
Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 58–65,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Design of the Moses Decoder for Statistical Machine Translation

Hieu Hoang

University of Edinburgh

h.hoang@sms.ed.ac.uk

Philipp Koehn

University of Edinburgh

pkoehn@inf.ed.ac.uk

Abstract

We present a description of the implemen-

tation of the open source decoder for statis-

tical machine translation which has become

popular with many researchers in SMT re-

search. The goal of the project is to create

an open, high quality phrase-based decoder

which can reduce the time and barrier to

entry for researchers wishing to do SMT

research. We discuss the major design ob-

jective for the Moses decoder, its perform-

ance relative to other SMT decoders, and

the steps we are taking to ensure that its

success will continue.

1 Motivation

Phrase-based translation has been one of the

major advances in statistical machine translation

(Brown et al. 1990) in recent years and is currently

one of the techniques which can claim to be state-

of-the-art in machine translation. Phrase-based

models are a development of the word based mod-

els as exemplified by the (Brown et al. 1990). In

phrase-based translation, contiguous segments of

words in the input sentence are mapped to contigu-

ous segments of words in the output sentence.

In SMT, we are given a source language sen-

tence, s, which is to be translated into a target lan-

guage sentence, t. The goal of machine translation

is to find the translation, t̂ , which is defined as:

ˆ arg max (|)
t

t p t s=

where (|)p t s is the probability model. The argmax

implies a search for the best translation t̂ in the

space of possible translations t. This search is the

task of the decoder, which we will concentrate on

in this paper.

There have been numerous implementations of

phrase-based decoders for SMT prior to our work.

Early systems such as the Alignment Template

System (ATS) (Och and Ney 2004) and Pharaoh

(Koehn 2004) were widely used and accepted by

the research community. ATS is perhaps the cross-

over system, in that word classes were translated as

phrases but the surface words were translated word

by word. Pharaoh substituted the word classes with

surface words, thereby discarding the use of word

classes in decoding altogether.

There has been other phrase-based decoders

such as PORTAGE (Sadat et al. 2005), Phramer

(Olteanu et al. 2006), the MITLL/AFRL system

(Shen et al. 2005), ITC-irst (Bertoldi et al. 2004),

Ramses/Mood (Patry et al. 2006) to name but a

few. Other researchers such as (Kumar and Byrne

2003) have also used weighted finite state trans-

ducers but they have more difficulty modeling re-

ordering.

Many early systems came with restrictive li-

censes; ATS has never been publicly released,

Pharaoh was released in 2003 as a pre-compiled

binary with documentation. This severely limited

the extent to which other researchers can study and

enhance the decoder. Without access to the de-

coder source code research was generally restricted

to altering the input, augmenting it with extra in-

formation, or modifying the output or re-ranking

the n-best list output.

The main contribution of this paper is to show

how we have created an extensible decoder, has

acceptable run time performance compared to

similar systems, and the ease of use and develop-

ment that has made it the preferred choice for re-

searchers looking for a phrase-based SMT decoder.

58

As an indication of the take-up of the Moses

toolkit, out of over 20 competing teams at the re-

cent IWSLT 2007 conference
1
, half used Moses.

As an indication of the extensibility of the de-

coder, there are currently four language model im-

plementations which has been integrated with the

decoder by various researchers. In addition, the

framework exists to integrate language models,

such as those described in (Bilmes and Kirchhoff

2003), which takes advantage of the factored rep-

resentation within Moses.

 It is noted that Mood/Ramses also supports

multiple LM implementations, an internally devel-

oped language model, in additional to SRILM, to

overcome the latter’s licensing restrictions.

In addition, there are two built-in phrase table

implementations, one which loads all data into

memory for fast decoding, and a binary phrase ta-

ble as described in (Zens and Ney 2007) which

loads on demand to conserve memory usage.

The Moses decoder has the ability to accept

simple sentence input, confusion network or lattice

networks, in common with SMT decoders such as

the MITLL/AFRL or ITC-irst systems. The de-

coder also produces diverse types of output, rang-

ing from 1-best, n-best lists and word lattices.

2 Comparison with other projects

The Moses decoder is designed within a strict

modular and object-oriented framework for easy

maintainability and extensibility.

In designing the decoder, we modeled the soft-

ware design methodology and aims on some re-

search-oriented software libraries outside of the

SMT and NLP field which is open source, written

in C++, have a large and diverse user-base, have

succeeded in becoming the industry norm in their

field.

Specifically, we modeled the software on the

CGAL library (Fabri et al. 2000), used in computa-

tional geometry, and DCMTK (Eichelberg et al.

2004) library used in medical imaging. We believe

they set good examples of the standards that we

should follow.

However, there are differences between our pro-

ject and CGAL or DCMTK.

The first difference is project size, for example,

whereas CGAL consists of over 500,000 lines of

1
 http://iwslt07.oitc.it/menu/program.html

code and multiple libraries and example program,

the Moses decoder consists of 20,000 lines in 2

libraries. The difference is scale makes implement-

ing some steps in the development life cycle im-

practical or unnecessary. For example, functional-

ity specification before implementation was de-

scribed for CGAL and is typical of large projects

but would have been cumbersome for Moses.

Secondly, the aims of Moses and these projects

are different. The goal of the CGAL project is to

‘make…computational geometry available for in-

dustrial application’
2
.

Both CGAL and DCMTK are used extensively

in commercial applications. Therefore, issues such

robustness, cross-platform compatibility and ease-

of-use are predominant for these projects.

Commercialization is not an aim of the Moses

project but we believe these issues are still as im-

portant as they affect the usability and uptake of

the system. Therefore, the Moses decoder was built

to address these issues without compromising the

academic priorities of the project.

Thirdly, the correct implementation is easier to

decide in libraries such as CGAL as the algorithms

are closely specified by the mathematical specifi-

cation, therefore, testing and specification writing

is more prevalent and easier than in Moses. For

DCMTK, the medical imaging standards and pro-

tocols offers a clear guide for implementation. By

contrast, the function of an SMT decoder is search

for which there are no correct implementation, we

can only measure its performance relative to previ-

ous versions and other similar decoders.

These differences are minor compared to the

similarities Moses has to CGAL and DCMTK, and

indeed, to any well developed software project.

Design goals such as robustness, flexibility, ease of

use and efficiency are commonality that we share

and which we will discuss in more detail in the

next section.

As a contrast to CGAL and DCMTK whose de-

sign we would like to emulate, we also looked at a

project within the NLP field which contains certain

aspect in the design we would like to avoid.

GIZA++ (Och and Ney 2003) is a very popular

system within SMT for creating word alignment

from parallel corpus, in fact, the Moses training

scripts uses it. The system was release under the

GPL open source license. However, its lack of

2
 http://cordis.europa.eu/esprit/src/21957.htm

59

clear design, documentation and obscure coding

style makes it difficult for other researcher to con-

tribute or extend the system. For a long time, it

couldn’t even be compiled on modern GCC com-

pilers. Other systems which seeks to improve word

alignment and segmentation, such as MTTK (Deng

et al. 2006), have been created to replace GIZA++.

3 Design Goals

We decided to develop the Moses decoder as a

C++ library.

We steered clear of scripting languages for per-

formance reasons and the fact they often offer even

less in the way of cross-platform compatibility.

Java was also avoided for performance reasons but

it’s rich library and multi-platform support would

have been useful.

We note that Hiero (Chiang 2005) is written in a

scripting language with performance critical com-

ponents rewritten in a compiled language. This is

not the approach we considered as we believed it

would have raised the complexity and reduce reli-

ability of the project having to develop (and debug)

in two languages and managing the interface be-

tween them. We also note that the LinearB and

Phramer decoders are implemented in Java and

have reported significantly worse run time speeds,

(Olteanu et al. 2006).

C++ can be inelegant and difficult for inexperi-

enced developers but using other object oriented

language such as Smalltalk or C# was out of the

question as they lack acceptance within the MT

research community.

3.1 Comparable Performance

The Pharaoh decoder (Koehn 2004) represented

the state-of-the-art in phrase-based decoders prior

to the introduction of Moses. Moses was designed

to supersede Pharaoh in performance and function-

ality. Moses was used as the basis for the JHU

Workshop (Koehn et al. 2006) on Factored Ma-

chine Translation where it was extensively en-

hanced; we capitalized on the experience of col-

leagues at the workshop and used Pharaoh as the

baseline during development to ensure that we ob-

tain comparable performance. Table 1 shows the

comparison of the translation performance of Phar-

aoh and Moses for a typical decoding of 2000 sen-

tence trained on the news-commentary corpus
3
. We

also include Phramer as an example of a Java-

based decoder. Due to improvements in the search

algorithm, Moses can slightly outperform Pharaoh

on most tasks, which was confirmed by (Shen et al.

2007).

Table 1 Comparison with pharaoh & Phramer for a

typical fr-en translation of 2000 sentences

 Time

taken

Peak

memory

usage

BLEU

Pharaoh 99min 46MB 19.57

Moses 69min 154MB 19.57

Moses, with load

on-demand PT &

LM

102min 239MB 19.57

Phramer 649min 1218MB 19.44

In addition, most of the functionality of Pharaoh

has been replicated.

3.2 Integration of Word-Level Factors

The Moses decoder isn’t purely a clone of Phar-

aoh, it was created to conduct research into word-

level factors in phrase-base MT. Whereas tradi-

tional, non-factored SMT typically deals only with

the surface form of words, factored translation

models augments different factors, such as POS

tags or lemma, into source and target sentences to

improve translation. This transforms the represen-

tation of a word from a string to a vector of strings,

and a phrase or sentence from a sequence of words

to a sequence of vectors. Such a change to the ba-

sic data structure of a decoder propagated through-

out the rest of the system, therefore, it was simpler

to build the Moses decoder from scratch rather

than extend an existing decoder such as Pharaoh.

Some research into factored machine translation

has been published by (Koehn and Hoang 2007).

3.3 Flexibility

Flexibility is an important software design goal

which will enable researchers to extend the use of

the Moses decoders to tasks that were not origi-

nally envisioned.

Following (Fabri et al. 2000), we identify four

sub-issues which affects flexibility:

i. Modularity

3
 http://www.statmt.org/wmt07/shared-task.html

60

ii. Adaptability

iii. Extensibility

iv. Openness

3.4 Modularity

Firstly, software modularity enables developers

to work on one component of the decoder without

affecting other components. A modular design re-

duces the learning curve for developers by shield-

ing them from having to understand the entire sys-

tem if they are only developing a specific part.

Modularity also assists in the re-using of com-

ponents by separating the implementation details

from the module interface.

Moses takes advantage of C++ support for ob-

ject-oriented and generic programming to enable

modularity.

In keeping with the extensible design of CGAL

and DCMTK, the core of the decoder is compiled

as a static library which can interact with other

components through a well-defined API. The sim-

ple application which currently comes with the

decoder enables users to use the system via the

command line and also provides an example of the

API.

Therefore, the current typical compilation of the

decoder would combine the libraries from

IRSTLM, SRILM, Moses, and moses-cmd to cre-

ate a binary executable.

SRILM IRSTLM

moses

moses-
cmd

Figure 1 Project Dependencies

Any of these libraries can be dropped or re-

placed with other components with the same API.

We detail some examples of the object-oriented

design of Moses below.

The input into the decoder can be one of three

types: a simple string (sentence), a confusion net-

work or a lattice network, Figure 2.

Figure 2 Input Types

Language models are abstracted to enable different

implementations to be used and provide a frame-

work for more complex models such as factored

LM and the Bloom filter language model (Talbot

and Osborne 2007). Similarly, phrase tables are

abstracted to provide support for multiple imple-

mentations.

Each component model which contributes to the

log-linear hypothesis score inherits from the

ScoreProducer base class, Figure 3.

Figure 3 Score Producer

The Moses library provide a simple API whose

main entry point is the class
 Manager

This class is instantiated in the client application,

moses-cmd in our case. Each input is decoded by

calling the class method below:
 ProcessSentence()

3.5 Adaptability

Phrase-based SMT is a fast moving research

field where virtually all aspects of the theory are

61

still being explored and implementations can be

improved. The Moses decoder has to be amenable

to researchers to adapt any component of the de-

coder in ways that perhaps wasn’t foreseen in the

original implementation.

Certainly, modularity plays an important part

in this but it can also have the opposite effect of

allowing obtuse or badly written implementation to

hide behind the API, reducing the ability for re-

searchers to question, investigate or extend. As a

voluntary project, there is limited power to enforce

good implementation and it would be difficult not

to accept added functionality.

However, we use coding standards and designs

during the development of the decoder that we

hope makes the task of working with Moses easier

for developers, and that they will continue to use

those standards to uphold the clarity of the code.

These coding standards include:

i. strict object-oriented design

ii. descriptive variable, class, object and

function names

iii. consistent indentation

iv. use of STL containers

v. implementation of STL-compatible it-

erators for internal container classes.

The source code for the Moses decoder has con-

tributions from a number of developers in the last

two years, Figure 4, including four developers who

have made significant contributions but were not in

the original JHU Workshop. However, code clarity

has, by-and-large, remained intact.

0%

10%

20%

30%

40%

50%

60%

70%

le
xi
_b

irc
h

cc
or

be
tt

ni
co

la
be

rto
ld
i

ab
ar

un

jd
sc

hr
oed

er

eh
er

bs
t

ph
ko

eh
n

ko
nr

ad_
ra

w
lik

ze
ns

re
dp

on
y

hi
eu

ho
an

g1
97

2

%
a
g

e
 o

f
c
o

d
e
 c

o
m

m
it

e
d

Figure 4 Code committed

We do not know how the decoder will be

changed in future, nor do we know where and by

whom it will be used. Moses is first and foremost

an academic project but that doesn’t exclude its use

in commercial applications.

We also believe that it will be useful as a teach-

ing tool for computational linguists, machine trans-

lation researchers or general computer science stu-

dents. It is important with such a diverse potential

user base, with widely varying degrees of C++ and

programming experience, that we make the devel-

opment and use of Moses as easy as possible,

without imposing a significant burden on advanced

users.

We would like to lower the learning curve by

letting users use Moses in an environment and

tools where they are most comfortable with. There-

fore, the Moses decoder is operating system and

compiler neutral. It is known to run on Windows

(natively, or with Cygwin), Linux 32 and 64 bits,

Mac OSX and OpenBSD. It is known to be com-

pileable with modern gcc compilers, Visual Stu-

dio.net, Intel C++ for both Linux and Windows.

We encourage the use of modern graphical inte-

grated development environments (IDE) for Moses

and include project files for Visual Studio, Eclipse

and XCode, in addition to conventional makefiles.

We note that almost half of the source code

downloads for the Moses toolkit from Sourceforge

are for the non-Unix version, and that 58% of the

visitors to the Moses website uses Windows,

Figure 5.

Window s

Linux

Mac

Other

Figure 5 OS of Moses website visitors

This heterogeneous approach allows developers

who have previously been excluded to participate

within the SMT community and strengthens the

decoder by allowing people of different back-

grounds to apply their skills. This is of particular

concern to us as we are attempting to integrate lin-

62

guistic information into machine translation with

factored decoding.

 It also enables best-of-breed tools to be bought

to the development of the decoder, regardless of

platform. For example, we use both open source

and commercial tools on Linux and Windows to

track down memory issues, as well as performance

profilers. This greatly enhances the efficiency of

development and the reliability of the decoder.

Other NLP libraries, such as SRILM (Stolcke

2002) can be compiled and executed under multi-

ple platforms but its development are very much

Unix-centric so requires porting tools for non-Unix

platforms. We believe the platform and compiler

agnostic approach is unique for a major open

source C++ project within recent NLP history.

3.6 Openness

An important reason for initiating the Moses

project was the need to create a competitive de-

coder which could be extended with factors, as

well as other advances in phrase-based machine

translation. It is open source to enable other re-

searchers to extend a state-of-the-art decoder with-

out having to recreate what we have already built.

The decoder was improved at the JHU Work-

shop by a number of researchers so it needed to be

flexible from the beginning. From this experience,

we realize that releasing the source code is not

enough. The decoder must be written and struc-

tured in a clear way to enable other researchers to

contribute to the project.

Aside from the legalese of releasing the source

code under an open source license, we believe that

open source also means the source code is clear

and accessible to allow others to examine, critique

and contribute. Coding standards aimed at source

code clarity and support for modern tools backs

this goal.

Documentation of the algorithms used, and of

the source code are also essential to allow others to

understand the details of the decoder. Every class

and function in the Moses decoder is commented

in a Doxygen compatible format, HTML docu-

ments and figures, such as those in Figure 2 and

Figure 3, are generated automatically from these

comments and accessible via the Web
4
.

Development is done through a source control

system and all code changes are open to inspec-

4
 http://www.statmt.org/moses/html/

tion. We encourage and enable all developers to

use and extend Moses and feed back improve-

ments. However, to ensure that the performance of

the decoder is maintained and that changes to the

decoder doesn’t break existing setups, we maintain

certain controls over the commit process.

There is a regression test suite which should be

passed before any code can be committed to ensure

that unintended divergence haven’t crept in. A

framework exists for creation of regression tests,

developers who add new functionality to the de-

coder are encouraged to create additional tests to

ensure that their functionality will work in future.

However, no amount of automated testing can

be exhaustive. New committers are subject to peer

review by a more experience contributor before the

code is committed, and before the contributor is

granted write access to the source control system.

Also, code commits are monitored via email notifi-

cations to a public mailing list.

These measures add a little overhead to the de-

velopment process this is necessary to maintain the

quality of the system and assure to users and de-

velopers.

We have benefited from the examples of sound

software engineering principles set by the CGAL

and DCMTK project and hope that we will emulate

their success by bringing these engineering princi-

ples into NLP. In contrast to the ‘abandonware’

status of GIZA++, both CGAL and DCMTK are

still being developed.

4 Supporting Infrastructure

Other factors have contributed to the wide adop-

tion of Moses.

4.1 ‘One-Stop Shop’ for Phrase-Based SMT

The Moses project encompasses the decoder and

many of the other components necessary to create

a translation system which were previously avail-

able separately. These include scripts for creating

alignments from a parallel corpus, creating phrase

tables and language models, binarizing phrase ta-

bles, scripts for weight optimization using MERT

(Och 2003), and testing scripts.

Steps such as MERT and testing which are CPU

intensive have been re-engineered to run in parallel

using Sun Grid Engine.

All scripts have also been extended for factored

translation.

63

4.2 Ongoing support

We assist in the adoption of Moses by offering

ongoing support to users and developers through

the support mailing list
5
. Questions relating to

Moses, phrase-based translation or machine trans-

lation in general are often asked, and usually an-

swered. The archived emails are publicly available

and searchable, and have become an important

knowledge source for the community.

The mailing list popularity has been steadily in-

creasing since its inception, Figure 6, and is now

the most popular mailing list for machine transla-

tion, based on volume.

0

20

40

60

80

100

120

140

160

N
o
v
-0

6

D
e
c
-0

6

J
a
n
-0

7

F
e
b
-0

7

M
a
r-

0
7

A
p
r-

0
7

M
a
y
-0

7

J
u
n
-0

7

J
u
l-
0
7

A
u
g
-0

7

S
e
p

-0
7

O
c

t-
0
7

N
o
v
-0

7

D
e
c
-0

7

J
a
n
-0

8

F
e
b
-0

8

Figure 6 Emails to Moses support mailing list

5 Future Work

There has been some important developments in

phrase-based translation in recent years, including

the hierarchical phrase-based model as described in

(Chiang 2005). Research have also been made into

alternatives to the current log-linear scoring model

such as discriminative models with millions of fea-

tures (Liang et al. 2006), or kernel based models

(Wang et al. 2007).

From a software engineering point of view,

these improvements would require fundamental

changes to the structure if they were to be imple-

mented into Moses.

We are also interested in seeing the Moses de-

coder employed in search tasks outside of machine

translation; Moses has been used for OCR correc-

tion, recasing, and transliteration.

Other improvements such as smaller, faster,

more efficient phrase tables are also welcomed.

Lastly, we would like to see the training and

tuning scripts re-engineered to the same modular

5
 moses-support@mit.edu

design as the decoder. The future direction of the

Moses decoder requires even more complex mod-

els which are already stretching the current script

implementation to the limit of adaptability and re-

liability.

6 Conclusion

We have applied the sound software engineering

principles and design to the implementation of the

Moses decoder which has enabled other research-

ers to use and extend its functionality. We believe

this has been a major factor for the widespread

adoption of Moses within the SMT community.

We hope that the design of the decoder will enable

it to maintain it leading edge status into the future.

Acknowledgements

This work was supported in part under the

GALE program of the Defense Advanced Re-

search Projects Agency, Contract No. HR0011-06-

C-0022 and in part under the EuroMatrix project

funded by the European Commission (6th Frame-

work Programme.

References

Bertoldi, N., R. Cattoni, et al. (2004). The ITC-irst Sta-

tistical Machine Translation System for IWSLT-2004.

IWSLT, Kyoto, Japan.

Bilmes, J. A. and K. Kirchhoff (2003). Factored lan-

guage models and Generalized Parallel Backoff.

HLT/NACCL.

Brown, P. F., J. Cocke, et al. (1990). "A statistical ap-

proach to machine translation."

Chiang, D. (2005). A hierarchical phrase-based model

for statistical machine translation. ACL.

Deng, Y., S. Kumar, et al. (2006). "Segmentation and

alignment of parallel text for statistical machine transla-

tion." Natural Language Engineering.

Eichelberg, M., J. Riesmeier, et al. (2004). "Ten years of

medical imaging standardization and prototypical im-

plementation: the DICOM standard and the OFFIS DI-

COM toolkit (DCMTK)." Medical Imaging 2004:

PACS and Imaging Informatics 5371: 57-68 (2004).

Fabri, A., G.-J. Giezeman, et al. (2000). "On the Design

of CGAL, a Computational Geometry Algorithms Li-

64

brary." Software—Practice & Experience 30(11, Spe-

cial issue on discrete algorithm engineering).

Koehn, P. (2004). Pharaoh: a Beam Search Decoder for

Phrase-Based Statistical Machine Translation Models.

AMTA.

Koehn, P., M. Federico, et al. (2006). Open Source

Toolkit for Statistical Machine Translation. Report of

the 2006 Summer Workshop at Johns Hopkins Univer-

sity.

Koehn, P. and H. Hoang (2007). Factored Translation

Models. EMNLP.

Kumar, S. and W. Byrne (2003). A weighted finite state

transducer implementation of the alignment template

model for statistical machine translation. ACL, Edmon-

ton, Canada.

Liang, P., A. Bouchard-Côté, et al. (2006). An End-to-

End Discriminative Approach to Machine Translation.

COLING/ACL.

Och, F. J. (2003). Minimum Error Rate Training for

Statistical Machine Translation. ACL.

Och, F. J. and H. Ney (2003). "A Systematic Compari-

son of Various Statistical Alignment Models." Compu-

tational Linguistics 29(1): 19-51.

Och, F. J. and H. Ney (2004). "The alignment template

approach to statistical machine translation." Computa-

tional Linguistics.

Olteanu, M., C. Davis, et al. (2006). Phramer - An Open

Source Statistical Phrase-Based Translator. ACL Work-

shop on Statistical Machine Translation.

Patry, A., F. Gotti, et al. (2006). Mood at work: Ramses

versus Pharaoh. ACL, New York City, USA.

Sadat, F., H. Johnson, et al. (2005). PORTAGE: A

Phrase-based Machine Translation System. ACL Work-

shop on Building and Using Parallel Texts: Data-Driven

Machine Translation and Beyond, Ann Arbor, Michigan,

USA.

Shen, W., B. Delaney, et al. (2005). The MITLL/AFRL

MT System. IWSLT, Pittsburgh, PA, USA.

Shen, Y., C.-k. Lo, et al. (2007). HKUST Statistical

Machine Translation Experiments for IWSLT 2007.

IWSLT, Trento.

Stolcke, A. (2002). SRILM An Extensible Language

Modeling Toolkit. Intl. Conf. on Spoken Language

Processing.

Talbot, D. and M. Osborne (2007). Smoothed Bloom

filter language models: Tera-Scale LMs on the Cheap.

EMNLP, Prague, Czech Republic.

Wang, Z., J. Shawe-Taylor, et al. (2007). Kernel Re-

gression Based Machine Translation. NAACL HLT.

Zens, R. and H. Ney (2007). Efficient phrase-table rep-

resentation for machine translation with applications to

online MT and speech recognition. HLT/NAACL.

65

