
Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 129–136,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Support Collaboration by Teaching Fundamentals

Matthew Stone
Computer Science and Cognitive Science

Rutgers, The State University of New Jersey
110 Frelinghuysen Road, Piscataway NJ 08854-8019

Matthew.Stone@Rutgers.EDU

Abstract

This paper argues for teaching computer sci-
ence to linguists through a general course at
the introductory graduate level whose goal is
to prepare students of all backgrounds for col-
laborative computational research, especially
in the sciences. We describe our work over
the past three years in creating a model course
in the area, calledComputational Thinking.
What makes this course distinctive is its com-
bined emphasis on the formulation and solu-
tion of computational problems, strategies for
interdisciplinary communication, and critical
thinking about computational explanations.

1 Introduction

The central long-term challenge of computational
linguistics ismeaningfulness. I want to build situ-
ated, embodied interactive agents that can work with
people through language to achieve a shared under-
standing of the world. We have an increasing toolkit
to approach such problems. Linguistics gives us
powerful resources for representing utterance struc-
ture and interpretation, for example through the fam-
ily of formalisms and models that have grown up
around dynamic semantics and discourse representa-
tion theory. Supervised machine learning has proved
to be a profoundly successful software engineering
methodology for scaling representations and mod-
els from isolated instances to systematic wide cov-
erage. Nevertheless, talking robots are a long way
off. This is not a problem that is likely to be solved
by writing down a corpus of interpretations for sen-
tences (whatever that might mean) and training up

the right kind of synchronous grammar. Nor is
it likely to be solved by some one lone genius—
half Aravind Joshi, half Richard Stallman—driven
to learn and implement solo all of linguistics, artifi-
cial intelligence and cognitive science. Progress will
come through teamwork, as groups from disparate
backgrounds come together to share their discov-
eries, perspectives, and technical skills on concrete
projects of mutual interest. In the course such col-
laborations, I expect research to unlock fundamental
new insights about the nature of meaning, about its
dependence on perception, action, linguistic knowl-
edge and social relationships, and about the archi-
tecture of systems that can pick up on, create, and
generalize meanings in their experience. This pa-
per offers an interim summary of my reflections on
preparing the next generation of scientists for this
endeavor.

My efforts are anchored to the specific commu-
nity where I work. Semantics at Rutgers involves a
core group of eight faculty from linguistics, philoso-
phy and computer science, with a committed group
of about twice that many PhD students. That’s three
or four students a year: not much if you’re think-
ing of running a class for them, but pretty big if the
aim is to place graduates, as we successfully have
recently, in positions where they can continue to do
semantics (that is, in academic research and tenure-
track faculty jobs). Interdisciplinary interaction is
the norm for our group; it means that each seman-
tics project inevitably introduces the team to ques-
tions, concepts and methodologies that lie outside
the background expertise its members bring to the
project as individuals. My own work is a good ex-

129



ample: papers like (DeVault et al., 2006) or (Lep-
ore and Stone, 2007) reveal interconnections be-
tween computational ideas and philosophical analy-
sis that my colleagues and I discovered in attempting
to bridge our different perspectives on meaning and
meaningfulness.

In my experience, what makes it possible for these
efforts to take up sophisticated computational ideas
is not getting everyone up to speed with a spe-
cific programming environment or linguistic formal-
ism. The key step is to get outsiders to appreciate
the arguments that computer scientists make, and
why they make them. Jeannette Wing (2006) calls
this Computational Thinking. Wing argues that you
should have a course where you teach first-year col-
lege students to think like computer scientists. But
her arguments apply just as cogently to graduate stu-
dents in the sciences, and to linguists in particu-
lar. Computation as a framework for data collec-
tion, data analysis, inference, and explanation has
become the norm in the physical and life sciences,
and is rapidly transforming the behavioral sciences
and especially now the environmental sciences. The
situation is not so different in the cultural fields of
media, arts and entertainment either—as video game
designers are quick to remind us. A wide swath
of researchers in any university are now interested
in supporting exploratory and innovative interdisci-
plinary computing research, and specifically in train-
ing future faculty to pursue and mentor such collab-
orations. We decided to make common cause with
them at Rutgers, since computational linguistics is
such a small group. So our computer science depart-
ment offers a general course calledComputational
Thinking at the introductory graduate level, aimed
at preparing researchers across fields to work on
collaborative projects involving computational re-
search. You have an opportunity to do the same.

2 Overview of the Course

We hold Computational Thinkingin three hour
blocks once a week. This responds to Rutgers’s
quirky geography, with philosophy, linguistics and
computer science each on different campuses along
a five-mile stretch of the main local thoroughfare,
route 18. Elsewhere, it might make more sense to
meet in more frequent, shorter sessions.

Each meeting is divided so that students spend
about half of each lecture session (and half of
each week’s work) on technical material drawn
from the standard computer science curriculum.
As outlined in Section 2.1, the technical mate-
rial mixes programming practice, problem-solving
techniques and theoretical tools, and aims to pro-
vide the key elements that are needed to appre-
ciate the computational considerations of an inter-
disciplinary research project. The typical format
of these sessions is live interactive literate pro-
gramming. We work in Scheme, supported by
the DrScheme system available at http://www.plt-
scheme.org/software/drscheme/. I beam an image of
the Scheme development environment in front of the
class and write, run, analyze and debug short pro-
grams on the fly. Students follow along on their lap-
tops, doing exercises, asking questions, and seeing
results as they go.

The remainder of each class meeting (and the as-
sociated outside coursework) explicitly focuses on
the interpretive effort and people skills required to
reframe the ideas and methodologies of another field
in computational terms. Partly, as outlined in Sec-
tion 2.2, that involves developing a shared under-
standing of how computers accomplish the represen-
tation, processing and problem solving they do, so
that students become comfortable at viewing com-
putational systems abstractly as manipulating gen-
erative scientific models and knowledge. Funda-
mentally this understanding is what enables an in-
terdisciplinary team to reconcile the principles of an
outside field with the practice of computer science.
In addition, as outlined in Section 2.3, we offer ex-
plicit discussion of the conversational strategies and
interactive skills involved in bridging the different
perspectives of an interdisciplinary team, and over-
coming the divides of disjoint academic cultures, the
stresses of work and deadlines, and the many possi-
bilities for misunderstanding.

Homework mixes short benchmark problems,
which allow students to assess their progress against
objective standards, with open-ended collaborative
assignments that let students apply their domain ex-
pertise and challenge their developing skills and pro-
gramming, problem solving and teamwork. This
year students worked individually on a set of exer-
cises on list processing, matching of recursive struc-

130



tures, and interpreting programming languages de-
signed to give some general competence in Scheme.
Then they worked in teams of three to four to de-
velop a web site using DrScheme’s Scheme servlet
architecture. Finally, they explored the possibilities
for computational research in their home field in a
brief speculative paper.

The course has been offered twice, with about a
dozen students participating each session. Three or
four each year—the expected number—come from
linguistics and the philosophy of language. The
small numbers nevertheless add up. Already more
than half the students in this spring’s dissertation
reading group in the philosophy of language had
takenComputational Thinking. The group’s focus
was context, and the related problems of common
ground, presupposition, anaphora and accommoda-
tion. You could feel the differenceComputational
Thinking made for many of the students, philoso-
phers included, who succeeded not only in framing
computational arguments about context and context
change, but also in synthesizing computational con-
cerns with philosophical ones in explaining linguis-
tic interpretation in terms of context.

2.1 Technical ideas

The technical goal of the course is to give stu-
dents greater facility in stating problems in compu-
tational terms and understanding and building so-
lutions to computational problems. The perspec-
tive aligns with the online textbookHow to Design
Programs(Felleisen et al., 2001), which accompa-
nies the Dr Scheme distribution, but we emphasize
its continuity with the general mathematical prob-
lem solving that students have been doing since el-
ementary school (Polya, 1945). Indeed, following
Wing (2006), we see computational thinking as or-
dinary and pervasive. “It’s not just the software and
hardware artifacts we produce that will be physically
present everywhere and touch our lives all the time,
it will be the computational concepts we use to ap-
proach and solve problems, manage our daily lives,
and communicate and interact with other people”
(Wing, 2006, p. 35).

On our view, the main challenge of learning to
think like a computer scientist—or to argue with
one—is the abstraction and flexibility you need.
For example, modern machine learning techniques

amount to finding a solution to a problem that is par-
tially specified in advance but partially determined
by empirical evidence that is available to the system
but not to the programmer. Thus we teach compu-
tational problem solving through case studies whose
input and output gets progressively more and more
abstract and remote from the programmer. The pro-
gression is suggested by the following examples,
which we cover either by developing solutions in in-
class literate programming demonstrations or by as-
signing them as programming projects.

• Answer a determinate mathematical question,
but one whose size or complexity invites the use
of an automatic tool in obtaining the results. The
sieve of Eratosthenes is a representative case: list
the prime numbers less than 100.
• Answer a mathematical question parameterized

by an arbitrary and potentially open-ended input.
Prototypical example: given a list of numbers de-
termine its maximum element.
• Answer a mathematical question where the in-

put needs to be understood as a generative, compo-
sitional representation. Given the abstract syntax of
a formula of propositional logic as a recursive list
structure and an interpretation assigning truth val-
ues to the atomic proposition letters, determine the
truth value of the whole formula.
• Answer a question where the input needs to

be understood as the specification of a computation,
and thus fundamentally similar in kind to the so-
lution. Write an interpreter for a simple program-
ming language (a functional language, like a frag-
ment of scheme; an imperative language involving
action and state; or a logical language involving the
construction of answer representations as in a pro-
duction rule shell).
• Answer a mathematical question where theout-

put may best be understood as the specification of a
computation, depending on input programs or data.
A familiar case is taking the derivative of an input
function, represented as a Scheme list. A richer
example that helps to suggest the optimization per-
spective of machine learning algorithms is Huffman
coding. Given a sequence of input symbols, come
up with programs that encode each symbol as a se-
quence of bits and decode bit sequences as symbol
sequences in such a way that the encoded sequence

131



is as short as possible.

• Answer a question whereboth input and output
need to be understood as generative compositional
representations with a computational interpretation.
Reinforcement learning epitomizes this case. Given
training data of a set of histories of action in the
world including traces of perceptual inputs, outputs
selected and reward achieved, compute a policy—
a suitable function from perception to action—that
acts to maximize expected reward if the environment
continues as patterned in the training data.

We go slowly, spending a couple weeks on each
case, and treat each case as an opportunity to teach a
range of important ideas. Students see several useful
data structures, including association lists (needed
for assignments of values to variables in logical for-
mulas and program environments), queues (as an
abstraction of data-dependent control in production
rules for example), and heaps (part of the infrastruc-
ture for Huffman coding). They get an introduction
to classic patterns for the design of functional pro-
grams, such as mapping a function over the elements
of a list, traversing a tree, accumulating results, and
writing helper functions. They get some basic the-
oretical tools for thinking about the results, such as
machine models of computation, the notion of com-
putability, and measures of asymptotic complexity.
Finally, they see lots of different kinds of represen-
tations through which Scheme programs can encode
knowledge about the world, including mathemati-
cal expressions, HTML pages, logical knowledge
bases, probabilistic models and of course Scheme
programs themselves.

The goal is to have enough examples that stu-
dents get a sense that it’s useful and powerful to
think about computation in a more abstract way.
Nevertheless, it’s clear that the abstraction involved
in these cases eventually becomes very difficult.
There’s no getting around this. When these stu-
dents are working successfully on interdisciplinary
teams, we don’t want them struggling across dis-
ciplines to encode specific facts on a case-by-case
basis. We want them to be working collaboratively
to design tools that will let team members express
themselves directly in computational terms and ex-
plore their own computational questions.

2.2 Interdisciplinary Readings

There is a rich literature in cognitive science which
reflects on representation and computation as expla-
nations of complex behavior. We read extensively
from this literature throughout the course. Engaging
with these primary sources helps students see how
their empirical expertise connects with the mathe-
matical principles that we’re covering in our techni-
cal sessions. It energizes our discussions of knowl-
edge, representation and algorithms with provoca-
tive examples of real-world processes and a dynamic
understanding of the scientific questions involved in
explaining these processes as computations.

For example, we read Newell and Simon’s fa-
mous discussions of knowledge and problem solv-
ing in intelligent behavior (Newell and Simon, 1976;
Newell, 1982). But Todd and Gigerenzer (2007)
have much better examples of heuristic problem
solving from real human behavior, and much bet-
ter arguments about how computational thinking and
empirical investigation must be combined together
to understand the problems that intelligent agents
have to solve in the real world. Indeed, students
should expect to do science to find out what repre-
sentations and computations the brain uses—that’s
why interdisciplinary teamwork is so important. We
read Gallistel’s survey (2008) to get a sense of the in-
creasing behavioral evidence from a range of species
for powerful and general computational mechanisms
in cognition. But we also read Brooks (1990) and his
critics, especially Kirsh (1991), as a reminder that
the final explanations may be surprising.

We also spend a fair amount of time consider-
ing how representations might be implemented in
intelligent hardware—whether that hardware takes
the form of silicon, neurons, or even the hydraulic
pipes, tinkertoys, dominoes and legos described by
Hillis (1999). Hardware examples like Agre’s net-
work models of prioritized argumentation for prob-
lem solving and decision making (1997) demystify
computation, and help to show why the knowledge
level or symbol level is just an abstract, functional
characterization of a system. Similarly, readings
from connectionism such as (Hinton et al., 1986)
dramatize the particular ways that network mod-
els of parallel representation and computation an-
ticipate possible explanations in cognitive neuro-

132



science. However, we also explore arguments that
symbolic representations, even in a finite brain, may
not be best thought of as a prewired inventory of fi-
nite possibilities (Pylyshyn, 1984). Computational
cognitive science like Hofstadter’s (1979)—which
emphasizes the creativity that inevitably accompa-
nies compositional representations and general com-
putational capacity—is particularly instructive. In
emphasizing the paradoxes of self-reference and the
generality of Turing machines, it tells a plausible
but challenging story that’s diametrically opposed to
the “modular” Zeitgeist of domain-specific adaptive
cognitive mechanisms.

2.3 Communication

Another tack to motivate course material and keep
students engaged is to focus explicitly on interdis-
ciplinary collaboration as a goal and challenge for
work in the course. We read descriptions of more or
less successful interdisciplinary projects, such as Si-
mon’s description ofLogic Theorist(1996) and Cas-
sell’s account of interdisciplinary work on embod-
ied conversational agents (2007). We try to find our
own generalizations about what allowed these teams
to work together as well as they did, and what we
could do differently.

In tandem, we survey social science research
about what allows diverse groups to succeed in
bridging their perspectives and communicating ef-
fectively with one another. Our sourcebook isDiffi-
cult Conversations(Stone et al., 1999), a guidebook
for conflict resolution developed by the Harvard Ne-
gotiation Project. It can be a bit awkward to teach
such personal material in a technical class, but many
students are fascinated to explore suggestions about
interaction that work just as well for roommates and
significant others as for interdisciplinary colleagues.
Anyway, the practices ofDifficult Conversationsdo
fit with the broader themes of the class; they play out
directly in the joint projects and collaborative dis-
cussions that students must undertake to complete
the class.

I think it’s crucial to take collaboration seriously.
For many years, we offered a graduate computer sci-
ence course on computational linguistics as a first
interdisciplinary experience. We welcomed scien-
tists from the linguistics, philosophy and library and
information science departments, as well as engi-

neers from the computer science and electrical and
computer engineering departments, without expect-
ing anyone to bring any special background to the
course. Nevertheless, we encouraged both individ-
ualized projects and team projects, and worked to
support interdisciplinary teams in particular.

We were unsatisfied with this model based on its
results. We discovered that we hadn’t empowered
science students to contribute their expertise effec-
tively to joint projects, nor had we primed com-
puter science students to anticipate and welcome
their contributions. So joint projects found computer
scientists doing too much translating and not enough
enabling for their linguist partners. Linguists felt
like they weren’t pulling their weight or engaging
with the real issues in the field. Computer scientists
grew frustrated with the distance of their work from
specific practical problems.

Reading and reflecting on about generally-
accessible examples goes a long way to bridge the
divide. One case study that works well is the history
of Logic Theorist—the first implemented software
system in the history of AI, for building proofs in
the propositional logic of Whitehead and Russell’s
Principia Mathematica(1910). In 1955–56, when
Herb Simon, Allen Newell and Cliff Shaw wrote
it, they were actually an interdisciplinary team. Si-
mon was a social scientist trained at the Univer-
sity of Chicago, now a full professor of business,
at what seemed like the peak of a distinguished ca-
reer studying human decisions in the management
of organizations. Newell and Shaw were whiz-kid
hackers—Newell was a Carnegie Tech grad student
interested in software; Shaw was RAND corpora-
tion staff and a builder of prototype research com-
puters. Their work together is documented in two
fun chapters of Simon’s memoirModels of My Life
(1996). The story shows how computational col-
laboration demands modest but real technical exper-
tise and communication skills of all its practitioners.
Reading the story early on helps students appreciate
the goal of the computational thinking class from
the beginning: to instill these key shared concepts,
experiences, attitudes and practices, and thereby to
scaffold interdisciplinary technical research.

To work together, Simon, Newell and Shaw
needed to share a fairly specific understanding of
the concept of arepresentation(Newell and Si-

133



mon, 1976). Their work together consisted of tak-
ing knowledge about their domain and regiment-
ing it into formal structures and manipulations that
they could actually go on to implement. The frame-
work they developed for conceptualizing this pro-
cess rested on representations as symbolic struc-
tures: formal objects which they could understand
as invested with meaning and encoding knowledge,
but which they could also realize in computer sys-
tems and use to define concrete computational op-
erations. In effect, then, the concept of representa-
tion defined their project together, and they all had
to master it.

Simon, Newell and Shaw also needed a shared un-
derstanding of the computational methodology that
would integrate their different contributions into the
final program. Their work centered around the de-
velopment of a high-level programming language
that allowed Simon, Newell and Shaw to coordinate
their efforts together in a particularly transparent
way. Simon workedin the programming language,
using its abstract resources to specify formulas and
rules of inference in intuitive but precise terms; on
his own, he could think through the effects of these
programs. Newell and Shaw worked tobuild the
programming language, by developing the underly-
ing machinery to realize the abstract computations
that Simon was working with. The programming
language was aproductof their effort together; its
features were negotiated based on Simon’s evolving
conceptual understanding of heuristic proof search
and Newell and Shaw’s engagement with the prac-
tical demands of implementation. The language is
in effect a fulcrum where both domain expertise and
computational constraints exercise their leverage on
one another. This perspective on language design
comes as a surprise both to scientists, who are used
to thinking of programming paradigms as remote
and arcane, and to computer scientists, who are used
to thinking of them solely in terms of their software
engineering patterns, but it remains extremely pow-
erful. To make it work, everyone involved in the re-
search has to understand how their judicious collab-
orative exploration of new techniques for specifica-
tion and programming can knit their work together.

In the course of developing their language, Si-
mon, Newell and Shaw also came to share a set
of principles for discussing the computational fea-

sibility of alternative design decisions. Proof, like
most useful computational processes, is most natu-
rally characterized as a search problem. Inevitably,
this meant that the development ofLogic Theorist
ran up against the possibility of combinatorial explo-
sions and the need for heuristics and approximations
to overcome them. The solutions Simon, Newell and
Shaw developed reflected the team’s combined in-
sight in constructing representations for proof search
that made the right information explicit and afforded
the right symbolic manipulations. Many in the class,
especially computer scientists, will have seen such
ideas in introductory AI courses, so it’s challeng-
ing and exciting for them to engage with Simon’s
presentation of these ideas in their original interdis-
ciplinary context as new, computational principles
governing psychological explanations.

Finally—and crucially—this joint effort reflected
the team’s social engagement with each other, not
just their intellectual relationships. In their decades
of work together, Simon and Newell cultivated and
perfected a specific set of practices for engaging and
supporting each other in collaborative work. Simon
particularly emphasizes their practice of open dis-
cussion. Their talk didn’t always aim directly at
problem-solving or design. In the first instance, the
two just worked towards understanding—distilling
potential insights into mutually-satisfying formula-
tions. They put forward vague and speculative ideas,
and engaged with them constructively, not critically.

Simon’s memoirs also bring out the respect
the teammates had for each others’ expertise and
work styles, especially when different—as Newell’s
brash, hands-on, late-night scheming was for
Simon—and the shared commitment they brought
to making their work together fun. Their good re-
lationship as people may have been just as impor-
tant to their success at interdisciplinary research as
the shared interests, ideas and intellectual techniques
they developed together.

These kinds of case studies allow students to
make sense of the goals and methods of the course
in advance of the technical and interpretive details.
Not much has changed sinceLogic Theorist. Effec-
tive computational teamwork still involves develop-
ing a conceptual toolbox that allows all participants
on the project to formulate precise representations
and engage with those representations in computa-

134



tional terms. And it still requires a more nuanced ap-
proach to communication, interaction and collabora-
tion than more homogeneous efforts—one focused
not just on solving problems and getting work done
but on fostering teammates’ learning and commu-
nication, by addressing phenomena from multiple
perspectives, building shared vocabulary, and find-
ing shared values and satisfaction. These skills are
abstract and largely domain independent. The class
allows students to explore them.

3 Interim Assessment

The resources for creating ourComputational
Thinking class came from the award of a train-
ing grant designed to crossfertilize vision research
between psychology and computer science. The
course has now become a general resource for our
cognitive science community. It attracts psychol-
ogists from across the cognitive areas, linguists,
philosophers, and information scientists. We also
make sure that there is a critical mass of computer
scientists to afford everyone meaningful collabora-
tive experiences across disciplines. For example,
participation is required for training grant partici-
pants from computer science, and other interdisci-
plinary projects invite their computer science stu-
dents to build community.

One sign of the success of the course is that stu-
dents take responsibility for shaping the course ma-
terial to facilitate their own joint projects. Our ini-
tial version of the course emphasized the technical
ideas and programming techniques described in Sec-
tion 2.1. Students asked for more opportunities for
collaboration; we added it right away in year one.
Students also asked for more reading and discussion
to get a sense of what computation brings to inter-
disciplinary research, and what it requires of it. We
added that in year two, providing much of the ma-
terials now summarized in Sections 2.2 and 2.3. In
general, we found concrete and creative discussions
aimed at an interdisciplinary audience more helpful
than the general philosophical statements that com-
puter scientists offer of the significance of computa-
tion as a methodology. We will continue to broaden
the reading list with down-to-earth materials cover-
ing rich examples.

From student feedback with the second running

of the class, the course could go further to get stu-
dents learning from each other and working together
early on. We plan to respond by giving an initial
pretest to get a sense of the skills students bring
to the class and pair people with partners of dif-
fering skills for an initial project. As always this
project will provide a setting where all students ac-
quire a core proficiency in thinking precisely about
processes and representations. But by connecting
more experienced programmers with novices from
the beginning, we hope to allow students to ramp up
quickly into hands-on exploration of specification,
program design and collaborative computational re-
search. Possible initial projects include writing a
production rule shell and using it to encode knowl-
edge in an application of identifying visual objects,
recognizing language structure, diagnosing causes
for observed phenomena or planning goal-directed
activity; or writing an interpreter to evaluate math-
ematical expressions and visualize the shapes of
mathematical objects or probabilistic state spaces.

Anecdotally, we can point to a number of cases
whereComputational Thinkinghas empowered stu-
dents to leverage computational methods in their
own research. Students have written programs to
model experimental manipulations, analyze data, or
work through the consequences of a theory, where
otherwise they would have counted on pencil-and-
paper inference or an off-the-shelf tool. However, as
yet, we have only a preliminary sense of how well
the course is doing at its goal of promoting com-
putational research and collaboration in the cogni-
tive science community here. Next year we will get
our first detailed assessment, however, with the first
offering of a new follow-on course called “Inter-
disciplinary Methods in Perceptual Science”. This
course explicitly requires students to team up in
extended projects that combine psychological and
computational methods for visual interaction. We
will be watching students’ experience in the new
class closely to see whether our curriculum supports
them in developing the concepts, experiences, atti-
tudes and practices they need to work together.

4 Conclusion

Teamwork in computational linguistics often starts
by endowing machine learning methods with mod-

135



els or features informed by the principles and re-
sults of linguistic theory. Teams can also work
together to formalize linguistic knowledge and in-
terpretation for applications, through grammar de-
velopment and corpus annotation, in ways that fit
into larger system-building efforts. More generally,
we need to bridge the science of conversation and
software architecture to program interactive systems
that exhibit more natural linguistic behavior. And
we can even bring computation and linguistics to-
gether outside of system building: pursuing compu-
tational theories as an integral part of the explanation
of human linguistic knowledge and behavior.

To work on such teams, researchers do have to
master a range of specific intellectual connections.
But they need the fundamentals first. They have
to appreciate the exploratory nature of interdisci-
plinary research, and understand how such work can
be fostered by sharing representational insight, de-
signing new high-level languages and thinking crit-
ically about computation.Computational Thinking
is our attempt to teach the fundamentals directly.

You should be find it easy to make a case for this
course at your institution. In these days of declin-
ing enrollments and interdisciplinary fervor, most
departments will welcome a serious effort to culti-
vate the place of CS as a bridge discipline for re-
search projects across the university.Computational
Thinkingis a means to get more students taking our
classes and drawing on our concepts and discoveries
to work more effectively with us! As the course sta-
bilizes, we plan to reach out to other departments
with ongoing computational collaborations, espe-
cially economics and the life and environmental sci-
ences departments. You could design the course
from the start for the full spectrum of computational
collaborations already underway at your university.

Acknowledgments

Supported by IGERT 0549115. Thanks to the stu-
dents in 198:503 and reviewers for the workshop.

References

Philip E. Agre. 1997.Computation and Human Experi-
ence. Cambridge.

Rodney A. Brooks. 1990. Elephants don’t play chess.
Robotics and Autonomous Systems, 6:3–15.

Justine Cassell. 2007. Body language: Lessons from
the near-human. In J. Riskin, editor,Genesis Redux:
Essays in the History and Philosophy of Artificial In-
telligence, pages 346–374. Chicago.

David DeVault, Iris Oved, and Matthew Stone. 2006. So-
cietal grounding is essential to meaningful language
use. InProceedings of AAAI, pages 747–754.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt,
and Shriram Krishnamurthi. 2001.How to Design
Programs: An Introduction to Computing and Pro-
gramming. MIT.

C. R. Gallistel. 2008. Learning and representation. In
John H. Byrne, editor,Learning and Memory: A Com-
prehensive Reference. Elsevier.

W. Daniel Hillis. 1999.The Pattern on the Stone. Basic
Books.

Geoffrey E. Hinton, David E. Rumelhart, and James L.
McClelland. 1986. Distributed representations. In
Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Volume 1: Foundations,
pages 77–109. MIT.

Douglas Hofstadter. 1979.Gödel, Escher, Bach: An
Eternal Golden Braid. Basic Books.

David Kirsh. 1991. Today the earwig, tomorrow man?
Artificial Intelligence, pages 161–184.

Ernest Lepore and Matthew Stone. 2007. Logic and se-
mantic analysis. In Dale Jacquette, editor,Handbook
of the Philosophy of Logic, pages 173–204. Elsevier.

Allen Newell and Herbert A. Simon. 1976. Computer
science as empirical inquiry: Symbols and search.
Communications of the ACM, 19(3):113–126.

Allen Newell. 1982. The knowledge level.Artificial
Intelligence, 18:87–127.

G. Polya. 1945.How to Solve it. Princeton.
Zenon Pylyshyn. 1984.Computation and Cognition: To-

ward a Foundation for Cognitive Science. MIT.
Herbert A. Simon, 1996.Models of My Life, chapter

Roots of Artificial Intelligence and Artificial Intelli-
gence Achieved, pages 189–214. MIT.

Douglas Stone, Bruce Patton, and Sheila Heen. 1999.
Difficult Conversations: How to Discuss What Matters
Most. Penguin.

Peter M. Todd and Gerd Gigerenzer. 2007. Environ-
ments that make us smart: Ecological rationality.Cur-
rent Directions in Psych. Science, 16(3):170–174.

Alfred North Whitehead and Bertrand Russell. 1910.
Principia Mathematica Volume 1. Cambridge.

Jeannette M. Wing. 2006. Computational thinking.
Communications of the ACM, 49(3):33–35.

136


