the ranking information can be
extracted by comparing t1 with each ‘losing’ row t2, ..., tn to create an Elementary Ranking Condition as
follows: erc(t1, ti) = 〈α1, ..., αk〉 where αj = L if t1,j < ti,j , αj = W if t1,j > ti,j , and αj = e otherwise.
The meaning of α is that at least one constraint associated with W dominates all those associated with L.

input C1 C2 C3

candidate t1 * ** winner

candidate t2 ** * erc(t1, t2) = 〈W, L, e 〉 i.e. t1 beats t2 if C1 outranks C2

candidate t3 ** erc(t1, t3) = 〈L, L, W〉 i.e. t1 beats t3 if C3 outranks C1 and C2

candidate t4 *** * erc(t1, t4) = 〈L, W, W〉 i.e. t1 beats t4 if C2 or C3 outranks C1

For a set E of length-k ERCs, E−wi denotes
a set E′ derived from E by removing ERCs
with W in column i and removing column i.

r-vol
(
Ek

)
=

∑
1≤i≤k

⎧⎨
⎩

0 if xi = L for any x ∈ E

(k − 1)! if xi = W for all x ∈ E

r (E − wi) otherwise
Mistake bounds: To make predictions, RVL selects in each tableau the candidate that yields the highest

r-volume when the ERCs that allow it to win are combined with E (the ERCs for past winners). To establish
a mistake bound, assume that the RVL chooses candidate e when, in fact, candidate o was optimal according
to the target ranking RT . Assuming e �= o, the rankings that make o optimal must be half or fewer of the
rankings consistent with E or else RVL would have chosen o. Because all rankings that make candidates
other than o optimal will be eliminated once the ERCs for o are added to E, each error reduces the number
of rankings consistent with all observed data by at least half and thus there can be no more than lg k! errors.

Applications: The r-volume seems to encode ‘restrictiveness’ in a way similar to Tesar and Prince’s
(1999) r-measure. As a factor in learning, it predicts typological frequency (cf. Bane and Riggle 2008) and
priors other than the ‘flat’ distribution over rankings can easily be included to test models of ranking bias.
More generally, this research suggests the concept of g-volume for any parameterized model of grammar.

1Full bibliography available on the Rutgers Optimality Archive (roa.rutgers.edu) with the paper Counting Rankings.
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Abstract

We examine the typology of quantity-
insensitive (QI) stress systems and ask to what
extent an existing optimality theoretic model
of QI stress can predict the observed typolog-
ical frequencies of stress patterns. We find
three significant correlates of pattern attesta-
tion and frequency: the trigram entropy of a
pattern, the degree to which it is “confusable”
with other patterns predicted by the model,
and the number of constraint rankings that
specify the pattern.

1 Introduction

A remarkable characteristic of human language is
that the typological distribution of many linguis-
tic properties is extremely uneven. For example,
Maddieson’s (1984) survey of phonemic inventories
finds that a total of 921 distinct sounds are used by
a sample of 451 languages, yet the average language
employs only about 30 of those. Furthermore, some
sounds are so commonly attested as to be almost uni-
versal (e.g., /m/, /k/), while others are vanishingly
rare (/K/, /œ/). Heinz (2007) combines two pre-
vious typologies of accentual stress (Bailey, 1995;
Gordon, 2002), and finds that among a sample of
306 languages with quantity-insensitive (QI) stress
systems, 26 distinct stress patterns are found,1 while
over 60% of the languages surveyed use one of just 3
of these patterns. If we begin to look at morphosyn-
tactic or semantic properties, the combinatorics of

1These figures include only those quantity-insensitive stress
patterns according to which there is exactly one possible assign-
ment of stress per word length in syllables.

possible systems veritably explodes, leaving each at-
tested language with an even smaller slice of the log-
ical possibilities.

Most typological studies have attempted to give
accounts of linguistic phenomena that simultane-
ously:

• predict as many attested languages or patterns
as possible, and

• predict as few unattested languages or patterns
as possible.

We will refer to this goal as the “inclusion-
exclusion” criterion of a linguistic model. Com-
paratively few attempts have been made to explain
or predict the relative frequencies with which lan-
guages or patterns are observed to occur in cross-
linguistic samples (though see Liljencrants and
Lindblom 1972, de Boer 2000, Moreton to appear,
and others for work proceeding in this direction).

This paper examines the typology of QI stress
systems, as reported by Heinz (2007), and asks to
what extent an existing optimality theoretic (Prince
and Smolensky, 1993) model of QI stress, developed
by Gordon (2002) to meet the inclusion-exclusion
criterion, can predict the observed typological fre-
quencies of stress patterns. Gordon’s model pre-
dicts a total of 152 possible stress patterns, which,
as far as we are aware, represent the current best at-
tempt at satisfying the inclusion-exclusion criterion
for QI stress, failing to generate only two attested
stress patterns (unknown to Gordon at the time), and
generating 128 unattested patterns. We show that
Gordon’s model can offer at least three novel, sta-
tistically significant predictors of which of the 152
generated patterns are actually attested, and of the

29



cross-linguistic frequencies of the attested patterns.
Namely:

i. Of the 152 stress patterns predicted by Gor-
don’s model, the attested and frequent ones ex-
hibit significantly lower trigram entropy than
the unattested and infrequent,

ii. the length of forms, in syllables, that must be
observed to uniquely identify a stress pattern is
significantly lower for the attested patterns than
for the unattested, and

iii. the number of constraint rankings in Gordon’s
model that are consistent with a stress pattern
is a significant predictor both of which patterns
are attested and of the relative frequencies of
the attested patterns.

In what follows, Section 2 presents an overview of
the basic theoretical background and empirical facts
of quantity-insensitive stress that guide this study,
including a review of Heinz’s (2007) typology and a
description of Gordon’s (2002) OT model. Section 3
then introduces the three proposed correlates of at-
testedness and frequency that can be applied to Gor-
don’s framework, together with statistical analyses
of their significance as predictors. Finally, Section 4
offers a discussion of the interpretation of these find-
ings, as well as some concluding remarks.

2 Quantity-Insensitive Stress Patterns

2.1 Assumptions and Definitions
We will follow Gordon (2002) and Heinz (2007) in
taking a stress system to be any accentual system
that satisfies “culminativity” in the sense of Prince
(1983); that is, any accentual system in which there
is always one most prominent accentual unit per ac-
centual domain. In this case, we assume that the
accentual unit is the syllable, and that the domain
is the prosodic word. Thus, any given syllable of a
word may bear primary, secondary, or no stress (we
ignore the possibility of tertiary or other stress), but
there must always be exactly one primary stressed
syllable per word.

We further restrict our attention in this study to
quantity-insensitive (QI) stress systems, which are
those stress systems according to which the assign-
ment of stresses to a word’s syllables depends only

n Albanian Malakmalak
2 σ́σ σ́σ
3 σσ́σ σσ́σ
4 σσσ́σ σ́σσ̀σ
5 σσσσ́σ σσ́σσ̀σ
6 σσσσσ́σ σ́σσ̀σσ̀σ

Table 1: The stress assignments of n-syllable words for
2 ≤ n ≤ 6 in the QI stress patterns of Albanian and
Malakmalak.

on the number of syllables present (a quantity as-
sumed to be fixed when stress is assigned), and not
on the segmental contents of the syllables. We will
refer to “stress systems” and “stress patterns” inter-
changeably.

As two concrete examples of QI stress systems,
consider those of Albanian (Chafe, 1977; also
shared by many other languages) and Malakmalak
(an Australian language; Birk, 1976). These pat-
terns are illustrated in Table 1 for words of length
two through six syllables.2 The former is a simple
fixed system in which primary stress is always lo-
cated on the penultimate syllable, while no other syl-
lable bears stress. The latter is rather more complex,
requiring stress on even numbered syllables from the
right, the leftmost being primary. Crucially, neither
system is sensitive to notions like syllabic weight,
nor to any other properties of the syllables’ contents.

Formally, one can consider a QI stress pattern up
to length n (in syllables), Pn, to be a set of strings
over the alphabet Σ = {σ, σ̀, σ́}:

(1) Pn = {w2, . . . , wn},

where each wi encodes the locations of stress in a
word of i syllables, satisfying:

(2) |wi| = i, wi ∈ Σ∗, and
wi contains σ́ exactly once.

Thus for a given maximum number of syllables n,
there are

n∏
i=2

i2(i−1) = n! · 2
n(n−1)

2

2Here and throughout this paper, σ refers to an unstressed
syllable, σ̀ indicates a syllable bearing secondary stress, and σ́
indicates primary stress.
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Figure 1: Frequency of attestation of each of the 26 distinct stress patterns. Error bars indicate standard Poisson
sampling error.

logically possible QI stress patterns. We will fol-
low Gordon (2002) by imposing a maximum word
length of 8 syllables for purposes of distinguishing
one stress pattern from another in the typology, and
of determining the set of distinct patterns predicted
by the model. We are therefore dealing with a uni-
verse of 8!228 = 10,823,317,585,920 theoretically
possible stress systems.

2.2 The Typology
The typological data on which this study is based
are due to Heinz (2007), who has made them freely
available.3 This database is a combination of

• that from Bailey (1995), itself gathered from
Halle and Vergnaud (1987) and Hayes (1995),
and

• the collection put together by Gordon (2002)
from previous surveys by Hyman (1977) and
Hayes (1980), as well as from additional source
grammars.

The combined database is intended to be fairly ex-
haustive, sampling a total of 422 genetically and ge-
ographically diverse languages with stress systems.

Of those 422 languages, 318 are identified as pos-
sessing quantity-insensitive stress, and we further
confine our attention to the 306 of those with sys-
tems that uniquely determine the stress of each word
as a function of syllable-count (i.e., with no option-
ality). We should note that it is possible for one lan-

3The typology is available as a MySQL database at
http://www.ling.udel.edu/heinz/diss/

●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Zipf Fit of Frequency−Rank vs Frequency of Attested Stress Patterns

Frequency Rank

F
re

qu
en

cy

Fitted zipf distribution
95% Confidence interval of fit
Fitted zipf distribution
95% Confidence interval of fit

Figure 2: Regressed Zipf distribution of stress pattern fre-
quencies; Zipf’s exponent is found to be 1.05 ± 0.15 at
95% confidence.

guage to contribute more than one distinct stress pat-
tern to our dataset, as in the case of Lenakel (Lynch,
1974), for instance, which employs one regular pat-
tern for nouns and another for verbs and adjectives.

Between these 306 languages, we find a total
of 26 distinct QI stress systems, which is quite a
bit fewer than expected by chance, given the sam-
ple size and the 10.8 trillion a priori possible sys-
tems. Figure 1 shows the frequency with which
each pattern is attested, arranged in decreasing order
of frequency. The distribution of patterns is essen-
tially Zipfian; a nonlinear regression of the frequen-
cies against Zipf’s law (using the Gauss-Newton
method) achieves strong statistical significance (p <
0.001) and can account for 80.9% of the variance in
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Constraint(s) Penalizes. . .
ALIGNEDGE each edge of the word with no stress.
ALIGN({σ̀, σ́}, L/R) each (primary or secondary) stressed syllable for each other (stressed or un-

stressed) syllable between it and the left/right edge.
ALIGN(σ́, L/R) each primary stressed syllable for each secondary stressed syllable between it and

the left/right edge.
NONFINALITY the last syllable if it is stressed.
*LAPSE each adjacent pair of unstressed syllables.
*CLASH each adjacent pair of stressed syllables.
*EXTLAPSE each occurrence of three consecutive unstressed syllables.
*LAPSELEFT/RIGHT the left/right-most syllable if more than one unstressed syllable separates it from

the left/right edge.
*EXTLAPSERIGHT the right-most syllable if more than two unstressed syllables separate it from the

right edge.

Table 2: Gordon’s (2002) constraint set.

frequency (Figure 2).

The top three most common patterns, together ac-
counting for over 60% of the sampled languages, are
all simple fixed primary stress systems: fixed final
stress (24.2% of systems), fixed initial stress (22.5%
of systems), and fixed penultimate stress (19.6% of
systems). It is possible that fixed primary systems
may be somewhat overrepresented, as the descrip-
tive sources can be expected to occasionally fail to
report the presence of secondary stress; even so, the
preponderance of such systems would seem to be
substantial. The great majority of distinctly attested
systems are quite rare, the median frequency being
0.65% of sampled languages. Some examples of
cross-linguistically unlikely patterns include that of
Georgian, with antepenultimate primary stress and
initial secondary stress, and that of Içuã Tupi, which
shows penultimate primary stress in words of four or
fewer syllables, but antepenultimate stress in longer
words.

There is some reason to believe that this sample is
fairly representative of the whole population of QI
stress patterns used by the world’s languages. While
it is true that the majority of sampled patterns are
rare, it is by no means the case that the majority
of sampled languages exhibit rare stress patterns.
In fact, of the N = 306 sampled languages, just
n1 = 13 of them present stress patterns that are
attested only once. Thus, according to the com-
monly used Good-Turing estimate (a distribution-
free method of estimating type frequencies in a pop-

ulation from a sample of tokens; Good, 1953), we
should expect to reserve approximately n1

N = 4.3%
of total probability-mass (or frequency-mass) for un-
seen stress patterns. In other words, we would be
surprised to find that the actual population of lan-
guages contains much more than N

1−n1
N

= 27.15 dis-
tinct patterns, i.e., about one more than found in this
sample.

2.3 Gordon’s (2002) Model

Gordon (2002) has developed an optimality theo-
retic model of QI stress with the goal of satisfying
the inclusion-exclusion criterion on an earlier subset
of Heinz’s (2007) typology. The model is footless,
consisting of twelve constraints stated in terms of a
metrical grid, without reference to feet or other met-
rical groupings (or, equivalently, simply in terms of
linear {σ, σ̀, σ́}-sequences). The twelve constraints
are summarized in Table 2.

In addition to these, Gordon’s model imple-
ments a sort of “meta-constraint” on rankings: he
assumes that one of the primary alignment con-
straints ALIGN(σ́, L/R) is always lowest ranked,
so that in any given tableau either ALIGN(σ́, L) or
ALIGN(σ́, R) is “active,” but never both. Formally,
we take this to mean that the model specifies two
EVALS: an EVAL-L with ALIGN(σ́, R) excluded
from CON, and an EVAL-R with ALIGN(σ́, L) ex-
cluded. The set of stress systems predicted by the
whole model is then simply the union of the systems
predicted by EVAL-L and by EVAL-R. This ranking
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restriction is meant to capture the probably univer-
sal generalization that primary stress always appears
either to the left or right of the secondary stresses
in a word, without vacillating from side to side for
different word lengths. Gordon also assumes that
candidate forms violating culminativity (i.e., forms
without exactly one primary stressed syllable), are
always excluded, either by some filter on the output
of GEN or by an always highly ranked CULMINATE

constraint against them.4

Gordon’s model is capable of representing 2 ·
11! = 79,833,600 QI stress grammars (11! rank-
ings of the constraints associated with EVAL-L plus
the 11! rankings for EVAL-R). We replicated Gor-
don’s (2002) calculation of the factorial typology of
distinct QI stress patterns that this grammar space
predicts by implementing the constraints as finite-
state transducers,5 composing the appropriate com-
binations of these to produce finite-state implemen-
tations of EVAL-L and EVAL-R, respectively (see
Riggle, 2004), and iteratively constructing consis-
tent subsets of the members of the cross-products of
candidate forms for each word length (two through
eight syllables). See Riggle et al (2007) and Prince
(2002) for the mathematical and algorithmic details.

The factorial typology of stress systems that is
yielded agrees with that reported by Gordon (2002).
The model predicts a total of 152 distinct possible
systems. All but two of the 26 systems attested
in Heinz’s (2007) database are among these. The
two patterns that Gordon’s model fails to generate
are those of Bhojpuri (as described by Tiwari, 1960;
Shukla, 1981), and Içuã Tupi (Abrahamson, 1968).
Both of these patterns were unknown to Gordon at
the time he proposed his model, and each is attested
only once in the typology.

In addition to failing to generate two of the at-
tested stress systems, Gordon’s model also predicts

4We follow Gordon in remaining agnostic on this point, as
the same set of possible stress patterns results from either im-
plementation.

5The reader may notice that the ALIGN(σ́, L/R) and
ALIGN({σ̀, σ́}, L/R) constraints (defined in Table 2) involve
a kind of counting that cannot generally be accomplished by
finite-state transducers. This is perhaps a theoretically unde-
sirable property of Gordon’s model (see Heinz et al (2005) for
such a critique), but in any case, this general problem does not
affect us here, as we ignore the possibility of words any longer
than eight syllables (following Gordon; see Section 2.1).
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Figure 3: Trigram entropy (average bits per symbol) of
attested versus unattested stress patterns; attested patterns
have significantly lower entropy.

128 patterns that are unattested. Gordon (2002) ar-
gues that a certain amount of overgeneration is to
be expected of any model, since the majority of
distinct attested systems are extremely rare; thus
failure to observe a pattern in a limited sample
is not strong evidence that the pattern is impossi-
ble. The Good-Turing estimate of unseen patterns
(Section 2.2 above), however, suggests that signifi-
cantly less overgeneration may still be desired. Gor-
don also argues that the overgenerated patterns are
not pathologically different from the sorts of pat-
terns that we do see (though Section 3 below de-
scribes several statistically detectable differences).
In any case, Gordon’s model of QI stress is among
the most explicitly formulated approaches currently
available, and offers a comparatively “tight” fit to
the typological data.

3 Predicting Typological Frequency

3.1 k-gram Entropy
A frequently offered and examined hypothesis is
that, all else being equal, human communicative
systems adhere to some principle of least effort
(whether in terms of articulation or processing), pre-
ferring simple structures to complicated ones when
additional complexity would afford no concomitant
advantage in communicative efficiency or expres-
siveness. This line of reasoning suggests that typo-
logically frequent properties should tend to exhibit
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Figure 4: (a) typological frequency of attested stress patterns versus their trigram entropy, and (b) the trigram entropy
of high-frequency (above median) patterns versus low-frequency (below median) patterns.

greater simplicity (according to some metric) than
those that are rarer. One also expects, according to
this hypothesis, that among the set of patterns pre-
dicted by a linguistic model such as Gordon’s, the
simpler ones should have a greater chance of attes-
tation in typological samples. We find evidence con-
sistent with both of these expectations in the case of
QI stress systems, according to at least one informa-
tion theoretic definition of complexity.

In order to calculate measures of complexity for
each attested and predicted stress pattern, we con-
struct bigram and trigram models of the transi-
tion probabilities between syllable types (σ, σ̀, σ́) in
forms of two through eight syllables for each pat-
tern. That is, if each stress is taken to be a set of
forms as in (1) (with n = 8 in this case), satisfying
(2), then across all forms (i.e., word-lengths) one can
count the number of occurrences of each k-length
sequence (k-gram) of σ, σ̀, σ́ and word boundaries
to arrive at conditional probabilities for each sylla-
ble type (or a word boundary) given the previous
k−1 syllables. With these probabilities one can then
compute the Shannon entropy of the stress pattern as
an index of its complexity; this is interpreted as the
number of bits needed to describe the pattern (i.e.,
list its forms) under an efficient encoding, given the
k-gram probability model. Stress patterns in which

it is difficult to accurately predict the value of a syl-
lable on the basis of the previous k−1 syllables will
possess greater entropy, and thus be deemed more
complex, than those in which such predictions can
be made with greater accuracy.

We find that in the case of a bigram probability
model (k = 2), the attested stress systems predicted
by Gordon’s model do not differ in entropy signifi-
cantly6 from those that are unattested; we also find
no significant correlation between bigram entropy
and the typological frequency of attested systems.

Under a trigram probability model (k = 3), how-
ever, entropy is a significant predictor of both
whether a system is attested, and if it is attested,
of its frequency in the sample. Figure 3 gives box-
plots comparing the distribution of trigram entropy
for those systems predicted by Gordon’s model (plus
the two unpredicted systems) that are attested ver-
sus those that are unattested. The attested QI stress
systems are significantly less entropic than the unat-
tested, according to a two-sided Mann-Whitney U -
test: U = 1196, p = 0.021 (if the two unpredicted
patterns are excluded, then U = 923.5, p < 0.01).
Among attested systems, trigram entropy appears
to bear a nonlinear relationship to typological fre-

6Throughout this study, we adopt a 95% confidence standard
of significance, i.e., p < 0.05.
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quency (see Figure 4). A significant linear correla-
tion does not exist, and the 13 attested patterns with
greater than median frequency have only mildly sig-
nificantly lower entropy than the 13 with less than
median frequency (according to another two-sided
U -test: U = 51.5, p = 0.0856); if, however,
the single high-frequency pattern with outlying en-
tropy is excluded (the lone point indicated in Fig-
ure 4b), then the difference is more robustly signifi-
cant: U = 39.5, p = 0.0323. Interestingly, the en-
tropies of the above-median patterns are tightly con-
strained to a narrow band of values (variance 0.012
square bits/symbol), whereas the below-median pat-
terns show much greater variation in their complex-
ity (variance 0.028 square bits/symbol).

3.2 Confusability Vectors

The second metric we examine is motivated by con-
siderations of learnability. Some QI stress patterns
are very similar to each other in the sense that one
must observe fairly long forms (i.e., forms with
many syllables) in order to distinguish them from
each other. For instance, in the case of Albanian
and Malakmalak (Table 1 above), the two systems
give identical stress assignments for words of two or
three syllables; to tell them apart, one must com-
pare words with four or more syllables. The de-
gree of similarity, or “confusability” in this sense,
between stress systems varies considerably for dif-
ferent pairs of languages. Assuming a tendency for
short words to be encountered more frequently by
language learners than long words, we might ex-
pect stress patterns that are easily identified at short
word-lengths to be more faithfully acquired than
those requiring longer observations for unambigu-
ous identification. In particular, if we take the 152
patterns predicted by Gordon’s model to constitute
the set of possible QI stress systems, then we hy-
pothesize that those patterns that stand out as unique
at shorter lengths should be more typologically “sta-
ble”: more likely to be attested, more frequently at-
tested, or both.

To test this, we determine a confusability vector
for each predicted pattern. This is simply a tuple of
7 integers in which the value of the ith component
indicates how many of the other 151 predicted pat-
terns the given pattern agrees with on forms of two
through i+1 syllables. For example, the confusabil-
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Figure 5: Attested stress patterns have significantly lower
pivots than unattested ones.

ity vector of Albanian’s (fixed penultimate primary;
see Table 1) stress pattern is:

〈101, 39, 10, 0, 0, 0, 0〉

This means that for words of two syllables, this
stress system agrees with 101 of the other predicted
systems, for words of two through three syllables it
agrees with 39, and for two through four syllables it
agrees with 10. Once words of five or more syllables
are included in the comparison, it is unique among
the stress patterns predicted, confusable with none.

A confusability vector allows us to calculate two
quantities for a given stress pattern: its confusabil-
ity sum, which is just the sum of all the components
of the vector, and a confusability pivot, which is the
number i such that the (i − 1)th component7 of the
vector is the first component with value 0. Thus the
confusability sum of the fixed penultimate primary
stress system is 101+39+10 = 150, and its confus-
ability pivot is 5, indicating that it achieves unique-
ness among Gordon’s predicted systems at five syl-
lables.

We find that those of the predicted systems that
are typologically attested have very significantly
lower confusability pivots than the unattested sys-
tems (see Figure 5; Mann-Whitney U -test: U =
1005.5, p < 0.001). One might wonder whether
this is simply due to the fact that primary-only stress

7We count vector components beginning at 1.
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systems are most likely to be attested, and that such
systems are independently expected to have lower
confusability pivots than those with secondary stress
(indeed, a two-sided Mann-Whitney test indicates
that the pivots of primary-only systems are signifi-
cantly lower: U = 214, p < 0.01). However, it
appears that confusability pivots are in fact indepen-
dently robust predictors of attestedness. When only
the predicted patterns with secondary stress are con-
sidered, the pivots of the attested ones remain signif-
icantly lower than those of the unattested, albeit by
a smaller margin (U = 846, p = 0.027). Confus-
ability sums, on the other hand, are not significant
predictors of attestedness in either case.

Neither pivots nor sums alone correlate well with
the typological frequency of attested systems, but to-
gether they can predict approximately 27% of the
variance in frequencies; a multilinear regression of
the form

f(x) = α+ βs(x) + γp(x),

where f(x), s(x), and p(x) are the frequency, con-
fusability sum, and pivot of pattern x, respectively,
yields significant (p < 0.05) values for all coeffi-
cients (R2 = 0.271).

3.3 Ranking Volume

The two typological predictors discussed above (en-
tropy and confusability) are only weakly “post-
theoretical” in the sense that, while they depend on
a set of predicted stress patterns according to some
linguistic theory or model (such as Gordon’s), they
can be computed without reference to the particular
form of the model. In contrast, the third and last cor-
relate that we consider is entirely specified and mo-
tivated by the optimality theoretic form of Gordon’s
model.

We define the ranking volume, or r-volume, of
a language generated by an optimality theoretic
model as the number of total constraint orderings
(i.e., grammars) that specify the language. Rig-
gle (2008) describes a method of applying the logic
of Prince’s (2002) elementary ranking conditions to
compute this quantity. Using this method, we find
that the number of rankings of Gordon’s constraints
that are consistent with a stress pattern predicted by
his model is a significant correlate of attestedness,
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Figure 6: Of the predicted stress patterns, those that are
attested are consistent with significantly more constraint-
rankings. The natural logarithms of r-volume are shown
here for greater ease of comparison.

and if the pattern is attested, of its typological fre-
quency. In the case of Gordon’s model, with its
ranking meta-constraint and bifurcated EVAL (as de-
scribed in Section 2.3), the total r-volume of each
pattern is actually the sum of two quantities: the pat-
tern’s r-volume under the 11 constraints correspond-
ing to EVAL-L (which excludes ALIGN(σ́, R)), and
its r-volume under the 11 constraints of EVAL-R
(which conversely excludes ALIGN(σ́, R)). Most of
the predicted patterns are only generated by one of
the EVALS, but some can be specified by either con-
straint set, and thus will tend to be consistent with
more rankings. It just so happens that Gordon’s
choice of constraints ensures that these doubly gen-
erated patterns are of precisely the same sort that
are typologically most frequent: fixed primary stress
systems. This appears to account for much of the
predictive power of r-volume in this model.

The distribution of r-volume among the 152 pre-
dicted stress patterns is almost perfectly Zipfian.
A nonlinear Gauss-Newton regression of r-volumes
against Zipf’s law finds a highly significant fit (with
Zipf’s exponent = 0.976 ± 0.02, p < 0.001) that
accounts for 96.8% of the variance. The attested
patterns tend to have significantly greater r-volumes
than those unattested; two-sided Mann-Whitney’s
U = 2113.5, p < 0.01 (see Figure 6). On aver-
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Figure 7: Linear and exponential regressions of typologi-
cal frequency as a function of the natural logarithm of the
pattern’s r-volume.

age, the attested stress patterns are consistent with
1,586,437 rankings each, versus 299,118.1 rankings
for the unattested ones.

Furthermore, the frequency of attested patterns
has a strong linear correlation with r-volume: R2 =
0.7236, p < 0.001. However, a linear rela-
tion is probably not appropriate, as a normal Q-Q
plot of the residuals of the regression indicates an
upper-quartile deviation from linearity, and Cook’s
distance metric indicates that several data-points
exert disproportionate influence on the explained
variance. Instead, typological frequency seems to
be better modeled as a function of the logarithm
of the r-volume; Figure 7 illustrates both a lin-
ear (R2 = 0.39, p < 0.05) and exponential
(R2 = 0.704, p < 0.001) fit of frequencies to log-
transformed r-volumes.

4 Interpretation and Future Work

The correlates of attestation and frequency reported
here suggest novel ways that linguistic models might
be used to make testable predictions about typol-
ogy. Two of these correlates—k-gram entropy and
confusability—are particularly general, their calcu-
lation requiring only the set of possible languages
or patterns that a model can specify. It remains an
interesting question whether these same quantities
retain predictive power for other sorts of data and

models than are considered here, and whether such
correlations might fruitfully be incorporated into an
evaluation metric for linguistic models.

The r-volume result motivates a particular line of
further research on the nature of constraints in OT:
how exactly the contents of a constraint set deter-
mine the distribution of r-volumes in the factorial
typology. In addition, there are several other po-
tentially relevant concepts in the literature, includ-
ing Anttila’s (1997, 2002, 2007) ranking-counting
model of variation, Anttila and Andrus’ (2006) “T-
orders” and Prince and Tesar’s (1999) “restrictive-
ness measure,” whose relations to r-volume merit
examination. Our results for r-volume in this case
also suggest that a fully generalized notion of para-
metric grammar volume may be worth investigating
across different kinds of models and various typo-
logical phenomena.

Insofar as the three correlates’ strength as typo-
logical predictors depends on the set of stress pat-
terns generated by Gordon’s model, their signif-
icance is consistent with the hypothesis that the
model is useful and has some predictive power. Such
statistical significance is rather surprising, since
Gordon’s model was developed primarily as an at-
tempt to satisfy the inclusion-exclusion criterion,
without any explicit eye toward the kinds of pre-
dictions that these correlates seem to suggest it can
make. This is especially true of r-volume, as it is the
correlate most tightly coupled to the OT particulars
of Gordon’s model. These findings motivate further
research on the general relationship, if any, between
the inclusion-exclusion predictions of a model (opti-
mality theoretic or otherwise) and its frequency pre-
dictions according to the measures presented here.
On the other hand, the entropy and confusability re-
sults suggest the intriguing possibility of discarding
such a model altogether, and instead picking the at-
tested stress systems (and their frequencies) directly
from the large pool of logically possible ones, ac-
cording to these measures and others like them.
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A Computational Approach
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Abstract

Two analyses of Māori passives and gerunds
have been debated in the literature. Both as-
sume that the thematic consonants in these
forms are unpredictable. This paper reports
on three computational experiments designed
to test whether this assumption is sound. The
results suggest that thematic consonants are
predictable from the phonotactic probabilities
of their active counterparts. This study has
potential implications for allomorphy in other
Polynesian languages. It also exemplifies the
benefits of using computational methods in
linguistic analyses.

1 Introduction

The Māori passive is perhaps the most famous prob-
lem in Polynesian linguistics. It has received atten-
tion from Williams (1971, first published in 1844),
Biggs (1961), Hohepa (1967), Hale (1968; 1973;
1991), Kiparsky (1971), Kaye (1975), Kenstowicz
and Kisseberth (1979), McCarthy (1981), Moorfield
(1988), Sanders (1990; 1991), Harlow (1991; 2001;
2007), Bauer (1993), Blevins (1994), Kibre (1998),
de Lacy (2004), and Boyce (2006). Some represen-
tative examples of active and passive verbs are given
in Table 1 (Ryan, 1989).

Two types of analysis have been proposed for
these data (Hale, 1968). These are known as the
‘morphological’ and ‘phonological’ analyses. For
the subset of passives with thematic consonants, the
analyses parse the data differently into stems and
suffixes. To illustrate this, the examples from Table
1 have been parsed in Table 2 with hyphens inserted

Active Passive Gloss
/FeRa/ /FeRahia/ ‘to spread’
/oma/ /omakia/ ‘to run’
/inu/ /inumia/ ‘to drink’
/eke/ /ekeNia/ ‘to climb’
/tupu/ /tupuRia/ ‘to grow’
/aFi/ /aFitia/ ‘to embrace’
/huna/ /hunaia/ ‘to conceal’
/kata/ /kataina/ ‘to laugh’
/ako/ /akona/ ‘to teach’
/heke/ /hekea/ ‘to descend’

Table 1: Examples of active and passive verbs in Māori.

between the stems and suffixes. The thematic con-
sonants have also been flagged.

In both types of analysis, the qualities of the the-
matic consonants are assumed to be unpredictable
and are therefore lexicalized. To cite just one ex-
ample, Blevins writes that “a consonant of unpre-
dictable quality appears in the passive and gerundial
forms, but this consonant is absent when the verb
occurs unsuffixed” (Blevins, 1994, p. 29, my em-
phasis).

In the phonological analysis, the thematic con-
sonants are lexicalized with the rest of the stem.
The active forms are derived by a rule that deletes
stem-final consonants. Although less obvious, the
morphological analysis also lexicalizes the thematic
consonants by allowing stems to be stored with ‘dia-
critic features’. The reason for the diacritic features
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MOR PHON THEME
/FeRa-hia/ /FeRah-ia/ /h/
/oma-kia/ /omak-ia/ /k/
/inu-mia/ /inum-ia/ /m/
/eke-Nia/ /ekeN-ia/ /N/
/tupu-Ria/ /tupuR-ia/ /R/
/aFi-tia/ /aFit-ia/ /t/
/huna-ia/ /huna-ia/ none
/kata-ina/ /kata-ina/ none
/ako-na/ /ako-na/ none
/heke-a/ /heke-a/ none

Table 2: Morphological analyses (MOR), phonological
analyses (PHON), and thematic consonants (THEME).

is to constrain the free combination of stems and suf-
fixes, which, if unconstrained, would over-generate
unattested passive forms. As an illustration, if we
assume the exhaustive association of /inu/ with the
diacritic feature [+m], then the stem would be al-
lowed to combine with /-mia/, but not with any
other suffixes. (In short, to store the diacritic fea-
ture is to lexicalize the quality of the thematic con-
sonant.) Although lack of a diacritic feature is al-
lowed for stems that take ‘default’ suffixes (/-tia/,
/-ia/, or /-a/, depending on stem’s size and compo-
sition), this would only be one thematic consonant
(out of six) that would not be lexicalized; the phono-
logical analysis could still be seen as lexicalizing the
majority of the thematic consonants. Furthermore, a
case could be made that the contrastive absence of
a [+t] diacritic feature effectively lexicalizes /-tia/,
too. Finally, it is worth noting that the purpose of the
default suffixes is to provide analyses for previously
unseen stems, such as nonce words or borrowings; in
other words, the purpose of defaults is not to make
/-tia/ non-lexical.

In this paper, I want to question the assumption
that thematic consonants are unpredictable in Māori
passives. To do so, I will focus on the phonotac-
tic probabilities of active verbs as predictive of their
passive and gerundial forms. I implemented the
analysis as an artificial neural network, which I de-
scribe below. This follows from a rich tradition of
using neural networks in phonology and morphol-

ogy, as exemplified by the English past tense models
of Rumelhart and McClelland (1987) and Plunkett
and Marchman (1991). Incidentally, I chose neu-
ral networks to implement my analysis because of
their computational properties, not because of an ar-
gument for the biological plausibility of my analy-
sis. I suspect that similar results could have been
obtained from another statistical formalism, like the
k-nearest neighbor approach of TiMBL (Daelemans
and van den Bosch, 2005).

The paper is laid out as follows. The network
is described in section 2, the data and experimen-
tal methodology are presented in section 3, and the
experimental results are reported in section 4. The
discussion and conclusion follow in sections 5 and
6, respectively.

2 Network architecture and settings

The network I used in this study was designed to
model a function from the representation of an active
verb in Māori (alternatively, from a verb stem in the
morphological analysis) to a set of output categories
corresponding to passive formations (i.e., to a set of
passive suffixes in the morphological analysis).

For the simulations in this study, I used a 3-layer
feed-forward architecture with 199 input units, 100
hidden units, and 10 output units. The connectiv-
ity between adjacent layers was all-to-all. One fully
activated bias unit was connected to every unit in
the hidden and output layers (to model a threshold-
ing effect and to aid learning). Figure 1 provides a
rough blueprint of the network in ‘slab’ notation.

Figure 1: Network architecture; all-to-all connections be-
tween units in adjacent layers; bias unit not shown.

To calculate the output or activation of a node i in
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the network, I used a sigmoid function

ai =
1

1 + e−neti
, (1)

where e is the exponential and neti is the net input to
node i. As usual, the net input to node i was defined
as

neti =
∑
j

wijaj , (2)

where wij refers to the weights on the connections
from nodes j to node i, and where aj refers to the
activations of nodes j (Plunkett and Elman, 1997).
Learning was achieved using back-propagation and
a learning rate of 0.1 (Werbos, 1974). No momen-
tum was used. Let us turn now to the design of each
layer in the network’s architecture.

2.1 The input layer
There were 199 input units, where the number of in-
put units was chosen to allow up to 18 segments in
the input. Each segment was transformed into an 11-
bit vector according to the feature encodings in Ta-
ble 3. The unaccounted-for unit was used to tell the
model if it was learning a passive or a gerund func-
tion; it can be thought of as specifying the semantic
value PASS or NMLZ.
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/a/ 1 0 0 0 1 0 0 0 0 0 0
/a:/ 1 1 0 0 1 0 0 0 0 0 0
/e/ 1 0 0 0 0 0 0 0 0 0 0
/e:/ 1 1 0 0 0 0 0 0 0 0 0
/i/ 1 0 0 1 0 0 0 0 0 0 0
/i:/ 1 1 0 1 0 0 0 0 0 0 0
/o/ 1 0 1 0 0 0 0 0 0 0 0
/o:/ 1 1 1 0 0 0 0 0 0 0 0
/u/ 1 0 1 1 0 0 0 0 0 0 0
/u:/ 1 1 1 1 0 0 0 0 0 0 0
/p/ 0 0 0 0 0 1 0 0 1 0 0
/t/ 0 0 0 0 0 0 1 0 1 0 0
/k/ 0 0 0 0 0 0 0 1 1 0 0
/F/ 0 0 0 0 0 1 0 0 0 1 0
/h/ 0 0 0 0 0 0 0 0 0 1 0
/m/ 0 0 0 0 0 1 0 0 0 0 1
/n/ 0 0 0 0 0 0 1 0 0 0 1
/N/ 0 0 0 0 0 0 0 1 0 0 1
/R/ 0 0 0 0 0 0 1 0 0 0 0
/w/ 0 0 0 0 0 1 0 0 0 0 0
// 0 0 0 0 0 0 0 0 0 0 0

Table 3: Māori phonemes and feature encodings.

I approached the representation of active verbs
empirically. Three coding schemes were considered,

one of which was segment-based and two of which
were syllable-based. Table 4 provides a handful of
examples in the segmental coding scheme. Notice
that each representation is right-aligned within the
matrix and that there are no gaps between the seg-
ments. Null phonemes were used to fill the empty
cells so that each input vector would be exactly 199
bits long.

6 5 4 3 2 1
/a:/ 7→ a:
/uhi/ 7→ u h i
/waiho/ 7→ w a i h o
/inoi/ 7→ i n o i
/tia/ 7→ t i a

Table 4: Examples of segmental coding.

For both syllabic coding schemes, I used a 3-cell
sequence to represent a CVV syllable template. To
illustrate this, the examples from Table 4 have been
reanalyzed in Table 5 to be consistent with both syl-
labic coding schemes.

Syll Syll
C V V C V V

/a:/ 7→ a:
/uhi/ 7→ u h i
/waiho/ 7→ w a i h o
/inoi/ 7→ i n o i
/tia/ 7→ t i a

Table 5: Examples of syllabic coding.

Within each syllable sequence (Syll) in Table 5,
the first position (C) was reserved for an onset, the
second position (V) was reserved for the primary
vowel, and the third position (V) was reserved for
the second vowel of a diphthong. Again, every
representation was right-aligned. Any sequence of
short vowels in an active verb was treated as a diph-
thong, unless the vowels were equal in quality or the
second vowel was lower than the first. For exam-
ple, /ei/ and /eo/ would be diphthongs, but /ee/
and /ea/ would be analyzed as hiatus.

The syllabic coding schemes differed in their
treatment of a long vowel followed by a short vowel,
where the two vowels had non-identical qualities
and the second was not lower than the first (i.e.,
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where they would be diphthongs if both were phone-
mically short). The first coding treated these se-
quences as diphthongs (Coding 1); the second did
not (Coding 2). Table 6 contrasts the two syl-
labic schemes for the word /ta:oRo/ ‘to break down’.
Since de Lacy (2004) advanced the analysis on
which I based Coding 2, I shall sometimes distin-
guish these schemes by referring to Coding 2 as ‘the
de Lacy analysis’.

Syll Syll Syll
C V V C V V C V V

Coding 1 t a: o R o
Coding 2 t a: o R o

Table 6: Two syllabic codings for /ta:oRo/.

In the section on experiments below, I report on
which of these three schemes worked best. For now,
my aim has been to motivate the network’s input
layer. Notice that 199 input units provides space for
input representations of up to 6 syllables (6 sylla-
bles × 3 prosodic positions × 11 features = 198),
with room for the semantic unit mentioned above.
None of the active verbs in the passive dataset re-
quired more than 6 syllables in any of the coding
schemes.

2.2 The output layer
Since there were 10 passive categories in my dataset
(corresponding to the passive suffixes in the mor-
phological analysis, illustrated in Figure 2), 10 out-
put units were employed in the network. It was con-
sidered appropriate to model membership to each
category independently, as many verbs show multi-
ple passive forms (as /motu/ ‘to separate, wound’
does in its passive forms /motu-hia/ and /motu-
kia/). The key to reading the model’s passive
output can be given as the vector [/-hia/, /-kia/,
/-mia/, /-Nia/, /-Ria/, /-tia/, /-ia/, /-ina/, /-na/,
/-a/]. Although the model represents its outputs as
bits, they can be interpreted by reference to this key.
For example, the passive output for /tapa/ ‘to name’
should be [1, 0, 0, 0, 0, 0, 1, 1, 0, 0], since Ryan’s
dictionary attests /tapa-hia/, /tapa-ia/, and /tapa-
ina/. Note that these alternative outputs are taken
to represent ‘free’ variation within a single speaker,
rather than dialectical variation between speakers.

While the main focus of the model is the Māori
passive, the network can also be used to associate ac-
tive verbs (alternatively, morphological verb stems)
with their gerundial forms (i.e., gerund suffixes, in a
morphological analysis). Although there are fewer
gerund suffixes than passive suffixes, there is a well-
known parallel between the existing gerund suffixes
and the subset of passive suffixes with thematic
consonants. Consider the vector [/-haNa/, /-kaNa/,
/-maNa/, /-Na/, /-RaNa/, /-taNa/, /-aNa/, N/A, N/A,
N/A], which can be used as the key for interpreting
gerund outputs in the network. Notice that the pas-
sive and gerund keys both order the thematic con-
sonants as in the vector [/h/, /k/, /m/, /N/, /R/,
/t/, //, N/A, N/A, N/A]. (Here, the null segment //
has parallels in both keys.) So, interpretation of the
gerundial output can also be performed by lookup.
For example, the target output for /Fi:tiki/ ‘to tie
up’ on the gerund task is [0, 0, 0, 0, 1, 0, 0, 0, 0,
0], since the dataset from Ryan’s dictionary attests
/Fi:tiki-RaNa/. Finally, output activations for the last
three nodes are undefined in the gerund task. I would
have interpreted a significant activation for any of
them as a false prediction.

2.3 The hidden layer
In general, too few hidden units do not provide a
network with enough computational power to learn
a desired function; too many units will result in the
network overfitting the data, in which case its abil-
ity to generalize will suffer. Given the dimensions
of the input and output layers, I was able to esti-
mate the required number of hidden units empiri-
cally. Starting with a conservatively small number
of hidden units, I trained the network for 100 epochs
on 371 patterns in the passive dataset (i.e., approxi-
mately 80% of 464 patterns, which did not contain
any known loanwords), and then froze the network’s
weights and tested its predictions on 46 of the with-
held patterns (i.e., approximately 10% of the pas-
sive dataset), measuring the mean squared error. I
repeated this procedure for increasingly populated
hidden layers, until a trend emerged suggesting an
optimum number of hidden units to minimize the
mean squared error on the test set. For this task,
100 hidden units seemed to work well. The results
for the estimation of hidden units have been graphed
in Figure 2.
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Figure 2: Minimizing error in the network.

3 Methodology

3.1 Data
The passive data in this study were drawn from the
Māori-English section of The Revised Dictionary of
Modern Māori (Ryan, 1989). This provided 476
passive patterns, 12 of which were flagged as En-
glish borrowings.

Active Passive Gloss
/taRaiwa/ /taRaiwa-tia/ ‘drive’
/Raka/ /Raka-ina/ ‘lock’
/paeRa/ /paeRa-tia/ ‘boil’
/wepu/ /wepu-a/ ‘whip’
/peRehi/ /peRehi-tia/ ‘press, print’
/pauRa/ /pauRa-tia/ ‘powder’
/Faka-ho:noRe/ /Faka-ho:noRe-tia/ ‘honor’
/pauna/ /pauna-tia/ ‘to weigh’ (< pound)
/paRau/ /paRau-tia/ ‘plough’
/minita/ /minita-tia/ ‘minister’
/Faka-Rapihi/ /Faka-Rapihi-tia/ ‘to make rubbish of’
/paRai/ /paRai-tia/ ‘fry’

Table 7: 12 English borrowings with their passive forms.

Since I only found two gerund patterns in Ryan’s
dictionary (viz. /hu:pana-taNa/ and /Fi:tiki-RaNa/), I
also searched the Māori Broadcast Corpus (MBC)
for words ending as if they had gerundial suffixes
(Boyce, 2006). This turned up 1537 gerund-like to-
kens, which reduced to 139 gerund-like types.

An overview of the data is provided in Tables 8
and 9. Table 8 shows that 464 passive patterns map
to 28 output categories, the most populous of which
contains 188 members. In other words, 188 verb
stems take the passive suffix /-a/ and no other. By
contrast, only one verb stem takes either /-tia/ or
/-na/ as its passive suffixes. Similarly, Table 9
shows that 233 gerund-like patterns map to 16 out-

put categories. For example, 120 (presumed) verb
stems take the gerund suffix /-taNa/.

Category Members Category Members
{/-a/} 188 {/-Nia/, /-a/} 2
{/-tia/} 112 {/-Ria/, /-tia/} 2
{/-hia/} 33 {/-hia/, /-ia/, /-ina/} 1
{/-na/} 27 {/-hia/, /-kia/} 1
{/-Nia/} 19 {/-hia/, /-mia/} 1
{/-ia/} 17 {/-ia/, /-ina/, /-a/} 1
{/-Ria/} 16 {/-ina/, /-a/} 1
{/-ina/} 13 {/-Nia/, /-ia/} 1
{/-kia/} 6 {/-Nia/, /-Ria/} 1
{/-tia/, /-a/} 6 {/-Nia/, /-tia/} 1
{/-mia/} 4 {/-Nia/, /-tia/, /-a/} 1
{/-ia/, /-a/} 3 {/-Ria/, /-ia/} 1
{/-hia/, /-a/} 2 {/-tia/, /-ina/} 1
{/-hia/, /-tia/} 2 {/-tia/, /-na/} 1

Table 8: 464 passive patterns map to 28 output categories.

Category Members Category Members
{/-taNa/} 120 {/-Na/, /-taNa/} 2
{/-haNa/} 35 {/-RaNa/, /-taNa/} 2
{/-Na/} 21 {/-haNa/, /-aNa/} 1
{/-aNa/} 20 {/-haNa/, /-kaNa/} 1
{/-RaNa/} 16 {/-haNa/, /-maNa/} 1
{/-kaNa/} 6 {/-Na/, /-aNa/} 1
{/-maNa/} 3 {/-Na/, /-RaNa/} 1
{/-haNa/, /-taNa/} 2 {/-RaNa/, /-aNa/} 1

Table 9: 233 gerund-like patterns map to 16 categories.

3.2 Procedure
For the various experiments conducted, different
subsets of the collected corpus were employed. In
general, a sub-corpus was selected and then (ran-
domly) split into training and testing sets. The size
of these sets differed for the different experiments,
since different amounts of relevant data were avail-
able. In every case, the stimuli consisted of input
vectors and their corresponding target vectors.

Before training, the weights in the network were
initialized using a random seed. Stimuli from the
training set were then presented to the network ran-
domly without replacement, so that each stimulus
was seen once per epoch. Training lasted for 100
epochs. The weights were then frozen before each
of the training stimuli were presented to the network
again in order to validate the network’s performance.
The validated network was then presented with the
test stimuli and its predictions were compared with
the activations of the targets. In every experiment,
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the networks were run 5 times using 5 different ran-
dom seeds to initialize the weights. I did this so
that the results would be a little more robust. Perfor-
mance was evaluated by taking the average percent
correct over the 5 runs and variability was measured
by calculating the standard deviation of the 5 runs.

Outputs were evaluated by fist rounding their acti-
vations to 0 or 1, before comparing them to the target
patterns. It should be noted that this is a relatively
liberal measure of the network’s performance, given
such alternatives as measuring the distance from out-
put to target using a deviation < 0.1. Nonetheless,
evaluation by rounding was justified on grounds that
the only meaningful output patterns for the network
were the non-negative integers 0 and 1.

I used chance as the null hypothesis when it was
required for comparison with the network’s perfor-
mance, as chance represents the baseline for unpre-
dictability. The chance of guessing the output acti-
vations correctly was calculated by assuming binary
activations for the outputs (which is fair given the
rounding of network outputs to 0 and 1). For 10 out-
put nodes, 210 = 1024 possible guesses were pos-
sible. In such cases, the probability of guessing the
correct output pattern for any stimulus was calcu-
lated as 1

1024 × 100 = 0.1%. Except where other-
wise noted, the chance of guessing the right output
patterns for n stimuli was calculated as n

1024 × 100.
In some cases, I used other calculations as com-

parisons against the network’s performance. I will
introduce these where applicable.

4 Experimental results

4.1 Segmental and syllabic representations
As mentioned above, the question of input represen-
tation is an empirical one. I introduced three coding
schemes in section 2.1 (a segmental one and two syl-
labic ones). In order to compare the schemes’ abil-
ity to predict the passive forms (including the the-
matic consonants), a sub-corpus of 464 patterns was
selected (i.e., the full set of 476 passives found in
Ryan’s dictionary minus the 12 loanwords). Since
these stimuli had already been randomly split into
80%-10%-10% subsets to estimate the number of
hidden units in the network, I started by reusing this
split. The 10% used as a test set for the hidden units
task were then lumped back into the training set, re-

sulting in a random 90%-10% split (i.e., 418 training
patterns and 46 test patterns). Each coding scheme
was then applied to the same training and test sets,
and the network was run as described in the methods
section.

The results are summarized numerically in Table
10 and graphically in Figure 3. They suggest that
either syllabic coding scheme is better than the seg-
mental one, and that the de Lacy analysis is bet-
ter than the alternative syllabic coding scheme (i.e.,
Coding 2 beats Coding 1). This suggests that it is
better to represent a long vowel followed by a short
vowel in Māori as two syllables.

Coding Scheme % Correct Standard deviation
Segmental 90.43 2.92
Syllable 1 91.74 2.83
Syllable 2 93.91 1.82

Table 10: Representation experiment results, rounded to
the nearest hundredth.

Figure 3: Test results for different representations of the
stems, 5 runs apiece; error bars show standard deviations.

The results also challenge the assumption that the-
matic consonants are strongly unpredictable (i.e.,
governed by chance). I note that 30 of the test pat-
terns did not take a suffix with a thematic conso-
nant, while 15 did. So, of the 15 relevant test cases,
the null hypothesis would have guessed 23.44% cor-
rect (i.e., 15

26 × 100); I adjusted the calculation of
the null hypothesis here to reflect the focus on just
6 of the 10 output patterns (i.e., the ones with the-
matic consonants). Without adjusting the calcula-
tion, the null hypothesis would have done much
worse (cf. 15

210 × 100). By contrast, the network pre-
dicts 46.67% correct (i.e., 7

15 × 100), since it cor-
rectly predicted 7 out of the 15 patterns. So, the
network correctly predicted 23.23% more of the the-
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matic consonant patterns than chance. This suggests
that lexicalization is not the only way to address
thematic consonants in Māori. Since the problem
can be specified in terms of active and passive verbs
(rather than in terms of stems and suffixes), this also
suggests that the Māori passive need not be framed
in terms of the ‘morphological’ and ‘phonological’
analyses of Hale (1968).

The model also does well predicting the passive
form of a verb in general. Note that the null hy-
pothesis would only get 4.49% of the 46 test stim-
uli correct (i.e., 46

1024 × 100). Using the de Lacy
analysis, the network correctly predicted 93.91% of
the 46 test stimuli, which is a massive difference of
89.42%. Moreover, the network also outperforms a
‘majority choice’ strategy, whereby all verb stems
take the most frequent output category (i.e., {/-a/}).
Majority choice correctly predicts 40.52% of the
464 passive patterns (i.e., 188

464 ), which is 53.39% less
than the network’s coverage.

4.2 Gerunds
To test beyond the passive dataset, two sets of
gerunds were considered. The idea was to see if
training a network on a dataset of passives would
be able to predict the suffix patterns of gerunds.

By training the network on the entire passive
dataset 5 different times, and then testing each one
on the 2 gerunds found in Ryan’s dictionary, the net-
work predicted the 100% of the results correct for all
5 runs. (For 2 test items, the null hypothesis would
have only guessed 2

1024 × 100 = 0.2% correct.)
Using the same training set, but testing the net-

work on the 139 gerund-like words in the MBC, the
network correctly predicted an average of 90.36%
correct (with a standard deviation of 0.82). For 139
test patterns, the null hypothesis would only predict
13.57% correct. In both cases, the model does no-
ticeably better than chance.

4.3 Loanwords
When new verbs enter the Māori language, speakers
generalize their knowledge about the passive end-
ings to them. How well does the network do at mod-
eling this ability? 12 loanwords were flagged in the
passive dataset. By training the network on the 464
non-loanword passives and then testing it on the 12
loanwords, the network got 100% correct for all 5

runs. Chance would only predict 1.17% of this test
set correctly (i.e., 12

1024 × 100).
The network also outperforms majority choice on

this task, since majority choice for the 12 loanwords
predicts 83.33% (i.e., 10

12 ). (The most common out-
put category for the 12 loanwords is {/-tia/}.)

In this case, however, there is probably a more
charitable null hypothesis against which to compare
the network’s performance. I refer to the default
analysis, where verbs take /-tia/, /-ia/, or /-a/. On
this analysis, any stem containing more than two
morae takes /-tia/ as its default, any stem containing
fewer than three morae and ending with /a/ takes
/-ia/ as its default, and any other stem (i.e., one con-
taining fewer than three morae and not ending with
/a/) takes /-a/. (Incidentally, one single-mora stem
exists in my database; it is /ko/ ‘to dig’, which takes
/-ia/.)

So, how does the default analysis compare with
the network’s analysis? Of the 12 loanwords in the
passive database, the default analysis gets 91.67%
correct (i.e., 11

12 ). Again, the network gets 100%
correct every time, for 5 runs. Interestingly, all
but one of the 12 loanwords takes /-tia/, /-ia/, or
/-a/. Furthermore, the exception, /Raka-ina/ (< En-
glish lock), would appear to be a systematic hole in
the default analysis, since analogous examples exist,
such as /tia-ina/ (< English steer) (Paul de Lacy,
personal communication). Since both of these stems
consist of fewer than three morae and end with /a/,
the default analysis incorrectly predicts that their
passive forms should be */Raka-ia/ and */tia-ia/, re-
spectively. In other words, while the network only
outperformed the default analysis by one example
from the dataset, that one example would appear to
be representative of a class of stems that the default
analysis necessarily gets wrong, but which the neu-
ral network analysis could possibly get right. How-
ever, since the network needs to be run in order to
see what it actually predicts, additional work would
be needed to address this further.

5 Discussion

Thus far, the model has been evaluated on its perfor-
mance. But while a model that performs well on a
task is valuable in its own right, one would also like
to understand how the model is succeeding. Neu-
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Figure 4: Hinton diagram for a typical weight matrix from input units (x-axis) to hidden units (y-axis).

ral network simulations are sometimes critiqued for
being black box solutions, where a problem can be
solved but the solution cannot be understood. There-
fore, in this discussion section, I would like to begin
to address the question of what properties in stem
representations are responsible for the prediction of
their output categories.

A few relevant sub-regularities have already been
reported in the Māori literature, which are worth re-
view. Citing Moorfield (1988, p. 66), Harlow re-
ports that /-ina/ only occurs after words ending with
/a/, while /-mia/ only occurs after words ending
with /o/ and /u/ (i.e., the [+round] vowels); his
examples, with the stem-final vowels underlined,
are /hua-ina/ ‘be named’, /aRoha-ina/ ‘be loved’,
/Faka-NaRo-mia/ ‘be made to disappear’, and /inu-
mia/ ‘be drunk’ (Harlow, 2007, p. 117). Although
these observations provide necessary but not suffi-
cient conditions for inferring a passive suffix from
a verb stem, they exemplify the type of pattern that
one might like to find. The problem is to find better
patterns in the verb stems.

For ideas of what to investigate, we might look
inside one of the trained networks. Figure 4 illus-
trates the weights from input units to hidden units
in a network trained on the Māori passive data using
the de Lacy coding scheme (from section 4.1). No-
tice the dark vertical bands around inputs 176, 141,
and 113 (there are fainter bands around input 78 and
43, and faint and narrow bands around input 190

and 155). These bands represent stronger weights
(both positive and negative) between the two layers
in the network. In order to understand the network’s
performance, we might ask what these bands rep-
resent. Given that the syllabic coding scheme or-
ganizes the segments into vowels and consonants in
a similar pattern, one hypothesis would be that the
vertical bands represent vowels in the input; a com-
plementary hypothesis would hold that they repre-
sent consonants in the input. While this is a rather
crude distinction to make, it begins to narrow down
the hypothesis space.

To test such hypotheses, we may use ‘degraded’
inputs. For example, to test one hypothesis, one
might replace all consonants in the input represen-
tations with null phonemes; to test the other hypoth-
esis, one might replace all vowels in the input repre-
sentations with null phonemes. An example of these
degraded input representations is given in Table 11
for the word /FeRa/ ‘to spread’.

In a preliminary study (running the network just
once), I found that the model with vowel-only input
outperformed the model with consonant-only input
by a slight margin. Further investigation is surely
needed. But the methodological use of degraded in-
puts provides a way to probe which parts of these
representations contribute most to the model’s per-
formance.

Additional studies might use degraded inputs with
only the final syllables represented compared with
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Syll Syll
C V V C V V

All segments F e R a
No consonants e a
No vowels F R

Table 11: Three representations of /FeRa/ ‘to spread’.
The top one is an uncorrupted input using the de Lacy
syllabic coding. The bottom two are degraded in differ-
ent ways: one has no consonants, the other has no vowels.

ones in which only the penultimate or antipenul-
timate syllables are represented; they might even
narrow down which phonetic features predict which
passive and gerundial categories.

6 Conclusion

The work described here is clearly preliminary with
respect to the problem of predicting passives and
gerunds in Māori. But the experimental results are
suggestive, especially as they challenge the long-
held assumption that thematic consonants cannot be
predicted. This research has implications for fu-
ture investigations of allomorphy in Māori and other
Polynesian languages, since Polynesian allomorphy
has never before been explored using phonotactic
probabilities (at least to the best of my knowledge).

In general, a computational approach makes it
much easier to run complex statistical analyses over
large datasets (compared with manual analyses us-
ing paper and pen). The success of utilizing statistics
in this study exemplify the benefits of using compu-
tational methods in linguistics.
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Abstract 

This paper describes and evaluates a modifica-
tion to the segmentation model used in the un-
supervised morphology induction system, Pa-
raMor. Our improved segmentation model 
permits multiple morpheme boundaries in a 
single word. To prepare ParaMor to effectively 
apply the new agglutinative segmentation 
model, two heuristics improve ParaMor’s pre-
cision. These precision-enhancing heuristics 
are adaptations of those used in other unsuper-
vised morphology induction systems, including 
work by Hafer and Weiss (1974) and Gold-
smith (2006). By reformulating the segmenta-
tion model used in ParaMor, we significantly 
improve ParaMor’s performance in all lan-
guage tracks and in both the linguistic evalua-
tion as well as in the task based information re-
trieval (IR) evaluation of the peer operated 
competition Morpho Challenge 2007. Para-
Mor’s improved morpheme recall in the lin-
guistic evaluations of German, Finnish, and 
Turkish is higher than that of any system which 
competed in the Challenge. In the three lan-
guages of the IR evaluation, our enhanced Pa-
raMor significantly outperforms, at average 
precision over newswire queries, a morpho-
logically naïve baseline; scoring just behind the 
leading system from Morpho Challenge 2007 
in English and ahead of the first place system 
in German.  

1 Unsupervised Morphology Induction 

Analyzing the morphological structure of words 
can benefit natural language processing (NLP) ap-
plications from grapheme-to-phoneme conversion 
(Demberg et al., 2007) to machine translation 
(Goldwater and McClosky, 2005). But many of the 

world’s languages currently lack morphological 
analysis systems. Unsupervised induction could fa-
cilitate, for these lesser-resourced languages, the 
quick development of morphological systems from 
raw text corpora. Unsupervised morphology induc-
tion has been shown to help NLP tasks including 
speech recognition (Creutz, 2006) and information 
retrieval (Kurimo et al., 2007b). In this paper we 
work with languages like Spanish, German, and 
Turkish for which morphological analysis systems 
already exist. 

The baseline ParaMor algorithm which we ex-
tend here competed in the English and German 
tracks of Morpho Challenge 2007 (Monson et al., 
2007b). The peer operated competitions of the 
Morpho Challenge series standardize the evalua-
tion of unsupervised morphology induction algo-
rithms (Kurimo et al., 2007a; 2007b). The ParaMor 
algorithm showed promise in the 2007 Challenge, 
placing first in the linguistic evaluation of German. 
Developed after the close of Morpho Challenge 
2007, our improvements to the ParaMor algorithm 
could not officially compete in this Challenge. 
However, the Morpho Challenge 2007 Organizing 
Committee (Kurimo et al., 2008) graciously over-
saw the quantitative evaluation of our agglutinative 
version of ParaMor.  

1.1 Related Work 

A variety of approaches to unsupervised morphol-
ogy induction have shown promise in past work: 
Here we highlight three techniques which have 
been used in a number of unsupervised morphol-
ogy induction algorithms. Since character se-
quences are less predictable at morpheme bounda-
ries than within any particular morpheme (see dis-
cussion in section 2.1), a first unsupervised mor-
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phology induction technique measures the predict-
ability of word-internal character sequences. Harris 
(1955) was the first to propose the branching factor 
of the character tree of a corpus vocabulary as a 
measure of character predictability. Character trees 
have been incorporated into a number of more re-
cently proposed unsupervised morphology induc-
tion systems (Schone and Jurafsky, 2001; Wicen-
towski, 2002; Goldsmith, 2006; Bordag, 2007). 
Johnson and Martin (2003) generalize from charac-
ter trees and model morphological character se-
quences with minimized finite state automata. 
Bernhard (2007) measures character predictability 
by directly computing transitional probabilities be-
tween substrings of words. 

A second successful technique has used the 
minimum description length principle to capture 
the morpheme as a recurrent structure of morphol-
ogy. The Linguistica system of Goldsmith (2006), 
the Morfessor system of Creutz (2006), and the 
system described in Brent et al. (1995) take this 
approach. 

A third technique leverages inflectional para-
digms as the organizational structure of morphol-
ogy. The ParaMor algorithm, which this paper ex-
tends, joins Snover (2002), Zeman (2007), and 
Goldsmith’s Linguistica in building morphology 
models around the paradigm.  

ParaMor tackles three challenges that face mor-
phology induction systems which Goldsmith's Lin-
guistica algorithm does not yet address. First, sec-
tion 2.2 of this paper introduces an agglutinative 
segmentation model. This agglutinative model seg-
ments words into as many morphemes as the data 
justify. Although Goldsmith (2001) and Goldsmith 
and Hu (2004) discuss ideas for segmenting indi-
vidual words into more than two morphemes, the 
implemented Linguistica algorithm, as presented in 
Goldsmith (2006), permits at most a single mor-
pheme boundary in each word. Second, ParaMor 
decouples the task of paradigm identification from 
that of word segmentation (Monson et al., 2007b). 
In contrast, morphology models in Linguistica in-
herently encode both a belief about paradigm 
structure on individual words as well as a segmen-
tation of those words. Without ParaMor’s decoup-
ling of paradigm structure from specific segmenta-
tion models, our algorithm for agglutinative seg-
mentation (section 2.2) would not have been possi-
ble. Third, the evaluation of ParaMor in this paper 
is over much larger corpora than any published 

evaluation of Linguistica. Goldsmith (2006) seg-
ments the Brown corpus of English, which, after 
discarding numbers and punctuation, has a vocabu-
lary size of 47,607 types. Using Linguistica, Creutz 
(2006) successfully segments a Finnish corpus of 
250,000 tokens (approximately 130,000 types), but 
Creutz notes that Linguistica is memory intensive 
and not runable for larger corpora. In the evalua-
tions of Morpho Challenge 2007, ParaMor seg-
mented the words from corpora with over 42 mil-
lion tokens and vocabularies as large as 2.2 million 
types.  

2 ParaMor 

This section briefly outlines the high level struc-
ture of ParaMor as described in detail in Monson et 
al. (2007a; 2007b). ParaMor takes the inflectional 
paradigm as the basic building block of morphol-
ogy. A paradigm is a mutually substitutable set of 
morphological operations. For example, most ad-
jectives in Spanish inflect for two paradigms. First, 
adjectives are marked for gender: an a suffix 
marks feminine, an o masculine. Then Spanish ad-
jectives mark number: an s suffix signals plural, 
while no marking, Ø in this paper, indicates singu-
lar. The four surface forms of the cross-product of 
the gender and number paradigms on the Spanish 
word for ‘beautiful’ are then: bello, bella, bellos, 
and bellas.  

ParaMor is a two stage algorithm. In the first 
stage, ParaMor identifies candidate paradigms 
which likely model suffixes of morphological pa-
radigms and their cross-products. Since some 70% 
of the world’s languages are significantly suffixing 
(Dryer, 2005), ParaMor only attempts to identify 
suffix paradigms. ParaMor’s first stage consists of 
three pipelined steps. In the first step, ParaMor 
searches a space of candidate partial paradigms, 
called schemes, for those which possibly model 
suffixes of true paradigms. The second step merges 
selected schemes which appear to model the same 
paradigm. And in the third step, ParaMor discards 
scheme clusters which likely do not model true 
paradigms.  

The second stage of the ParaMor algorithm 
segments word forms using the candidate para-
digms identified in the first stage. Section 2.2 of 
this paper introduces a new segmentation model 
for ParaMor’s second stage that allows more than 
one morpheme boundary in a single word—as is 
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needed to correctly segment Spanish plural adjec-
tives. As this agglutinative segmentation model re-
lies on the paradigms learned in ParaMor’s first 
stage, section 2.1 presents solutions to two types of 
paradigm model error that the baseline ParaMor 
system makes. The solutions to these two error 
types are similar in nature to ideas proposed in the 
unsupervised morphology induction work of Hafer 
and Weiss (1974) and Goldsmith (2006). 

2.1 Precision at Paradigm Identification 

Table 1 presents 14 of the more than 8000 schemes 
identified during one baseline run of ParaMor’s 
scheme search step. Each row of Table 1 lists a 
scheme that was selected while searching over a 
Spanish newswire corpus of 50,000 types. On the 
far left of Table 1, the Rank column states the or-
dinal rank at which that row’s scheme was selected 
during the search procedure: the first scheme Pa-
raMor selects is Ø.s; a.as.o.os is the second; ido.-
idos.ir.iré is the 1566th selected scheme, etc. The 
right four columns of Table 1, present raw data on 
the selected schemes, giving the number of can-
didate suffixes in that scheme, the proposed suf-
fixes themselves, the number of candidate stems in 
the scheme, and a sample of those candidate stems. 
Each candidate stem in a ParaMor scheme forms a 
word that occured in the input corpus with each 
candidate suffix belonging to that scheme; for 
example, from the first selected scheme, the candi-

date stem apoyada joins to the candidate suffix s to 
form the word apoyadas ‘supported (adjective 
feminine plural)’—a word which occured in the 
Spanish newswire corpus.  

Between the rank on the left and the scheme 
details on the right of Table 1, are columns which 
categorize the scheme on its success, or failure, to 
model a true paradigm of Spanish. A dot appears in 
the columns marked Noun, Adjective, or Verb if the 
majority of the candidate suffixes in a row’s 
scheme attempt to model suffixes in a paradigm of 
that part of speech. A dot appears in the Derivation 
column if one or more candidate suffixes of the 
scheme models a Spanish derivational suffix. The 
Good column is marked if the candidate suffixes of 
a scheme take the surface form of true paradig-
matic suffixes. Initially selected schemes in Table 
1 that correctly capture suffixes of real Spanish 
paradigms are the 1st, 2nd, 5th, 13th, 30th, and 1566th 
selected schemes. While some smaller paradigms 
of Spanish are perfectly identified (including Ø.s, 
which marks singular and plural on many nouns 
and adjectives, and the adjectival cross-product 
paradigm of gender and number, a.as.o.os) many 
selected schemes do not satisfactorily model Span-
ish suffixes. Incorrect schemes in Table 1 are 
marked in the Error columns.  

The vast majority of unsatisfactory paradigm 
models fail for one of two reasons. First, many 
schemes contain candidate suffixes which system-
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    2 Ø.s 5513 apoyada, barata, hombro, oficina, reo, … 
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●
     

●
    4 a.as.o.os 899 apoyad, captad, dirigid, junt, próxim, … 
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  14 Ø.ba.ban.da.das.do.dos.n.ndo.r.ron.rse.rá.rán 25 apoya, disputa, lanza, lleva, toma, … 
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●
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  14 Ø.ba.ción.da.das.do.dos.n.ndo.r.ron.rá.rán.ría 16 acepta, concentra, fija, provoca, … 

13   
●

    
●

    15 a.aba.ada.adas.ado.ados.an.ando.ar.aron.ará.arán.e.en.ó 20 apoy, declar, enfrent, llev, tom, … 
30    

●
 

●
  

●
    11 a.e.en.ida.idas.ido.idos.iendo.ieron.ió.ía 15 cumpl, escond, recib, transmit, vend, … 

1000          
●

 3 Ø.g.gs 4 h, k, on, s 
1566     

●
  

●
    4 ido.idos.ir.iré 6 conclu, cumpl, distribu, exclu, reun, segu 

2000      
●

  
●

   2 lia.liana 5 austra, ita, ju, sici, zu 
3000          

●
 3 Ø.a.anar 4 all, am, g, s 

4000          
●

 3 Ø.e.ince 4 l, pr, qu, v 
8000   

●
     

●
   2 trada.trarnos 3 concen, demos, encon 

               

 

Table 1. Candidate partial paradigms, or schemes, that the baseline ParaMor algorithm selected during its first step, 
search, of its first stage, paradigm identification. This baseline ParaMor run was over a Spanish newswire corpus of 
50,000 types. While some selected schemes contain suffixes from true paradigms, other schemes contain incorrectly 
segmented candidate suffixes. 
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atically misanalyze word forms. These schemes 
consistently hypothesize either stem-internal or 
suffix-internal morpheme boundaries. Schemes 
which hypothesize incorrect morpheme boundaries 
include the 3rd, 11th, 12th, 2000th, and 8000th se-
lected schemes of Table 1. Among these, the 3rd 
and 12th selected schemes place morpheme boun-
daries internal to true suffixes. For example, the 3rd 
selected scheme contains truncated forms of suf-
fixes that occur correctly in the 5th selected 
scheme. Symmetrically, the candidate suffixes in 
the 11th, 2000th, and 8000th selected schemes hy-
pothesize morpheme boundaries internal to true 
Spanish stems, inadvertently including portions of 
stems within their suffix lists. In a random sample 
of 100 schemes from the 8240 schemes that the 
baseline ParaMor algorithm selects over our Span-
ish corpus, 59 schemes hypothesized an incorrect 
morpheme boundary. 

The second most prevalent reason for model 
failure occurs when the candidate suffixes of a 
scheme are related not by belonging to the same 
paradigm, but rather by a chance co-occurrence on 
a few candidate stems of the text. Schemes which 
arise from chance string collisions in Table 1 in-
clude the 1000th, 3000th, and 4000th selected 
schemes. The string lengths of the candidate stems 
and candidate suffixes of these chance schemes are 
often quite short. The longest candidate stem in 
any of the three chance-error schemes of Table 1 is 
three characters long; and all three selected 
schemes propose the suffix Ø, which has length 
zero. Short stems and short suffixes in selected 
schemes are easily explained combinatorially: The 
inventory of possible strings grows exponentially 
with the length of the string. Because there just 
aren’t very many length one, length two, or even 
length three strings, it should come as no surprise 
when a variety of candidate suffixes happen to oc-
cur attached to the same set of short stems. In our 
random sample of 100 initially selected schemes, 
35 were erroneously selected as a result of a 
chance collision of word types. 

The next two sub-sections present solutions to 
the two types of paradigm model failure in the 
baseline algorithm that are exemplified in Table 1. 
These first two extensions aim to improve preci-
sion by reducing the number of schemes ParaMor 
erroneously selects. 

 

Correcting Morpheme Boundary Errors 

Most of the baseline selected schemes which incor-
rectly hypothesize a morpheme boundary do so at 
stem-internal positions. Indeed, in our random 
sample of 100 schemes, 51 of the 59 schemes with 
morpheme boundary errors incorrectly hypothe-
sized a boundary stem-internally. For this reason, 
the baseline ParaMor algorithm already discarded 
schemes that likely misplace a boundary stem-
internally (Monson et al., 2007b). Although there 
are fewer schemes that misplace a morpheme 
boundary suffix-internally, suffix-internal error 
schemes contain short suffixes that can generalize 
to segment a large number of word forms. (See 
section 2.2 for a description of ParaMor’s morpho-
logical segmentation model). To measure the in-
fluence of suffix-internal error schemes on mor-
pheme segmentation, we examined ParaMor’s 
baseline segmentations of a random sample of 100 
word forms from the 50,000 words of our Spanish 
corpus. In these 100 words, 82 morpheme bounda-
ries were introduced that should not have been. 
And 40 of these 82 incorrectly proposed bounda-
ries were placed by schemes which hypothesized a 
morpheme boundary internal to true suffixes.  

To address the problem of suffix-internal mis-
placed boundaries we adapt an idea originally pro-
posed by Harris (1955) and extended by Hafer and 
Weiss (1974): Take any string t. Let F be the set of 
strings such that for each Ff ∈ , t.f is a word form 
of a particular natural language. Harris noted that 
when the boundaries between t and each f fall at 
morpheme boundaries, the strings in F typically 
begin in a wide variety of characters; but when the 
t-f boundaries are morpheme-internal, each legiti-
mate word final string must first complete the er-
roneously split morpheme, and so the strings in F 
will begin with one of a very few characters. This 
argument similarly holds when the roles of t and f 
are reversed. Hafer and Weiss (1974) describe a 
number of variations to Harris’ letter variety algo-
rithm. Their most successful variation uses entropy 
to measure character variety.  

Goldsmith’s (2006) Linguistica algorithm pio-
neered the use of entropy in a paradigm-based un-
supervised morphology induction system. Linguis-
tica measures the entropy of stem-final characters 
in a set of initially selected paradigm models. 
When entropy falls below a threshold, Linguistica 
considers relocating the morpheme boundary of 
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each word covered by that paradigm model. If, af-
ter boundary relocation, the resulting description 
length of Linguistica’s morphology model de-
creases, Linguistica accepts the relocated bounda-
ries.  

To identify suffix-internal morpheme boundary 
errors among ParaMor’s initially selected schemes, 
we follow Hafer and Weiss (1974) and Goldsmith 
(2006) in using entropy as a measure of the variety 
in boundary-adjacent character distributions. In a 
ParaMor style scheme, the candidate stems form a 
set of word-initial strings, and the candidate suf-
fixes a set of word-final strings. If a scheme’s 
stems end in a very few unique characters, the 
scheme has likely hypothesized an incorrect suffix-
internal morpheme boundary. Consider the 3rd se-
lected scheme in Table 1. All 25 of the 3rd 
scheme’s stems end in the character ‘a’. Conse-
quently, we measure the entropy of the distribution 
of final characters in each scheme’s candidate 
stems. Where Linguistica modifies paradigm mod-
els which appear to incorrectly place morpheme 
boundaries, our extension to ParaMor permanently 
removes schemes. To avoid introducing a free pa-
rameter, our extension to ParaMor flags a scheme 
as a likely boundary error only when virtually all 
of that scheme’s candidate stems end in the same 
character. We flag a scheme if its entropy is below 
a threshold set close to zero, 0.5. The baseline Pa-
raMor algorithm discards schemes which it be-
lieves hypothesize an incorrect stem-internal mor-
pheme boundary only after the scheme clustering 
step of ParaMor’s paradigm identification stage. 
Our extension follows suit: If we flag more than 
half of the schemes in a cluster as likely proposing 
a suffix-internal boundary, then we discard that 
cluster. Referencing Table 1, this first extension to 
ParaMor successfully removes both the 3rd and the 
12th selected schemes.  

Correcting Chance String Collision Errors 

Scheme errors due to chance string collisions are 
the second most prevalent error type. As described 
above, the string lengths of the candidate stems 
and suffixes of chance schemes are typically short. 
When the stems and suffixes of a scheme are short, 
then the underlying types which support a scheme 
are also short. Where the baseline ParaMor algo-
rithm explicitly builds schemes over all types in a 
corpus, we modify ParaMor to exclude short types 
from the vocabulary during morphology induction. 

Goldsmith (2006) also uses string-length thresh-
olds to restrict what paradigm models the Linguis-
tica algorithm produces. 

Excluding short types during ParaMor’s mor-
phology induction stage does not preclude short 
types from being analyzed as containing multiple 
morphemes during ParaMor’s segmentation stage. 
As section 2.2 describes, ParaMor’s segmentation 
algorithm is independent of the set of types from 
which schemes and scheme clusters are built. 

The string length that types must meet to join 
the induction vocabulary is a free parameter. Pa-
raMor is designed to identify the productive inflec-
tional paradigms of a language. Unless a paradigm 
is restricted to occur only with short stems, a pos-
sible but unusual scenario (as with the English ad-
jectival comparative, c.f. faster but *exquisiter) we 
can expect a productive paradigm to occur with a 
reasonable number of longer stems in a corpus. 
Hence, ParaMor needn’t be overly concerned 
about discarding short types. A qualitative exam-
ination of Spanish data suggested discarding types 
five characters or less in length; we use this cutoff 
in all experiments described in this paper. 

Excluding short types from the paradigm induc-
tion vocabulary virtually eliminates the entire cate-
gory of chance scheme. In a random sample of 100 
schemes that ParaMor selected when short types 
were excluded, only one scheme contained types 
related only by chance string similarity, down from 
35 when short types were not excluded. Returning 
to Table 1, excluding types five characters or less 
in length bars ten of the twelve word types which 
support the erroneous 3000th selected scheme Ø.a.-
anar. Among the excluded types are valid Spanish 
words such as ganar ‘to gain’. But also eliminated 
are several meaningless acronyms such as the sin-
gle letters g and s. Without these short types, Pa-
raMor rightly cannot select the 3000th scheme. 

2.2 Segmentation 

An Agglutinative Model 

With the improvement in scheme precision that re-
sults from the two extensions discussed in section 
2.1, we are ready to propose a more realistic model 
of morphology. ParaMor’s baseline segmentation 
algorithm distrusts ParaMor’s induced scheme 
models. The baseline algorithm assumes each word 
form can contain at most a single morpheme 
boundary. If it detects more than one morpheme 
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boundary, then the baseline algorithm proposes a 
separate morphological analysis for each possible 
boundary. In contrast, our extended model of seg-
mentation vests more trust in the induced schemes, 
assuming that scheme clusters which propose dif-
ferent morpheme boundaries are simply modeling 
different valid morpheme boundaries. And our ex-
tension proposes a single morphological analysis 
containing all hypothesized morpheme boundaries.  

To detect morpheme boundaries, ParaMor 
matches each word, w, in the full vocabulary of a 
corpus against the clusters of schemes which are 
the final output of ParaMor’s paradigm identifica-
tion stage. When a suffix, f, of some scheme-
cluster, C, matches a word-final string of w, i.e. 

fuw .= , ParaMor attempts to replace f in turn with 
each suffix f ′  of C. If the string fu ′.  occurs in 
the full corpus vocabulary, then, on the basis of 
this paradigmatic evidence, ParaMor identifies a 
morpheme boundary in w between u and f . 

For example, to detect morpheme boundaries in 
the Spanish word apoyados ‘supports (adjective 
masculine plural)’ , ParaMor matches all word-
final strings of apoyados against the candidate suf-
fixes of ParaMor’s induced scheme clusters. The 
word-final strings of apoyados are s, os, dos, ados, 
yados, …. The scheme clusters that our extended 
version of ParaMor induces include clusters which 
contain schemes very similar to the 1st, 2nd, and 5th 
baseline selected schemes, see Table 1. In particu-
lar, our extended ParaMor identifies separate 
scheme clusters that contain the candidate suffixes: 
s and Ø; os and o; and ados and ado. Substituting 
Ø for s, o for os, or ado for ados yields the Spanish 
string apoyado ‘supports (adjective masculine sin-
gular)’. It so happens, that apoyado does occur in 
our Spanish corpus, and so ParaMor has found 
paradigmatic evidence for three morpheme boun-
daries. Crucially, our ParaMor extension from sec-
tion 2.1 that removes schemes which hypothesize 
suffix internal morpheme boundaries correctly dis-
cards all schemes which contained the candidate 
suffix dos. Consequently, no scheme cluster exists 
to incorrectly suggest the morpheme boundary 
*apoya + dos, as the 3rd baseline selected scheme 
would have. Where ParaMor’s baseline segmenta-
tion algorithm would propose three separate analy-
ses of apoyados, one for each detected morpheme 
boundary: apoy +ados, apoyad +os, and apoyado 
+s; our extended segmentation algorithm produces 
the single correct analysis: apoy +ad +o +s.  

It is interesting to note that although each of Pa-
raMor’s individual paradigm models proposes a 
single morpheme boundary, our agglutinative seg-
mentation model can recover multiple boundaries 
in a single word. Using this idea it may be possible 
to quickly adapt Linguistica for agglutinative lan-
guages. Instead of interpreting the sets of stems 
and affixes that Goldsmith’s Linguistica algorithm 
produces as immediate segmentations of words, 
these signatures can be thought of as models of 
paradigms that may generalize to new words. 

Augmenting ParaMor’s Segmentations 

With its focus on the paradigm, ParaMor special-
izes at analyzing inflectional morphology (Monson 
et al., 2007a). Morpho Challenge 2007 requires al-
gorithms to analyze both inflectional and deriva-
tional morphology (Kurimo et al., 2007a; 2007b). 
To compete in the challenge, we combine Pa-
raMor’s morphological segmentations with seg-
mentations from Morfessor (Creutz, 2006), an un-
supervised morphology induction algorithm which 
learns both inflectional and derivational morphol-
ogy. We incorporate the segmentations from Mor-
fessor into the segmentations that the ParaMor sys-
tem produces by straightforwardly adding the Mor-
fessor segmentation for each word as an additional 
separate analysis to those ParaMor produces (Mon-
son et al., 2007b). Morfessor has one free parame-
ter, which we optimize separately for each lan-
guage of Morpho Challenge 2007.  

ParaMor also has several free parameters, in-
cluding the type length parameter and the parame-
ter over stem-final character entropy described in 
section 2.1. We do not adjust any of ParaMor’s pa-
rameters from language to language, but fix them 
at values that produce reasonable Spanish para-
digms and segmentations. As in Monson et al. 
(2007b), to avoid adjusting ParaMor’s parameters 
we limit ParaMor’s paradigm induction vocabulary 
to 50,000 frequent types for each language.  

3 Evaluation 

To evaluate our extensions to the ParaMor algo-
rithm, we follow the methodology of the peer op-
erated Morpho Challenge 2007. All segmentations 
produced by our extensions were sent to the Mor-
pho Challenge Organizing Committee (Kurimo et 
al., 2008). The Organizing Committee evaluated 
our segmentations and returned the automatically 
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calculated quantitative results. Using the evalua-
tion methodology of Morpho Challenge 2007 per-
mits us to compare our algorithms against the un-
supervised morphology induction systems which 
competed in the 2007 Challenge. Of the many al-
gorithms for unsupervised morphology induction 
discussed with the related work in section 1.1, five 
participated in Morpho Challenge 2007. Unless an 
algorithm has been given an explicit name, mor-
phology induction algorithms will be denoted in 
this paper by the name of their lead author. The 
five algorithms which participated in the 2007 
Challenge are: Bernhard (2007), Bordag (2007), 
Zeman (2007), Creutz’s (2006) Morfessor, and Pa-
raMor (2007b). 

Morpho Challenge 2007 had participating algo-
rithms analyze words in four languages: English, 
German, Finnish, and Turkish. The Challenge 
evaluated each algorithm’s morphological analyses 
in two ways. First, a linguistic evaluation measured 
each algorithm’s precision, recall, and F1 at mor-
pheme identification against an answer key of mor-
phologically analyzed word forms. Scores were 
normalized when a system proposed multiple 
analyses of a single word, as our combined Pa-
raMor-Morfessor submissions do. For further de-
tails on the linguistic evaluation in Morpho Chal-
lenge 2007, see Kurimo et al. (2007a). The second 
evaluation of Morpho Challenge 2007 was a task 
based evaluation. Each algorithm’s analyses were 
imbedded in an information retrieval (IR) system. 
The IR evaluation consisted of queries over a lan-
guage specific collection of newswire articles. All 
word forms in all queries and all documents were 
replaced with the morphological decompositions of 
each individual analysis algorithm. Separate IR 
tasks were run for English, German, and Finnish, 
but not Turkish. For additional details on the IR 
evaluation of Morpho Challenge 2007 please refer-
ence Kurimo et al. (2007b). 

Tables 2 and 3 present, respectively, the lin-
guistic and IR evaluation results. In these two ta-
bles, the top two rows contain results for segmen-
tations produced by versions of ParaMor that in-
clude our extensions. The topmost row in each ta-
ble, labeled ‘+P +Seg’, gives the results for our 
fully augmented version of ParaMor, which in-
cludes our two extensions designed to improve 
precision as well as our new segmentation model 
which can propose multiple morpheme boundaries 
in a single analysis of a word form. The second 

row of each table, labeled ‘+P –Seg’, augments Pa-
raMor only with the two enhancements designed to 
improve precision. The third row of each table 
gives the Challenge results for the ParaMor base-
line algorithm. Rows four through seven of each 
table give scores from Morpho Challenge 2007 for 
the best performing unsupervised systems. If mul-
tiple versions of a single algorithm competed in the 
Challenge, the scores reported here are the highest 
F1 or Average Precision score of any algorithm 
variant at a particular task. In all test scenarios but 
Finnish IR, we produced Morfessor segmentations 
to augment ParaMor that are independent of the 
Morfessor runs which competed in Morpho Chal-
lenge. If our Morfessor runs gave a higher F1 or 
Average Precision, then we report this higher 
score. Finally, scores reported on rows eight and 
beyond are from reference algorithms that are not 
unsupervised. Reference algorithms appear in ital-
ics. A double line bisects both Table 2 and Table 3 
horizontally. All results which appear above the 
double line were evaluated after the final deadline 
of Morpho Challenge 2007. In particular, ParaMor 
officially competed only in the English and Ger-
man tracks of the Challenge.  

The Linguistic Evaluation 

Table 2 contains the results from the linguistic 
evaluation of Morpho Challenge. The Morpho 
Challenge Organizing Committee did not provide 
us with data on the statistical significance of the 
results for the enhanced versions of ParaMor. But 
most score differences are statistically signifi-
cant—All F1 differences of more than 0.5 between 
systems which officially competed in Morpho 
Challenge 2007 were statistically significant (Ku-
rimo et al., 2007a).  

In German, Finnish, and Turkish our fully en-
hanced version of ParaMor achieves a higher F1 
than any system that competed in Morpho Chal-
lenge 2007. In English, ParaMor’s precision score 
drags F1 under that of the first place system, Bern-
hard; In Finnish, the Bernhard system’s F1 is likely 
not statistically different from that of our system. 
Our final segmentation algorithm demonstrates 
consistent performance across all four languages. 
In Turkish, where the morpheme recall of other 
unsupervised systems is anomalously low, our al-
gorithm achieves a recall in a range similar to its 
recall scores for the other languages. ParaMor’s ul-
timate recall is double that of any other unsuper-
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vised Turkish system, leading to an improvement 
in F1 over the next best system, Morfessor alone, 
of 13.5% absolute or 22.0% relative.  

In all four languages, as expected, the combina-
tion of removing short types from the training data, 
and the additional filtering of scheme clusters, 
‘+P’, significantly improves precision scores over 
the ParaMor baseline. Allowing multiple mor-
pheme boundaries in a single word, ‘+Seg’, in-
creases the number of words ParaMor believes 
share a morpheme. Some of these new words do in 
fact share a morpheme, some, in reality do not. 
Hence, our extension of ParaMor to agglutinative 
sequences of morphemes increases recall but low-
ers precision across all four languages. The effect 
of agglutinative segmentations on F1, however, dif-
fers with language. For the two languages which 
make limited use of suffix sequences, English and 
German, a model which hypothesizes multiple 
morpheme boundaries can only moderately in-
crease recall and does not justify, by F1, the many 
incorrect segmentations which result. On the other 
hand, an agglutinative model significantly im-
proves recall for true agglutinative languages like 
Finnish and Turkish, more than compensating in F1 
for the drop in precision over these languages. But 
in all four languages, the agglutinative version of 
ParaMor outperforms the baseline unenhanced ver-
sion at F1. 

The final row of Table 2 is the evaluation of a 
reference algorithm submitted by Tepper (2007). 
While not an unsupervised algorithm, Tepper’s 

reference parallels ParaMor in augmenting seg-
mentations produced by Morfessor. Where Pa-
raMor augments Morfessor with special attention 
to inflectional morphology, Tepper augments Mor-
fessor with hand crafted morphophonology rules 
that conflate multiple surface forms of the same 
underlying suffix. Like ParaMor, Tepper’s algo-
rithm significantly improves on Morfessor’s recall. 
With two examples of successful system augmen-
tation, we suggest that future research take a closer 
look at building on existing unsupervised mor-
phology induction systems. 

The IR Evaluation 

Turn now to results from the IR evaluation in Ta-
ble 3. Although ParaMor does not fair as well in 
Finnish, in German, the fully enhanced version of 
ParaMor places above the best system from the 
2007 Challenge, Bernhard, while our score on 
English rivals this same best system. Morpho Chal-
lenge 2007 did not measure the statistical signifi-
cance of uninterpolated average precision scores in 
the IR evaluation. It is not clear what feature of Pa-
raMor’s Finnish analyses causes comparatively 
low average precision. Perhaps it is simply that Pa-
raMor attains a lower morpheme recall over Fin-
nish than over English or German. And unfortu-
nately, Morpho Challenge 2007 did not run IR ex-
periments over the other agglutinative language in 
the competition, Turkish. When ParaMor does not 
combine multiple morpheme boundaries into a sin-
gle analysis, as in the baseline and ‘+P –Seg’ sce-

Table 2. Unsupervised morphology induction systems evaluated for precision (P), recall (R), and F1 at morpheme 
identification using the methodology of the linguistic competition of Morpho Challenge 2007. 

English German Finnish Turkish 
 P R F1 P R F1 P R F1 P R F1 

 +P +Seg 50.6 63.3 56.3 49.5 59.5 54.1 49.8 47.3 48.5 51.9 52.1 52.0 

 +P –Seg 56.2 60.9 58.5 57.4 53.5 55.4 60.5 33.9 43.5 62.0 38.2 47.3 

ParaMor  
&        

Morfessor 
Baseline 41.6 65.1 50.7 51.5 55.6 53.4 55.0 35.6 43.2 53.2 41.6 46.7 

Bernhard 61.6 60.0 60.8 49.1 57.4 52.9 59.7 40.4 48.2 73.7 14.8 24.7 

Bordag 59.7 32.1 41.8 60.5 41.6 49.3 71.3 24.4 36.4 81.3 17.6 28.9 

Morfessor 82.2 33.1 47.2 67.6 36.9 47.8 76.8 27.5 40.6 73.9 26.1 38.5 

Zeman 53.0 42.1 46.9 52.8 28.5 37.0 58.8 20.9 30.9 65.8 18.8 29.2 

Tepper 69.2 52.6 59.8 - - - 62.0 46.2 53.0 70.3 43.0 53.3 
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narios, average precision is comparatively poor. 
Where the linguistic evaluation did not always pe-
nalize a system for proposing multiple partial 
analyses, real NLP applications, such as IR, can. 

The reference algorithms for the IR evaluation 
are: Dummy, no morphological analysis; Oracle, 
where all words in the queries and documents for 
which the linguistic answer key contains an entry 
are replaced with that answer; Porter, the standard 
English Porter stemmer; and Tepper described 
above. While the hand built Porter stemmer still 
outperforms the best unsupervised systems on Eng-
lish, these same best unsupervised systems outper-
form both the Dummy and Oracle references for all 
three evaluated languages—strong evidence that 
unsupervised induction algorithms are not only 
better than no morphological analysis, but that they 
are better than incomplete analysis as well.  

4 Conclusions and Future Directions 

Augmenting ParaMor with an agglutinative model 
of segmentation produces an unsupervised mor-
phology induction system with consistent and 

strong performance at morpheme identification 
across all four languages of Morpho Challenge 
2007. By first cleaning up the paradigm models 
that ParaMor learns, we raise ParaMor’s segmenta-
tion precision and allow the agglutinative model to 
significantly improve ParaMor’s morpheme recall.  

Looking forward to future improvements, we 
examined by hand the final set of scheme clusters 
that the current version of ParaMor produces over 
our newswire corpus of 50,000 Spanish types. Pa-
raMor’s paradigm identification stage outputs 41 
separate clusters. Among these final scheme clus-
ters are those which model all major productive 
paradigms of Spanish. In fact, there are often mul-
tiple scheme clusters which model portions of the 
same true paradigm. As an extreme case, 12 sepa-
rate scheme clusters contain suffixes from the 
Spanish ar verbal paradigm. Relaxing restrictions 
on ParaMor’s clustering algorithm (Monson et al., 
2007a) may address this paradigm fragmentation.  

The second significant shortcoming which sur-
faces among ParaMor’s 41 final scheme clusters is 
that ParaMor currently does not address morpho-
phonology. Among the final scheme clusters, 12 
attempt to model morphophonological change by 
incorporating the phonological change either into 
the stems or into the suffixes of the scheme cluster. 
But ParaMor currently has no mechanism for de-
tecting when a cluster is modeling morphophonol-
ogy. Perhaps ideas on morphophonology from 
Goldsmith (2006) could be adapted to work with 
the ParaMor algorithm. Finally, we plan to look at 
scaling the size of the vocabulary used both during 
paradigm induction and during morpheme segmen-
tation. We are particularly interested in the possi-
bility that ParaMor may  be able to identify para-
digms from much less data than 50,000 types. 
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Table 3. Unsupervised morphology induction sys-
tems evaluated for uninterpolated average precision 
using the methodology of the IR competition of 
Morpho Challenge 2007. These results use Okapi 
term weighting (Kurimo et al., 2008b). 

*Only a subset of the words which occurred in the 
IR evaluation of this language was analyzed by this 
system.  

 Eng. Ger. Finn. Tur.  

 +P +Seg 39.3 48.4 42.6 - 

 +P –Seg 35.1 43.1 37.1 - 
ParaMor 

&        
Morfessor 

Baseline 34.4 40.1 35.9 - 

Bernhard 39.4 47.3 49.2 - 

Bordag 34.0 43.1 43.1 - 

Morfessor 38.8 46.0 44.1 - 

Zeman  26.7*  25.7*  28.1* - 

Dummy 31.2 32.3 32.7 - 

Oracle 37.7 34.7 43.1 - 

Porter 40.8 - - - 

Tepper  37.3* - - - 
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