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Abstract

This paper describes the design of a pilot re-
search and educational effort at the Univer-
sity of Maryland centered around technologies
for tackling Web-scale problems. In the con-
text of a “cloud computing” initiative lead by
Google and IBM, students and researchers are
provided access to a computer cluster running
Hadoop, an open-source Java implementation
of Google’s MapReduce framework. This
technology provides an opportunity for stu-
dents to explore large-data issues in the con-
text of a course organized around teams of
graduate and undergraduate students, in which
they tackle open research problems in the hu-
man language technologies. This design rep-
resents one attempt to bridge traditional in-
struction with real-world, large-data research
challenges.

1 Introduction

Over the past couple of decades, the field of compu-
tational linguistics, and more broadly, human lan-
guage technologies, has seen the emergence and
later dominance of empirical techniques and data-
driven research. Concomitant with this trend is the
requirement of systems and algorithms to handle
large quantities of data. Banko and Brill (2001)
were among the first to demonstrate the importance
of dataset size as a significant factor governing pre-
diction accuracy in a supervised machine learning
task. In fact, they argue that size of training set
is perhaps more important than the choice of ma-
chine learning algorithm itself. Similarly, exper-
iments in question answering have shown the ef-

fectiveness of simple pattern-matching techniques
when applied to large quantities of data (Brill et
al., 2001). More recently, this line of argumenta-
tion has been echoed in experiments with large-scale
language models. Brants et al. (2007) show that
for statistical machine translation, a simple smooth-
ing method (dubbed Stupid Backoff) approaches the
quality of Kneser-Ney Smoothing as the amount of
training data increases, and with the simple method
one can process significantly more data.

Given these observations, it is important to in-
tegrate discussions of large-data issues into any
course on human language technology. Most ex-
isting courses focus on smaller-sized problems and
datasets that can be processed on students’ personal
computers, making them ill-prepared to cope with
the vast quantities of data in operational environ-
ments. Even when larger datasets are leveraged in
the classroom, they are mostly used as static re-
sources. Thus, students experience a disconnect as
they transition from a learning environment to one
where they work on real-world problems.

Nevertheless, there are at least two major chal-
lenges associated with explicit treatment of large-
data issues in an HLT curriculum:

• The first concerns resources: it is unclear where
one might acquire the hardware to support ed-
ucational activities, especially if such activities
are in direct competition with research.

• The second involves complexities inherently
associated with parallel and distributed pro-
cessing, currently the only practical solution to
large-data problems. For any course, it is diffi-
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cult to retain focus on HLT-relevant problems,
since the exploration of large-data issues ne-
cessitates (time-consuming) forays into parallel
and distributed computing.

This paper presents a case study that grapples
with the issues outlined above. Building on previ-
ous experience with similar courses at the Univer-
sity of Washington (Kimball et al., 2008), I present
a pilot “cloud computing” course currently under-
way at the University of Maryland that leverages a
collaboration with Google and IBM, through which
students are given access to hardware resources. To
further alleviate the first issue, research is brought
into alignment with education by structuring a team-
oriented, project-focused course. The core idea is to
organize teams of graduate and undergraduate stu-
dents focused on tackling open research problems in
natural language processing, information retrieval,
and related areas. Ph.D. students serve as leaders
on projects related to their research, and are given
the opportunity to serve as mentors to undergradu-
ate and masters students.

Google’s MapReduce programming framework is
an elegant solution to the second issue raised above.
By providing a functional abstraction that isolates
the programmer from parallel and distributed pro-
cessing issues, students can focus on solving the
actual problem. I first provide the context for this
academic–industrial collaboration, and then move
on to describe the course setup.

2 Cloud Computing and MapReduce

In October 2007, Google and IBM jointly an-
nounced the Academic Cloud Computing Initiative,
with the goal of helping both researchers and stu-
dents address the challenges of “Web-scale” com-
puting. The initiative revolves around Google’s
MapReduce programming paradigm (Dean and
Ghemawat, 2004), which represents a proven ap-
proach to tackling data-intensive problems in a dis-
tributed manner. Six universities were involved
in the collaboration at the outset: Carnegie Mellon
University, Massachusetts Institute of Technology,
Stanford University, the University of California at
Berkeley, the University of Maryland, and Univer-
sity of Washington. I am the lead faculty at the Uni-
versity of Maryland on this project.

As part of this initiative, IBM and Google have
dedicated a large cluster of several hundred ma-
chines for use by faculty and students at the partic-
ipating institutions. The cluster takes advantage of
Hadoop, an open-source implementation of MapRe-
duce in Java.1 By making these resources available,
Google and IBM hope to encourage faculty adop-
tion of cloud computing in their research and also
integration of the technology into the curriculum.

MapReduce builds on the observation that many
information processing tasks have the same basic
structure: a computation is applied over a large num-
ber of records (e.g., Web pages) to generate par-
tial results, which are then aggregated in some fash-
ion. Naturally, the per-record computation and ag-
gregation function vary according to task, but the ba-
sic structure remains fixed. Taking inspiration from
higher-order functions in functional programming,
MapReduce provides an abstraction at the point of
these two operations. Specifically, the programmer
defines a “mapper” and a “reducer” with the follow-
ing signatures:

map: (k1, v1)→ [(k2, v2)]
reduce: (k2, [v2])→ [(k3, v3)]

Key/value pairs form the basic data structure in
MapReduce. The mapper is applied to every input
key/value pair to generate an arbitrary number of in-
termediate key/value pairs. The reducer is applied to
all values associated with the same intermediate key
to generate output key/value pairs. This two-stage
processing structure is illustrated in Figure 1.

Under the framework, a programmer need only
provide implementations of the mapper and reducer.
On top of a distributed file system (Ghemawat et al.,
2003), the runtime transparently handles all other
aspects of execution, on clusters ranging from a
few to a few thousand nodes. The runtime is re-
sponsible for scheduling map and reduce workers
on commodity hardware assumed to be unreliable,
and thus is tolerant to various faults through a num-
ber of error recovery mechanisms. The runtime also
manages data distribution, including splitting the in-
put across multiple map workers and the potentially
very large sorting problem between the map and re-
duce phases whereby intermediate key/value pairs
must be grouped by key.

1http://hadoop.apache.org/
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Figure 1: Illustration of the MapReduce framework: the
“mapper” is applied to all input records, which generates
results that are aggregated by the “reducer”.

The biggest advantage of MapReduce from a ped-
agogical point of view is that it allows an HLT
course to retain its focus on applications. Divide-
and-conquer algorithms running on multiple ma-
chines are currently the only effective strategy for
tackling Web-scale problems. However, program-
ming parallel and distributed systems is a difficult
topic for students to master. Due to communica-
tion and synchronization issues, concurrent opera-
tions are notoriously challenging to reason about—
unanticipated race conditions are hard to detect and
even harder to debug. MapReduce allows the pro-
grammer to offload these problems (no doubt im-
portant, but irrelevant from the perspective of HLT)
onto the runtime, which handles the complexities as-
sociated with distributed processing on large clus-
ters. The functional abstraction allows a student to
focus on problem solving, not managing the details
of error recovery, data distribution, etc.

3 Course Design

This paper describes a “cloud computing” course at
the University of Maryland being offered in Spring
2008. The core idea is to assemble small teams of
graduate and undergraduate students to tackle re-
search problems, primarily in the areas of informa-
tion retrieval and natural language processing. Ph.D.
students serve as team leaders, overseeing small
groups of masters and undergraduates on topics re-
lated to their doctoral research. The roles of “team
leader” and “team member” are explicitly assigned

at the beginning of the semester, and are associated
with different expectations and responsibilities. All
course material and additional details are available
on the course homepage.2

3.1 Objectives and Goals
I identified a list of desired competencies for stu-
dents to acquire and refine throughout the course:

• Understand and be able to articulate the chal-
lenges associated with distributed solutions to
large-scale problems, e.g., scheduling, load
balancing, fault tolerance, memory and band-
width limitations, etc.

• Understand and be able to explain the concepts
behind MapReduce as one framework for ad-
dressing the above issues.

• Understand and be able to express well-known
algorithms (e.g., PageRank) in the MapReduce
framework.

• Understand and be able to reason about engi-
neering tradeoffs in alternative approaches to
processing large datasets.

• Gain in-depth experience with one research
problem in Web-scale information processing
(broadly defined).

With respect to the final bullet point, the students
are expected to acquire the following abilities:

• Understand how current solutions to the par-
ticular research problem can be cast into the
MapReduce framework.

• Be able to explain what advantages the MapRe-
duce framework provides over existing ap-
proaches (or disadvantages if a MapReduce
formulation turns out to be unsuitable for ex-
pressing the problem).

• Articulate how adopting the MapReduce
framework can potentially lead to advances in
the state of the art by enabling processing not
possible before.

I assumed that all students have a strong foun-
dation in computer science, which was operational-
ized in having completed basic courses in algo-
rithms, data structures, and programming languages

2http://www.umiacs.umd.edu/∼jimmylin/cloud-computing/
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12

Project Meetings:
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Guest Speakers

13

14

15
Final Project

Presentations

Figure 2: Overview of course schedule.

(in practice, this was trivially met for the graduate
students, who all had undergraduate degrees in com-
puter science). I explicitly made the decision that
previous courses in parallel programming, systems,
or networks was not required. Finally, prior experi-
ence with natural language processing, information
retrieval, or related areas was not assumed. How-
ever, strong competency in Java programming was a
strict requirement, as the Hadoop implementation of
MapReduce is based in Java.

In the project-oriented setup, the team leaders
(i.e., Ph.D. students) have additional roles to play.
One of the goals of the course is to give them experi-
ence in mentoring more junior colleagues and man-
aging a team project. As such, they were expected to
acquire real-world skills in project organization and
management.

3.2 Schedule and Major Components

As designed, the course spans a standard fifteen
week semester, meeting twice a week (Monday and
Wednesday) for one hour and fifteen minutes each
session. The general setup is shown in Figure 2. As
this paper goes to press (mid-April), the course just
concluded Week 11.

During the first three weeks, all students are im-
mersed in a “Hadoop boot camp”, where they are

introduced to the MapReduce programming frame-
work. Material was adapted from slides developed
by Christophe Bisciglia and his colleagues from
Google, who have delivered similar content in var-
ious formats.3 As it was assumed that all students
had strong foundations in computer science, the
pace of the lectures was brisk. The themes of the
five boot camp sessions are listed below:

• Introduction to parallel/distributed processing

• From functional programming to MapReduce
and the Google File System (GFS)

• “Hello World” MapReduce lab

• Graph algorithms with MapReduce

• Information retrieval with MapReduce

A brief overview of parallel and distributed pro-
cessing provides a natural transition into abstrac-
tions afforded by functional programming, the inspi-
ration behind MapReduce. That in turn provides the
context to introduce MapReduce itself, along with
the distributed file system upon which it depends.
The final two lectures focus on specific case stud-
ies of MapReduce applied to graph analysis and in-
formation retrieval. The first covers graph search
and PageRank, while the second covers algorithms
for information retrieval. With the exception of the
“Hello World” lab session, all lecture content was
delivered at the conceptual level, without specific
reference to the Hadoop API and implementation
details (see Section 5 for discussion). The boot
camp is capped off with a programming exercise
(implementation of PageRank) to ensure that stu-
dents have a passing knowledge of MapReduce con-
cepts in general and the Hadoop API in particular.

Concurrent with the boot camp, team leaders are
expected to develop a detailed plan of research:
what they hope to accomplish, specific tasks that
would lead to the goals, and possible distribution of
those tasks across team members. I recommend that
each project be structured into two phases: the first
phase focusing on how existing solutions might be
recast into the MapReduce framework, the second
phase focusing on interesting extensions enabled by
MapReduce. In addition to the detailed research

3http://code.google.com/edu/parallel/
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plan, the leaders are responsible for organizing intro-
ductory material (papers, tutorials, etc.) since team
members are not expected to have any prior experi-
ence with the research topic.

The majority of the course is taken up by the re-
search project itself. The Monday class sessions
are devoted to the team project meetings, and the
team leader is given discretion on how this is man-
aged. Typical activities include evaluation of deliv-
erables (code, experimental results, etc.) from the
previous week and discussions of plans for the up-
coming week, but other common uses of the meeting
time include whiteboard sessions and code review.
During the project meetings I circulate from group
to group to track progress, offer helpful suggestions,
and contribute substantially if possible.

To the extent practical, the teams adopt standard
best practices for software development. Students
use Eclipse as the development environment and
take advantage of a plug-in that provides a seamless
interface to the Hadoop cluster. Code is shared via
Subversion, with both project-specific repositories
and a course-wide repository for common libraries.
A wiki is also provided as a point of collaboration.

Concurrent with the project meetings on Mon-
days, a speaker series takes place on Wednesdays.
Attendance for students is required, but otherwise
the talks are open to the public. One of the goals
for these invited talks is to build an active commu-
nity of researchers interested in large datasets and
distributed processing. Invited talks can be clas-
sified into one of two types: infrastructure-focused
and application-focused. Examples of the first in-
clude alternative architectures for processing large
datasets and dynamic provisioning of computing
services. Examples of the second include survey
of distributed data mining techniques and Web-scale
sentiment analysis. It is not a requirement for the
talks to focus on MapReduce per se—rather, an em-
phasis on large-data issues is the thread that weaves
all these presentations together.

3.3 Student Evaluation
At the beginning of the course, students are assigned
specific roles (team leader or team member) and
are evaluated according to different criteria (both in
grade components and relative weights).

The team leaders are responsible for producing

the detailed research plan at the beginning of the
semester. The entire team is responsible for three
checkpoint deliverables throughout the course: an
initial oral presentation outlining their plans, a short
interim progress report at roughly the midpoint of
the semester, and a final oral presentation accompa-
nied by a written report at the end of the semester.

On a weekly basis, I request from each stu-
dent a status report delivered as a concise email: a
paragraph-length outline of progress from the previ-
ous week and plans for the following week. This,
coupled with my observations during each project
meeting, provides the basis for continuous evalua-
tion of student performance.

4 Course Implementation

Currently, 13 students (7 Ph.D., 3 masters, 3 under-
graduates) are involved in the course, working on
six different projects. Last fall, as planning was
underway, Ph.D. students from the Laboratory for
Computational Linguistics and Information Process-
ing at the University of Maryland were recruited
as team leaders. Three of them agreed, developing
projects around their doctoral research—these repre-
sent cases with maximal alignment of research and
educational goals. In addition, the availability of this
opportunity was announced on mailing lists, which
generated substantial interest. Undergraduates were
recruited from the Computer Science honors pro-
gram; since it is a requirement for those students to
complete an honors project, this course provided a
suitable vehicle for satisfying that requirement.

Three elements are necessary for a successful
project: interested students, an interesting research
problem of appropriate scope, and the availability
of data to support the work. I served as a broker
for all three elements, and eventually settled on five
projects that satisfied all the desiderata (one project
was a later addition). As there was more interest
than spaces available for team members, it was pos-
sible to screen for suitable background and matching
interests. The six ongoing projects are as follows:

• Large-data statistical machine translation

• Construction of large latent-variable language
models

• Resolution of name mentions in large email
archives
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• Network analysis for enhancing biomedical
text retrieval

• Text-background separation in children’s pic-
ture books

• High-throughput biological sequence align-
ment and processing

Of the six projects, four of them fall squarely in
the area of human language technology: the first two
are typical of problems in natural language process-
ing, while the second two are problems in informa-
tion retrieval. The final two projects represent at-
tempts to push the boundaries of the MapReduce
paradigm, into image processing and computational
biology, respectively. Short project descriptions can
be found on the course homepage.

5 Pedagogical Discussion

The design of any course is an exercise in tradeoffs,
and this pilot project is no exception. In this section,
I will attempt to justify course design decisions and
discuss possible alternatives.

At the outset, I explicitly decided against a “tradi-
tional” course format that would involve carefully-
paced delivery of content with structured exercises
(e.g., problem sets or labs). Such a design would
perhaps be capped off with a multi-week final
project. The pioneering MapReduce course at the
University of Washington represents an example of
this design (Kimball et al., 2008), combining six
weeks of standard classroom instruction with an op-
tional four week final project. As an alternative, I or-
ganized my course around the research project. This
choice meant that the time devoted to direct instruc-
tion on foundational concepts was very limited, i.e.,
the three-week boot camp.

One consequence of the boot-camp setup is some
disconnect between the lecture material and imple-
mentation details. Students were expected to rapidly
translate high-level concepts into low-level pro-
gramming constructs and API calls without much
guidance. There was only one “hands on” session
in the boot camp, focusing on more mundane is-
sues such as installation, configuration, connecting
to the server, etc. Although that session also in-
cluded overview of a simple Hadoop program, that
by no means was sufficient to yield in-depth under-
standing of the framework.

The intensity of the boot camp was mitigated by
the composition of the students. Since students were
self-selected and further screened by me in terms of
their computational background, they represent the
highest caliber of students at the university. Further-
more, due to the novel nature of the material, stu-
dents were highly motivated to rapidly acquire what-
ever knowledge was necessary outside the class-
room. In reality, the course design forced students
to spend the first few weeks of the project simulta-
neously learning about the research problem and the
details of the Hadoop framework. However, this did
not appear to be a problem.

Another interesting design choice is the mixing
of students with different backgrounds in the same
classroom environment. Obviously, the graduate
students had stronger computer science backgrounds
than the undergraduates overall, and the team lead-
ers had far more experience on the particular re-
search problem than everyone else by design. How-
ever, this was less an issue than one would have ini-
tially thought, partially due to the selection of the
students. Since MapReduce requires a different ap-
proach to problem solving, significant learning was
required from everyone, independent of prior expe-
rience. In fact, prior knowledge of existing solutions
may in some cases be limiting, since it precludes a
fresh approach to the problem.

6 Course Evaluation

Has the course succeeded? Before this question can
be meaningfully answered, one needs to define mea-
sures for quantifying success. Note that the evalua-
tion of the course is distinct from the evaluation of
student performance (covered in Section 3.3). Given
the explicit goal of integrating research and educa-
tion, I propose the following evaluation criteria:

• Significance of research findings, as measured
by the number of publications that arise directly
or indirectly from this project.

• Placement of students, e.g., internships and
permanent positions, or admission to graduate
programs (for undergraduates).

• Number of projects with sustained research ac-
tivities after the conclusion of the course.
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• Amount of additional research support from
other funding agencies (NSF, DARPA, etc.)
for which the projects provided preliminary re-
sults.

Here I provide an interim assessment, as this pa-
per goes to press in mid-April. Preliminary results
from the projects have already yielded two sepa-
rate publications: one on statistical machine trans-
lation (Dyer et al., 2008), the other on information
retrieval (Elsayed et al., 2008). In terms of student
placement, I believe that experience from this course
has made several students highly attractive to com-
panies such as Google, Yahoo, and Amazon—both
for permanent positions and summer internships. It
is far too early to have measurable results with re-
spect to the final two criteria, but otherwise prelim-
inary assessment appears to support the overall suc-
cess of this course.

In addition to the above discussion, it is also worth
mentioning that the course is emerging as a nexus
of cloud computing on the Maryland campus (and
beyond), serving to connect multiple organizations
that share in having large-data problems. Already,
the students are drawn from a variety of academic
units on campus:

• The iSchool

• Department of Computer Science

• Department of Linguistics

• Department of Geography

And cross-cut multiple research labs:

• The Institute for Advanced Computer Studies

• The Laboratory for Computational Linguistics
and Information Processing

• The Human-Computer Interaction Laboratory

• The Center for Bioinformatics and Computa-
tional Biology

Off campus, there are ongoing collaborations
with the National Center for Biotechnology In-
formation (NCBI) within the National Library of
Medicine (NLM). Other information-based organi-
zations around the Washington, D.C. area have also
expressed interest in cloud computing technology.

7 Conclusion

This paper describes the design of an integrated re-
search and educational initiative focused on tackling
Web-scale problems in natural language processing
and information retrieval using MapReduce. Pre-
liminary assessment indicates that this project rep-
resents one viable approach to bridging classroom
instruction and real-world research challenges. With
the advent of clusters composed of commodity ma-
chines and “rent-a-cluster” services such as Ama-
zon’s EC2,4 I believe that large-data issues can be
practically incorporated into an HLT curriculum at a
reasonable cost.
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