
Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 49–57,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Parallel Implementations of Word Alignment Tool

Qin Gao and Stephan Vogel
Language Technology Institution

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA, 15213, USA

{qing, stephan.vogel}@cs.cmu.edu

Abstract

Training word alignment models on large cor-
pora is a very time-consuming processes. This
paper describes two parallel implementations
of GIZA++ that accelerate this word align-
ment process. One of the implementations
runs on computer clusters, the other runs on
multi-processor system using multi-threading
technology. Results show a near-linear speed-
up according to the number of CPUs used, and
alignment quality is preserved.

1 Introduction

Training state-of-the-art phrase-based statistical ma-
chine translation (SMT) systems requires several
steps. First, word alignment models are trained on
the bilingual parallel training corpora. The most
widely used tool to perform this training step is the
well-known GIZA++(Och and Ney, 2003). The re-
sulting word alignment is then used to extract phrase
pairs and perhaps other information to be used in
translation systems, such as block reordering mod-
els. Among the procedures, more than 2/3 of the
time is consumed by word alignment (Koehn et al.,
2007). Speeding up the word alignment step can
dramatically reduces the overall training time, and in
turn accelerates the development of SMT systems.

With the rapid development of computing hard-
ware, multi-processor servers and clusters become
widely available. With parallel computing, process-
ing time (wall time) can often be cut down by one
or two orders of magnitude. Tasks, which require
several weeks on a single CPU machine may take
only a few hours on a cluster. However, GIZA++

was designed to be single-process and single-thread.
To make more efficient use of available computing
resources and thereby speed up the training of our
SMT system, we decided to modify GIZA++ so that
it can run in parallel on multiple CPUs.

The word alignment models implemented in
GIZA++, the so-called IBM (Brown et al., 1993) and
HMM alignment models (Vogel et al., 1996) are typ-
ical implementation of the EM algorithm (Dempster
et al., 1977). That is to say that each of these mod-
els run for a number of iterations. In each iteration
it first calculates the best word alignment for each
sentence pairs in the corpus, accumulating various
counts, and then normalizes the counts to generate
the model parameters for the next iteration. The
word alignment stage is the most time-consuming
part, especially when the size of training corpus is
large. During the aligning stage, all sentences can
be aligned independently of each other, as model
parameters are only updated after all sentence pairs
have been aligned. Making use of this property, the
alignment procedure can be parallelized. The basic
idea is to have multiple processes or threads aligning
portions of corpus independently and then merge the
counts and perform normalization.

The paper implements two parallelization meth-
ods. The PGIZA++ implementation, which is based
on (Lin et al, 2006), uses multiple aligning pro-
cesses. When all the processes finish, a master pro-
cess starts to collect the counts and normalizes them
to produce updated models. Child processes are then
restarted for the new iteration. The PGIZA++ does
not limit the number of CPUs being used, whereas
it needs to transfer (in some cases) large amounts

49



of data between processes. Therefore its perfor-
mance also depends on the speed of the network in-
frastructure. The MGIZA++ implementation, on the
other hand, starts multiple threads on a common ad-
dress space, and uses a mutual locking mechanism
to synchronize the access to the memory. Although
MGIZA++ can only utilize a single multi-processor
computer, which limits the number of CPUs it can
use, it avoids the overhead of slow network I/O. That
makes it an equally efficient solution for many tasks.
The two versions of alignment tools are available on-
line at http://www.cs.cmu.edu/q̃ing/giza.

The paper will be organized as follows, section 2
provides the basic algorithm of GIZA++, and sec-
tion 3 describes the PGIZA++ implementation. Sec-
tion 4 presents the MGIZA++ implementation, fol-
lowed by the profile and evaluation results of both
systems in section 5. Finally, conclusion and future
work are presented in section 6.

2 Outline of GIZA++

2.1 Statistical Word Alignment Models

GIZA++ aligns words based on statistical models.
Given a source stringfJ

1
= f1, · · · , fj , · · · , fJ and a

target stringeI
1

= e1, · · · , ei, · · · , eI , an alignmentA
of the two strings is defined as(Och and Ney, 2003):

A ⊆ {(j, i) : j = 1, · · · , J ; i = 0, · · · , I} (1)

in case thati = 0 in some(j, i) ∈ A, it represents
that the source wordj aligns to an “empty” target
worde0.

In statistical world alignment, the probability of a
source sentence given target sentence is written as:

P (fJ
1 |e

I
1) =

∑

aJ

1

P (fJ
1 , aJ

1 |e
I
1) (2)

in which aJ
1

denotes the alignment on the sen-
tence pair. In order to express the probability in
statistical way, several different parametric forms of
P (fJ

1
, aJ

1
|eI

1
) = pθ(f

J
1
, aJ

1
|eI

1
) have been proposed,

and the parametersθ can be estimated using maxi-
mum likelihood estimation(MLE) on a training cor-
pus(Och and Ney, 2003).

θ̂ = arg max
θ

S
∏

s=1

∑

a

pθ(fs, a|es) (3)

The best alignment of the sentence pair,

âJ
1 = arg max

aJ

1

p
θ̂
(fJ

1 , aJ
1 |e

I
1) (4)

is called Viterbi alignment.

2.2 Implementation of GIZA++

GIZA++ is an implementation of ML estimators for
several statistical alignment models, including IBM
Model 1 through 5 (Brown et al., 1993), HMM (Vo-
gel et al., 1996) and Model 6 (Och and Ney, 2003).

Although IBM Model 5 and Model 6 are sophisti-
cated, they do not give much improvement to align-
ment quality. IBM Model 2 has been shown to be
inferior to the HMM alignment model in the sense
of providing a good starting point for more complex
models. (Och and Ney, 2003) So in this paper we
focus on Model 1, HMM, Model 3 and 4.

When estimating the parameters, the EM (Demp-
ster et al., 1977) algorithm is employed. In the
E-step the counts for all the parameters are col-
lected, and the counts are normalized in M-step.
Figure 1 shows a high-level view of the procedure
in GIZA++. Theoretically the E-step requires sum-
ming over all the alignments of one sentence pair,
which could be(I + 1)J alignments in total. While
(Och and Ney, 2003) presents algorithm to imple-
ment counting over all the alignments for Model 1,2
and HMM, it is prohibitive to do that for Models 3
through 6. Therefore, the counts are only collected
for a subset of alignments. For example, (Brown
et al., 1993) suggested two different methods: us-
ing only the alignment with the maximum probabil-
ity, the so-called Viterbi alignment, or generating a
set of alignments by starting from the Viterbi align-
ment and making changes, which keep the align-
ment probability high. The later is called “pegging”.
(Al-Onaizan et al., 1999) proposed to use the neigh-
bor alignments of the Viterbi alignment, and it yields
good results with a minor speed overhead.

During training we starts from simple models use
the simple models to bootstrap the more complex
ones. Usually people use the following sequence:
Model 1, HMM, Model 3 and finally Model 4. Table
1 lists all the parameter tables needed in each stage
and their data structures1. Among these models, the

1In filename,prefix is a user specified parameter, andn is
the number of the iteration.

50



Figure 1: High-level algorithm of GIZA++

lexicon probability table (TTable) is the largest. It
should contain all thep(fi, ej) entries, which means
the table will have an entry for every distinct source
and target word pairfi, ej that co-occurs in at least
one sentence pair in the corpus. However, to keep
the size of this table manageable, low probability en-
tries are pruned. Still, when training the alignment
models on large corpora this statistical lexicon often
consumes several giga bytes of memory.

The computation time of aligning a sentence pair
obviously depends on the sentence length. E.g. for
IBM 1 that alignment isO(J ∗ I), for the HMM
alignment it isO(J + I2), with J the number of
words in the source sentence andI the number of
words in the target sentence. However, given that
the maximum sentence length is fixed, the time com-
plexity of the E-step grows linearly with the num-
ber of sentence pairs. The time needed to perform
the M-step is dominated by re-normalizing the lexi-
con probabilities. The worst case time complexity is
O(|VF | ∗ |VE |), where|VF | is the size of the source
vocabulary and|VE | is the size of the target vocabu-
lary. Therefore, the time complexity of the M-step is
polynomial in the vocabulary size, which typically
grows logarithmic in corpus size. As a result, the
alignment stage consumes most of the overall pro-
cessing time when the number of sentences is large.

Because the parameters are only updated during
the M-step, it will be no difference in the result
whether we perform the word alignment in the E-
step sequentially or in parallel2. These character-

2However, the rounding problem will make a small differ-

istics make it possible to build parallel versions of
GIZA++. Figure 2 shows the basic idea of parallel
GIZA++.

Figure 2: Basic idea of Parallel GIZA++

While working on the required modification to
GIZA++ to run the alignment step in parallel we
identified a bug, which needed to be fixed. When
training the HMM model, the matrix for the HMM
trellis will not be initialized if the target sentence has
only one word. Therefore some random numbers
are added to the counts. This bug will also crash
the system when linking againstpthreadlibrary. We
observe different alignment and slightly lower per-
plexity after fixing the bug3.

3 Multi-process version - PGIZA++

3.1 Overview

A natural idea of parallelizing GIZA++ is to sep-
arate the alignment and normalization procedures,
and spawn multiple alignment processes. Each pro-
cess aligns a chunk of the pre-partitioned corpus and
outputs partial counts. A master process takes these
counts and combines them, and produces the nor-
malized model parameters for the next iteration. The
architecture of PGIZA++ is shown in Figure 3.

ence in the results even when processing the sentences sequen-
tially, but in different order.

3The details of the bug can be found in: http://www.mail-
archive.com/moses-support@mit.edu/msg00292.html

51



Model Parameter tables Filename Description Data structure

Model 1 TTable prefix.t1.n Lexicon Probability Array of Array
HMM TTable prefix.thmm.n

ATable prefix.ahmm.n Align Table 4-D Array
HMMTable prefix.hhmm.n HMM Jump Map

Model 3/4 TTable prefix.t3.n
ATable prefix.a3.n Align Table
NTable prefix.n3.n Fertility Table 2-D Array
DTable prefix.d3.n Distortion Table 4-D Array
pz prefix.p0 3.n Probability for null wordsp0 Scalar

(Model 4 only) D4Table prefix.d4.n prefix.D4.n Distortion Table for Model 4 Map

Table 1: Model tables created during training

Figure 3: Architecture of PGIZA++

3.2 Implementation

3.2.1 I/O of the Parameter Tables

In order to ensure that the next iteration has the
correct model, all the information that may affect the
alignment needs to be stored and shared. It includes
model files and statistics over the training corpus.
Table 1 is a summary of tables used in each model.

Step Without With
Pruning(MB) Pruning(MB)

Model 1, Step 1 1,273 494
HMM , Step 5 1,275 293
Model 4 , Step 3 1,280 129

Table 2: Comparison of the size of count tables for the
lexicon probabilities

In addition to these models, the summation of
“sentence weight” of the whole corpus should be
stored. GIZA++ allows assigning a weightwi for
each sentence pairsi sto indicate the number of oc-
currence of the sentence pair. The weight is normal-

ized bypi = wi/
∑

i wi, so that
∑

i pi = 1. Then
the pi serves as a prior probability in the objective
function. As each child processes only see a portion
of training data, it is required to calculate and share
the

∑

i wi among the children so the values can be
consistent.

The tables and count tables of the lexicon proba-
bilities (TTable) can be extremely large if not pruned
before being written out. Pruning the count tables
when writing them into a file will make the result
slightly different. However, as we will see in Sec-
tion 5, the difference does not hurt translation per-
formance significantly. Table 2 shows the size of
count tables written by each child process in an ex-
periment with 10 million sentence pairs, remember
there are more than 10 children writing the the count
tables, and the master would have to read all these
tables, the amount of I/O is significantly reduced by
pruning the count tables.

3.2.2 Master Control Script

The other issue is the master control script. The
script should be able to start processes in other
nodes. Therefore the implementation varies accord-
ing to the software environment. We implemented
three versions of scripts based on secure shell, Con-
dor (Thain et al., 2005) and Maui.

Also, the master must be notified when a child
process finishes. In our implementation, we use sig-
nal files in the network file system. When the child
process finishes, it will touch a predefined file in a
shared folder. The script keeps watching the folder
and when all the children have finished, the script
runs the normalization process and then starts the
next iteration.

52



3.3 Advantages and Disadvantages

One of the advantages of PGIZA++ is its scalability,
it is not limited by the number of CPUs of a sin-
gle machine. By adding more nodes, the alignment
speed can be arbitrarily fast4. Also, by splitting the
corpora into multiple segments, each child process
only needs part of the lexicon, which saves mem-
ory. The other advantage is that it can adopt differ-
ent resource management systems, such as Condor
and Maui/Torque. By splitting the corpus into very
small segments, and submitting them to a scheduler,
we can get most out of clusters.

However, PGIZA++ also has significant draw-
backs. First of all, each process needs to load the
models of the previous iteration, and store the counts
of the current step on shared storage. Therefore,
I/O becomes a bottleneck, especially when the num-
ber of child processes is large. Also, the normal-
ization procedure needs to read all the count files
from network storage. As the number of child pro-
cesses increases, the time spent on reading/writing
will also increase. Given the fact that the I/O de-
mand will not increase as fast as the size of corpus
grows, PGIZA++ can only provide significant speed
up when the size of each training corpus chunk is
large enough so that the alignment time is signifi-
cantly longer than normalization time.

Also, one obvious drawback of PGIZA++ is its
complexity in setting up the environment. One has
to write scripts specially for the scheduler/resource
management software.

Balancing the load of each child process is an-
other issue. If any one of the corpus chunks takes
longer to complete, the master has to wait for it. In
other words, the speed of PGIZA++ is actually de-
termined by the slowest child process.

4 Multi-thread version - MGIZA++

4.1 Overview

Another implementation of parallelism is to run sev-
eral alignment threads in a single process. The
threads share the same address space, which means
it can access the model parameters concurrently
without any I/O overhead.

4The normalization process will be slower when the number
of nodes increases

The architecture of MGIZA++ is shown in Figure
4.

Data Sentence 
Provider

Thread 1 Thread 2 Thread n

Synchronized Assignment of 

Sentence Pairs

Model
Synchronized 

Count Storage

Main Thread

Normalization

Figure 4: Architecture of MGIZA++

4.2 Implementation

The main thread spawns a number of threads, us-
ing the same entry function. Each thread will ask
a provider for the next sentence pair. The sentence
provider is synchronized. The request of sentences
are queued, and each sentence pair is guaranteed to
be assigned to only one thread.

The threads do alignment in their own stacks, and
read required probabilities from global parameter ta-
bles, such as the TTable, which reside on the heap.
Because no update on these global tables will be per-
formed during this stage, the reading can be concur-
rent. After aligning the sentence pairs, the counts
need to be collected. For HMMTable and D4Table,
which use maps as their data structure, we cannot
allow concurrent read/write to the table, because the
map structure may be changed when inserting a new
entry. So we must either put mutual locks to post-
pone reading until writing is complete, or dupli-
cate the tables for each thread and merge them af-
terwards. Locking can be very inefficient because
it may block other threads, so the duplicate/merge
method is a much better solution. However, for the
TTable the size is too large to have multiple copies.
Instead, we put a lock on every target word, so only
when two thread try to write counts for the same tar-
get word will a collisions happen. We also have to
put mutual locks on the accumulators used to calcu-
late the alignment perplexity.

53



Table Synchronizations Method
TTable Write lock on every target words
ATable Duplicate/Merge
HMMTable Duplicate/Merge
DTable Duplicate/Merge
NTable Duplicate/Merge
D4Table Duplicate /Merge
Perplexity Mutual lock

Table 3: Synchronizations for tables in MGIZA++

Each thread outputs the alignment into its own
output file. Sentences in these files are not in sequen-
tial order. Therefore, we cannot simply concatenate
them but rather have to merge them according to the
sentence id.

4.3 Advantages and Disadvantages

Because all the threads within a process share the
same address space, no data needs to be transferred,
which saves the I/O time significantly. MGIZA++ is
more resource-thrifty comparing to PGIZA++, it do
not need to load copies of models into memory.

In contrast to PGIZA++, MGIZA++ has a much
simpler interface and can be treated as a drop-in
replacement for GIZA++, except that one needs
to run a script to merge the final alignment files.
This property makes it very simple to integrate
MGIZA++ into machine translation packages, such
as Moses(Koehn et al., 2007).

One major disadvantage of MGIZA++ is also ob-
vious: lack of scalability. Accelerating is limited
by the number of CPUs the node has. Compared
to PGIZA++ on the speed-up factor by each addi-
tional CPU, MGIZA++ also shows some deficiency.
Due to the need for synchronization, there are al-
ways some CPU time wasted in waiting.

5 Experiments

5.1 Experiments on PGIZA++

For PGIZA++ we performed training on an Chinese-
English translation task. The dataset consists of ap-
proximately 10 million sentence pairs with 231 mil-
lion Chinese words and 258 million English words.
We ran both GIZA++ and PGIZA++ on the same
training corpus with the same parameters, then ran
Pharaoh phrase extraction on the resulting align-
ments. Finally, we tuned our translation systems on
the NIST MT03 test set and evaluate them on NIST

MT06 test set. The experiment was performed on
a cluster of several Xeon CPUs, the storage of cor-
pora and models are on a central NFS server. The
PGIZA++ uses Condor as its scheduler, splitting the
training data into 30 fragments, and ran training in
both direction (Ch-En, En-Ch) concurrently. The
scheduler assigns11 CPUs on average to the tasks.
We ran 5 iterations of Model 1 training, 5 iteration
of HMM, 3 Model 3 iterations and 3 Model 4 iter-
ations. To compare the performance of system, we
recorded the total training time and the BLEU score,
which is a standard automatic measurement of the
translation quality(Papineni et al., 2002). The train-
ing time and BLEU scores are shown in Table 4:5

Running (TUNE) (TEST)
Time MT03 MT06 CPUs

GIZA++ 169h 32.34 29.43 2

PGIZA++ 39h 32.20 30.14 11

Table 4: Comparison of GIZA++ and PGIZA++

The results show similar BLEU scores when us-
ing GIZA++ and PGIZA++, and a 4 times speed up.

Also, we calculated the time used in normaliza-
tion. The average time of each normalization step is
shown in Table 5.

Per-iteration (Avg) Total
Model 1 47.0min 235min (3.9h)
HMM 31.8min 159min (2.6h)

Model 3/4 25.2 min 151min (2.5h)

Table 5: Normalization time in each stage

As we can see, if we rule out the time spent in
normalization, the speed up is almost linear. Higher
order models require less time in the normalization
step mainly due to the fact that the lexicon becomes
smaller and smaller with each models (see Table 2.
PGIZA++, in small amount of data,

5.2 Experiment on MGIZA++

Because MGIZA++ is more convenient to integrate
into other packages, we modified the Moses sys-
tem to use MGIZA++. We use the Europal English-
Spanish dataset as training data, which contains 900
thousand sentence pairs, 20 million English words
and 20 million Spanish words. We trained the

5All the BLEU scores in the paper are case insensitive.

54



English-to-Spanish system, and tuned the system
on two datasets, the WSMT 2006 Europal test set
(TUNE1) and the WSMT news commentary dev-
test set 2007 (TUNE2). Then we used the first pa-
rameter set to decode WSMT 2006 Europal test set
(TEST1) and used the second on WSMT news com-
mentary test set 2007 (TEST2)6. Table 6 shows the
comparison of BLEU scores of both systems. listed
in Table 6:

TUNE1 TEST1 TUNE2 TEST2
GIZA++ 33.00 32.21 31.84 30.56

MGIZA++ 32.74 32.26 31.35 30.63

Table 6: BLEU Score of GIZA++ and MGIZA++

Note that when decoding using the phrase table
resulting from training with MGIZA++, we used
the parameter tuned for a phrase table generated
from GIZA++ alignment, which may be the cause
of lower BLEU score in the tuning set. However,
the major difference in the training comes from fix-
ing the HMM bug in GIZA++, as mentioned before.

To profile the speed of the system according to
the number of CPUs it use, we ran MGIZA++ on
1, 2 and 4 CPUs of the same speed. When it runs
on 1 CPU, the speed is the same as for the original
GIZA++. Table 7 and Figure 5 show the running
time of each stage:

4000

5000

6000

7000

8000

m
e
(s
)

Model 1

HMM

Model3/4

0

1000

2000

3000

1 2 3 4

T
im

CPUS

Figure 5: Speed up of MGIZA++

When using 4 CPUs, the system uses only41%
time comparing to one thread. Comparing to
PGIZA++, MGIZA++ does not have as high an ac-

6http://www.statmt.org/wmt08/shared-task.html

CPUs M1(s) HMM(s) M3,M4(s) Total(s)
1 2167 5101 7615 14913
2 1352 3049 4418 8854

(62%) (59%) (58%) (59%)
4 928 2240 2947 6140

(43%) (44%) (38%) (41%)

Table 7: Speed of MGIZA++

celeration rate. That is mainly because of the re-
quired locking mechanism. However the accelera-
tion is also significant, especially for small training
corpora, as we will see in next experiment.

5.3 Comparison of MGIZA++ and PGIZA++

In order to compare the acceleration rate of
PGIZA++ and MGIZA++, we also ran PGIZA++ in
the same dataset as described in the previous section
with 4 children. To avoid the delay of starting the
children processes, we chose to use ssh to start re-
mote tasks directly, instead of using schedulers. The
results are listed in Table 8.

M1(s) HMM(s) M3,M4(s) Total(s)
MGIZA+1CPU 2167 5101 7615 14913
MGIZA+4CPUs 928 2240 2947 6140
PGIZA+4Nodes 3719 4324 4920 12963

Table 8: Speed of PGIZA++ on Small Corpus

There is nearly no speed-up observed, and in
Model 1 training, we observe a loss in the speed.
Again, by investigating the time spent in normaliza-
tion, the phenomenon can be explained (Table 9):

Even after ruling out the normalization time, the
speed up factor is smaller than MGIZA++. That
is because of reading models when child processes
start and writing models when child processes finish.

From the experiment we can conclude that
PGIZA++ is more suited to train on large corpora
than on small or moderate size corpora. It is also im-
portant to determine whether to use PGIZA++ rather
than MGIZA++ according to the speed of network
storage infrastructure.

5.4 Difference in Alignment

To compare the difference in final Viterbi alignment
output, we counted the number of sentences that
have different alignments in these systems. We use

55



Per-iteration (Avg) Total
Model 1 8.4min 41min (0.68h)
HMM 7.2min 36min (0.60h)

Model 3/4 5.7 min 34min (0.57h)
Total 111min (1.85h)

Table 9: Normalization time in each stage : small data

GIZA++ with the bug fixed as the reference. The
results of all other systems are listed in Table 10:

Diff Lines Diff Percent
GIZA++(origin) 100,848 10.19%
MGIZA++(4CPU) 189 0.019%
PGIZA++(4Nodes) 18,453 1.86%

Table 10: Difference in Viterbi alignment (GIZA++ with
the bug fixed as reference)

From the comparison we can see that PGIZA++
has larger difference in the generated alignment.
That is partially because of the pruning on count ta-
bles.

To also compare the alignment score in the differ-
ent systems. For each sentence pairi = 1, 2, · · · , N ,
assume two systemsb andc have Viterbi alignment
scoresSb

i , Sc
i . We define the residualR as:

R = 2
∑

i

(

|Sb

i
− Sc

i
|

(Sb

i
+ Sc

i
)

)

/N (5)

The residuals of the three systems are listed in Table
11. The residual result shows that the MGIZA++ has
a very small (less than 0.2%) difference in alignment
scores, while PGIZA++ has a larger residual.

The results of experiments show the efficiency
and also the fidelity of the alignment generated by
the two versions of parallel GIZA++. However,
there are still small differences in the final align-
ment result, especially for PGIZA++. Therefore,
one should consider which version to choose when
building systems. Generally speaking, MGIZA++
provides smoother integration into other packages:
easy to set up and also more precise. PGIZA++ will
not perform as good as MGIZA++ on small-size cor-
pora. However, PGIZA++ has good performance on
large data, and should be considered when building
very large scale systems.

6 Conclusion

The paper describes two parallel implementations
of the well-known and widely used word alignment

R
GIZA++(origin) 0.6503
MGIZA++(4CPU) 0.0017
PGIZA++(4Nodes) 0.0371

Table 11: Residual in Viterbi alignment scores (GIZA++
with the bug fixed as reference)

tool GIZA++. PGIZA++ does alignment on a num-
ber of independent processes, uses network file sys-
tem to collect counts, and performs normalization by
a master process. MGIZA++ uses a multi-threading
mechanism to utilize multiple cores and avoid net-
work transportation. The experiments show that the
two implementation produces similar results with
original GIZA++, but lead to a significant speed-up
in the training process.

With compatible interface, MGIZA++ is suit-
able for a drop-in replacement for GIZA++, while
PGIZA++ can utilize huge computation resources,
which is suitable for building large scale systems
that cannot be built using a single machine.

However, improvements can be made on both
versions. First, a combination of the two imple-
mentation is reasonable, i.e. running multi-threaded
child processes inside PGIZA++’s architecture. This
could reduce the I/O significantly when using the
same number of CPUs. Secondly, the mechanism
of assigning sentence pairs to the child processes can
be improved in PGIZA++. A server can take respon-
sibility to assign sentence pairs to available child
processes dynamically. This would avoid wasting
any computation resource by waiting for other pro-
cesses to finish. Finally, the huge model files, which
are responsible for a high I/O volume can be reduced
by using binary formats. A first implementation of a
simple binary format for the TTable resulted in files
only about 1/3 in size on disk compared to the plain
text format.

The recent development of MapReduce frame-
work shows its capability to parallelize a variety of
machine learning algorithms, and we are attempting
to port word alignment tools to this framework. Cur-
rently, the problems to be addressed is the I/O bot-
tlenecks and memory usage, and an attempt to use
distributed structured storage such as HyperTable to
enable fast access to large tables and also performing
filtering on the tables to alleviate the memory issue.

56



References

Arthur Dempster, Nan Laird, and Donald Rubin. 1977.
Maximum Likelihood From Incomplete Data via the
EM Algorithm. Journal of the Royal Statistical Soci-
ety, Series B, 39(1):138

Douglas Thain, Todd Tannenbaum, and Miron Livny.
2005. Distributed Computing in Practice: The Con-
dor Experience.Concurrency and Computation: Prac-
tice and Experience, 17(2-4):323-356

Franz Josef Och and Hermann Ney. 2003.A Systematic
Comparison of Various Statistical Alignment Models.
Computational Linguistics, 29(1):19-51

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, Evan Herbst. 2007.Moses: Open Source
Toolkit for Statistical Machine Translation. ACL
2007, Demonstration Session, Prague, Czech Repub-
lic

Peter F. Brown, Stephan A. Della Pietra, Vincent J. Della
Pietra, Robert L. Mercer. 1993.The Mathematics
of Statistical Machine Translation: Parameter Estima-
tion. Computational Linguistics, 19(2):263-311

Stephan Vogel, Hermann Ney and Christoph Tillmann.
1996. HMM-based Word Alignment in Statistical
Translation. In COLING ’96: The 16th International
Conference on Computational Linguistics, pp. 836-
841, Copenhagen, Denmark.

Xiaojun Lin, Xinhao Wang and Xihong Wu. 2006.
NLMP System Description for the 2006 NIST MT
Evaluation. NIST 2006 Machine Translation Evalu-
ation

Yaser Al-Onaizan, Jan Curin, Michael Jahr, Kevin
Knight, John D. Lafferty, I. Dan Melamed, David
Purdy, Franz J. Och, Noah A. Smith and David
Yarowsky. 1999. Statistical Machine Trans-
lation. Final Report JHU Workshop, Available at
http://www.clsp.jhu.edu/ws99/projects/mt/finalreport/mt-
final-reports.ps

Kishore Papineni, Salim Roukos, Todd Ward and Wei-
Jing Zhu 2002.BLEU: a Method for Automatic Eval-
uation of machine translation.Proc. of the 40th An-
nual Conf. of the Association for Computational Lin-
guistics (ACL 02), pp. 311-318, Philadelphia, PA

57


