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Abstract

This paper investigates the claim that a di-
alogue manager modelled as a Partially Ob-
servable Markov Decision Process (POMDP)
can achieve improved robustness to noise
compared to conventional state-based dia-
logue managers. Using the Hidden Infor-
mation State (HIS) POMDP dialogue man-
ager as an exemplar, and an MDP-based dia-
logue manager as a baseline, evaluation results
are presented for both simulated and real dia-
logues in a Tourist Information Domain. The
results on the simulated data show that the
inherent ability to model uncertainty, allows
the POMDP model to exploit alternative hy-
potheses from the speech understanding sys-
tem. The results obtained from a user trial
show that the HIS system with a trained policy
performed significantly better than the MDP
baseline.

Introduction

in noisy conditions or where the user is unsure of
how to use the system.

It has been suggested that Partially Observable
Markov Decision Processes (POMDPSs) offer a nat-
ural framework for building spoken dialogue sys-
tems which can both model these uncertainties
and support policies which are robust to their ef-
fects (Young, 2002; Williams and Young, 2007a).
The key idea of the POMDP is that the underlying
dialogue state is hidden and dialogue management
policies must therefore be based not on a single state
estimate but on a distribution over all states.

Whilst POMDPs are attractive theoretically, in
practice, they are notoriously intractable for any-
thing other than small state/action spaces. Hence,
practical examples of their use were initially re-
stricted to very simple domains (Roy et al., 2000;
Zhang et al., 2001). More recently, however, a num-
ber of techniques have been suggested which do al-
low POMDPs to be scaled to handle real world tasks.
The two generic mechanisms which facilitate this
scaling are factoring the state space and perform-

Conventional spoken dialogue systems operate [#§g policy optimisation in a reducesimmary state
finding the most likely interpretation of each usespace(Williams and Young, 2007a; Williams and
input, updating some internal representation of th¥oung, 2007b).

dialogue state and then outputting an appropriate re-Based on these ideas, a number of real-world
sponse. Error tolerance depends on using confidenB©MDP-based systems have recently emerged. The
thresholds and where they fail, the dialogue managenost complex entity which must be represented in
must resort to quite complex recovery procedureshe state space is the user's goal. In Begyesian
Such a system has no explicit mechanisms for refppdate of Dialogue State (BUDSYystem, the user’s
resenting the inevitable uncertainties associated witfpal is further factored into conditionally indepen-
speech understanding or the ambiguities which natdent slots The resulting system is then modelled
rally arise in interpreting a user’s intentions. The reas a dynamic Bayesian network (Thomson et al.,

sult is a system that is inherently fragile, especially2008).
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(Bui et al., 2007a; Bui et al., 2007b). An alterna-wherek is a normalisation constant (Kaelbling et al.,
tive approach taken in thdidden Information State 1998). The first term on the RHS of (1) is called the
(HIS) system is to retain a complete representatioobservation modednd the term inside the summa-
of the user’s goal, but partition states into equivation is called theransition model Maintaining this
lence classes and prune away very low probabilitpelief state as the dialogue evolves is calbedief
partitions (Young et al., 2007; Thomson et al., 2007monitoring
Williams and Young, 2007b).

Whichever approach is taken, a key issue in a real [
Sq
|
1| Belief

POMDP-based dialogue system is its ability to be

|
[
robust to noise and that is the issue that is addressed | Speech :
in this paper. Using the HIS system as an exem- Understanding | 51 | Estimator |
plar, evaluation results are presented for areal-world % [ :N] [
tourist information task using both simulated and User | Sy ayd | lb(sm) !
real users. The results show that a POMDP system — [ :
can learn noise robust policies and that N-best out- " | speech ’ || Dialog
puts from the speech understanding component can Generation |, | Policy :

be exploited to further improve robustness.

The paper is structured as follows. Firstly, in Sec-
tion 2 a brief overview of the HIS system is given. . _
Then in Section 3, various POMDP training regime%:'gure 1: Abstract view of a POMDP-based spoken dia-

: : . Qgue system

are described and evaluated using a simulated user A

differing noise levels. Section 4 then presents results

from a trial in which users conducted various tasks At each time step, the machine receives a reward

over a range of noise levels. Finally, in Section 5y (b, a,, ) based on the current belief stajend the

we discuss our results and present our conclusionsselected action,,, ;. Each actioru,, ; is determined
by a policyn(b;) and building a POMDP system in-

2 The HIS System volves finding the policyr* which maximises the
discounted sunk of the rewards

Sm= <@uSu:S¢>

2.1 Basic Principles

A POMDP-based dialogue system is shown in Fig- o
ure 1 wheres,,, denotes the (unobserved or hidden) R=> Xr(b,amg) 2)
machine state which is factored into three compo- t=0

nents: the last user aet,, the user's goak, and

the diglogue history,. Sinces,, is unknowq, at \vhere)t is a discount coefficient.

each time-step the system computes a belief state

such that the probability of being in statg, given

belief stateb is b(s,,). Based on this current belief 2.2 Probability Models

stateb, the machine selects an actiap,, receives

a rewardr(s,,, a,,), and transitions to a new (un- In the HIS system, user goals are partitioned and
observed) state/,, wheres’, depends only o, initially, all statess,, € S, are regarded as being
anda,,. The machine then receives an observatiofdually likely and they are placed in a single par-
o/ consisting of an N-best list of hypothesised usefftion po. As the dialogue progresses, user inputs

actions. Finally, the belief distributiohis updated result in changing beliefs and this root partition is
based o’ anda,, as follows: repeatedly split into smaller partitions. This split-

ting is binary, i.ep — {p’, p — p’} with probability
V(s ) = kP(O|s, am) Z P(s! |am, $m)b(sm) P |p). By replacings,, f:')y its factors(sy, ay, sq) .
pr and making reasonable independence assumptions,
(1) it can be shown (Young et al., 2007) that in parti-
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tioned form (1) becomes two hypotheses, and unlike actions in master space,
they are limited to a small finite segyreet, ask, ex-

/o ! !/ / _ . /| ! / / 7 . - O . .
b, au,s0) = K w M plicit_confirm, implicitconfirm, selectonfirm, of-
observation user action fer, inform, findalternative, querymore, goodbye
model model A simple heuristic is then used to map the selected
" P(sylp', iy sa,am) P(P|p)b(p, sa) (3) Nnext system action back into the fuliasterbelief
od dialogue partition space.
model splitting

. Ontology Rules Application Database
Observation I

wherep is the parent of'.

In this equation, thebservation modet approx-
imated by the normalised distribution of confidense
measures output by the speech recognition system.
Theuser action modehllows the observation probs,,
ability that is conditioned ow/, to be scaled by th&™"
probability that the user would speak given the
partition p’ and the last system prompt,. In the
current implementation of the HIS system, user dia- | A T
logue acts take the forart(a = v) whereact is the Specic T Gowrsi) | Swaege | PO
dialogue typeg is an attribute and is its value [for e e
example,request(food=Chinesg) The user action
model is then approximated by

P(al |, am) = P(T(a,)|T (am))P(M(al,)[p)

4) The dialogue manager is able to support nega-
where 7(-) denotes thetype of the dialogue act tions, denials and requests for alternatives. When the
and M(-) denotes whether or not the dialogue acselected summary action is to offer the user a venue,
matchesthe current partitionp’. The dialogue the summary-to-master space mapping heuristics
model is a deterministic encoding based on a simpkill normally offer a venue consistent with the most
grounding model. It yields probability one when thdikely user goal hypothesis. If this hypothesis is then
updated dialogue hypothesis (i.e., a specific combiejected its belief is substantially reduced and it will
nation ofp’, a/,, sq anda,,) is consistent with the no longer be the top-ranking hypothesis. If the next

u

I'summary Space

|

|

| Map to
Summary ——

|

|

|

Space

Figure 2: Overview of the HIS system dialogue cycle

history and zero otherwise. system action is to make an alternativer, then
_ _ the new top-ranking hypothesis may not be appro-
2.3 Policy Representation priate. For example, if an expensive French restau-

Policy representation in POMDP-systems is nonrant near the river had been offered and the user asks
trivial since each action depends on a complex prolier one nearer the centre of town, any alternative of-
ability distribution. One of the simplest approachegered should still include the user’s confirmed de-
to dealing with this problem is to discretise the statsire for an expensive French restaurant. To ensure
space and then associate an action with each dikis, all of the grounded features from the rejected
crete grid point. To reduce quantisation errors, theypothesis are extracted and all user goal hypothe-
HIS model first maps belief distributions into a re-ses are scanned starting at the most likely until an
ducedsummary spacbefore quantising. This sum- alternative is found that matches the grounded fea-
mary space consists of the probability of the topures. For the current turn only, the summary-to-
two hypotheses plus some status variables and theaster space heuristics then treat this hypothesis as
user act type associated with the top distributionf it was the top-ranking one. If the system then of-
Quantisation is then performed using a simple diders a venue based on this hypothesis, and the user
tance metric to find the nearest grid point. Ac-accepts it, then, since system outputs are appended
tions in summary space refer specifically to the topo user inputs for the purpose of belief updating, the

114



alternative hypothesis will move to the top, or neadiscounted by\ at each step. On completion of a
the top, of the ranked hypothesis list. The dialogubatch of dialogs, thé) values are updated accord-
then typically continues with its focus on the newlying to the accumulated rewards, and the policy up-

offered alternative venue. dated by choosing the action which maximises each
. Q@ value. The whole process is then repeated until
2.4 Summary of Operation the policy stabilises.

To summarise, the overall processing performed by In our experimentss was fixed af.1 and A was

the HIS system in a single dialogue turn (i.e. one cyfixed at0.95. The reward function used attempted
cle of system output and user response) is as showtencourage short successful dialogues by assign-
in Figure 2. Each user utterance is decoded into dAg +20 for a successful dialogue anel for each
N-best list of dialogue acts. Each incoming act pluglialogue turn.

the previous system act are matched against the for- . .

est of user goals and partitions are split as neede%‘.2 User Simulation

Each user act, is then duplicated and bound toTo train a policy, a user simulator is used to gen-
each partitionp. Each partition will also have a erate responses to system actions. It has two main
set of dialogue histories; associated with it. The components: &ser Goaland aUser Agenda At
combination of eaclp, a,, and updateds; forms a the start of each dialogue, the goal is randomly
new dialogue hypothesis, whose beliefs are eval- initialised with requests such as “name”, “addr”,
uated using (3). Once all dialogue hypotheses havghone” and constraints such as “type=restaurant”,
been evaluated and any duplicates merged, the mé&fpod=Chinese”, etc. The agenda stores the di-
ter belief stateh is mapped into summary spaée alogue acts needed to elicit this information in a
and the nearest policy belief point is found. The asstack-like structure which enables it to temporarily
sociated summary space machine actignis then store actions when another action of higher priority
heuristically mapped back to master space and ti@eds to be issued first. This enables the simulator
machine’s actual response, is output. The cycle to refer to previous dialogue turns at a later point. To

then repeats until the user’s goal is satisfied. generate a wide spread of realistic dialogs, the sim-

ulator reacts wherever possible with varying levels

3 Training and Evaluation with a of patience and arbitrariness. In addition, the sim-
Simulated User ulator will relax its constraints when its initial goal

cannot be satisfied. This allows the dialogue man-
ager to learn negotiation-type dialogues where only
Policy optimisation is performed in the discretean approximate solution to the user’s goal exists.
summary space described in the previous section USpeech understanding errors are simulated at the di-
ing on-line batche-greedy policy iteration. Given alogue act level using confusion matrices trained on
an existing policyr, dialogs are executed and madabelled dialogue data (Schatzmann et al., 2007).
chine actions generated accordingat@xcept that o )

with probability ¢ a random action is generated. The>-3  Training and Evaluation

system maintains a set of belief poil{ii}. Ateach When training a system to operate robustly in noisy
turn in training, the nearest stored belief pdﬁmto conditions, a variety of strategies are possible. For
bis located using a distance measure. If the distanexample, the system can be trained only on noise-
is greater than some thresholgdis added to the set free interactions, it can be trained on increasing lev-
of stored belief points. The sequence of poibts els of noise or it can be trained on a high noise level
traversed in each dialogue is stored in a list. Asfrom the outset. A related issue concerns the gener-
sociated with each,; is a functionQ(Bi, an,) Whose ation of grid points and the number of training itera-
value is the expected total reward obtained by chootions to perform. For example, allowing a very large
ing summary actior,,, from stateb;. At the end number of points leads to poor performance due to
of each dialogue, the total reward is calculated andver-fitting of the training data. Conversely, having
added to an accumulator for each point in the listoo few point leads to poor performance due to a lack

3.1 Policy optimisation
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of discrimination in its dialogue strategies. also tested on 1-best output.
After some experimentation, the following train;00

ing schedule was adopted. Training starts i e e et
noise free environment using a small number of ¢ Lo . _m jg—_;j‘fe;;:;:?b“f
points and it continues until the performance of e \\“\ _

policy levels off. The resulting policy is then tak, s \”“\SZ_\

as an initial policy for the next stage where the n(§ 7 ’;\\\"‘ -

level is increased, the number of grid points is * ™ ‘\:
panded and the number of iterations is increa * “\{\i
This process is repeated until the highest noise | zz v
is reached. This approach was motivated by the

servation that a key factor in effective reinforcem 0 o1 02 03 04 05
learning is the balance between exploration and ex- Semanti Erer Rate

ploitation. In POMDP policy optimisation which Figure 3: Average simulated dialogue success rate as a
uses dynamically allocated grid points, maintainingunction of error rate for a hand-crafted (hdc), noise-free
this balance is crucial. In our case, the noise introand incrementally trained (increm) policy.

duced by the simulator is used as an implicit mech-

anism for increasing the exploration. Each time ex-

——increm_2best

ploration is increased, the areas of state-space -0 - noise_free_tbest
will be visited will also increase and hence the nu. ~ s, Vi
ber of available grid points must also be increas 1““——ﬂ———u__ﬂ__

At the same time, the number of iterations musLE 8 = \D\\\éi\&

increased to ensure that all points are visited a § TR

ficient number of times. In practice we found tI* , \E\k\
around 750 to 1000 grid points was sufficient ¢ \u
the total number of simulated dialogues needec \:‘;f
training was around 100,000. ’ 01 02 03 04 #

A second issue when training in noisy conditic *
is whether to train on just the 1-best output from the
simulator or train on the N-best outputs. A limit-Figure 4: Average simulated dialogue reward as a func-
ing factor here is that the computation required fotion of error rate for a hand-crafted (hdc), noise-free and
N-best training is significantly increased since thécrementally trained (increm) policy.

rate of partition generation in the HIS model in- A b both th ined policies i
creases exponentially with N. In preliminary tests, S can be seen, both the trained policies improve

it was found that when training with 1-best Ou,[letS’significantIy on the hand-crafted policies. Further-

there was little difference between policies trained0"€: although the average rewards are all broadly
entirely in no noise and policies trained on increas§'m_'lar'_ the_ success rate of the mc_rementally trained
ing noise as described above. However, policie;gollcy 5 sjlgnlflcantly.better at higher error rates.
trained on 2-best using the incremental strategy dilaence, th_'s latter policy was selected for the user
exhibit increased robustness to noise. To iIIustrattéIal described next

this, Figures 3 and 4 show the average dialogue sug-
cess rates and rewards for 3 different policies, al
trained on 2-best: a hand-crafted policy (hdc), a polfhe HIS-POMDP policy (HIS-TRA) that was incre-
icy trained on noise-free conditions (naifee) and mentally trained on the simulated user using 2-best
a policy trained using the incremental scheme ddists was tested in a user trial together with a hand-
scribed above (increm). Each policy was tested usrafted HIS-POMDP policy (HIS-HDC). The strat-
ing 2-best output from the simulator across a rangegy used by the latter was to first check the most
of error rates. In addition, the noise-free policy wasikely hypothesis. If it contains sufficient grounded

Semantic Error Rate

Evaluation via a User Trial
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keys to match 1 to 3 database entities, théferis particular hotels, bars, or restaurants in that town.

selected. If any part of the hypothesis is inconsisEach subject was asked to complete a set of pre-
tent or the user has explicitly asked for another sugiefined tasks where each task involved finding the
gestion, therfind_alternative action is selected. If name of a venue satisfying a set of constraints such
the user has asked for information about an offereals food type is Chinese, price-range is cheap, etc.,
entity theninform is selected. Otherwise, an un-and getting the value of one or more additional at-

grounded component of the top hypothesis is identiributes of that venue such as the address or the
fied and depending on the belief, one of the confirpphone number.

actions is selected. For each task, subjects were given a scenario to

In addition, an MDP-based dialogue manager deead and were then asked to solve the task via a di-
veloped for earlier trials (Schatzmann, 2008) waalogue with the system. The tasks set could either
also tested. Since considerable effort has been puthave one solution, several solutions, or no solution
optimising this system, it serves as a strong baselira all in the database. In cases where a subject found
for comparison. Again, both a trained policy (MDP-that there was no matching venue for the given task,
TRA) and a hand-crafted policy (MDP-HDC) werehe/she was allowed to try and find an alternative
tested. venue by relaxing one or more of the constraints.

In addition, subjects had to perform each task at
one of three possible noise levels. These levels cor-
The dialogue system consisted of an ATK-basetkspond to signal/noise ratios (SNRs) of 35.3 dB
speech recogniser, a Phoenix-based semantic pargkaw noise), 10.2 dB (medium noise), or 3.3 dB
the dialogue manager and a diphone based spedtigh noise). The noise was artificially generated
synthesiser. The semantic parser uses simple phraaall mixed with the microphone signal, in addition
grammar rules to extract the dialogue act type andiawas fed into the subject’s headphones so that they
list of attribute/value pairs from each utterance.  were aware of the noisy conditions.

In a POMDP-based dialogue system, accurate An instructor was present at all times to indicate
belief-updating is very sensitive to the confidencéo the subject which task description to follow, and
scores assigned to each user dialogue act. Ideatty start the right system with the appropriate noise-
these should provide a measure of the probability dével. Each subject performed an equal number of
the decoded act given the true user act. In the evaltasks for each system (3 tasks), noise level (6 tasks)
ation system, the recogniser generates a 10-best lgtd solution type (6 tasks for each of the types 0, 1,
of hypotheses at each turn along with a compact coor multiple solutions). Also, each subject performed
fusion network which is used to compute the inferone task for all combinations of system and noise
ence evidence for each hypothesis. The latter is devel. Overall, each combination of system, noise
fined as the sum of the log-likelihoods of each artevel, and solution type was used in an equal number
in the confusion network and when exponentiatedf dialogues.
and renormalised this gives a simple estimate of the
probability of each hypothesised utterance. Each uf-3  Results
terance in the 10-best list is passed to the semantit Table 1, some general statistics of the corpus re-
parser. Equivalent dialogue acts output by the parseulting from the trial are given. The semantic error
are then grouped together and the dialogue act foate is based on substitutions, insertions and dele-
each group is then assigned the sum of the sentendi®ns errors on semantic items. When tested after the

4.1 System setup and confidence scoring

level probabilities as its confidence score. trial on the transcribed user utterances, the semantic
] error rate was 4.1% whereas the semantic error rate
4.2 Trial setup on the ASR input was 25.2%. This means that 84%

For the trial itself, 36 subjects were recruited (albf the error rate was due to the ASR.

British native speakers, 18 male, 18 female). Each Tables 2 and 3 present success rates (Succ.) and
subject was asked to imagine himself to be a tourisiverage performance scores (Perf.), comparing the
in a fictitious town called Jasonville and try to findtwo HIS dialogue managers with the two MDP base-
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Number of dialogues 432 The results show that the trained HIS dialogue
Number of dialogue turns 3972 manager significantly outperforms both MDP based
\l;lvlér::jt;err):::J/\g;j:n(é;anscnptlons) 1?;’2 dialogue managers. For success rate on partial com-
Word Error Rate 329 pletion, both HIS systems perform better than the
Semantic Error Rate 25.2 MDP systems.

Semantic Error Rate transcriptions 4.1 4.3.1 Subjective Results

Table 1: General corpus statistics. In the user trial, the subjects were also asked for
a subjective judgement of the systems. After com-

pleting each task, the subjects were asked whether

line systems. For the success rates, also the StgRay had found the information they were looking
dard deviation (std.dev) is given, assuming a bingg,, (yes/no). They were also asked to give a score
mial distribution. The success rate is the percentagg, 4 scale from 1 to 5 (best) on how natural/intuitive
of successfully completed dialogues. A task is CONhey thought the dialogue was. Table 4 shows the
sidered to be fully completed when the user is able tQ.q its for the 4 systems used. The performance of
find the venue he is looking for and get all the addiyhe s systems is similar to the MDP systems, with

tional information he asked for; if the task has no SOz slightly higher success rate for the trained one and

lution and the system indicates to the user no VeNnUgiightly lower score for the handcrafted one.
could be found, this also counts as full completion.

A task is considered to be partially completed when System | Succ. Rate (std.deV) Score
only the correct venue has been given. The results on | MDP-HDC 78 (4.30) 3.52
partial completion are given in Table 2, and the re- | MDP-TRA 78 (4.30) 3.42
sults on full completion in Table 3. To mirror the re- HIS-HDC 71 (4.72) 3.05
ward function used in training, the performance for | HIS-TRA 83 (3.90) 3.41

each dialogue is computed by assigning a reward of

20 points for full completion and subtracting 1 poimTabIe 4: Subijective performance results from the user

for the number of turns up until a successful reco

mendation (i.e., partial completion).

\ Partial Task Completion statistics

trial.

m-

5 Conclusions

This paper has described recent work in training a

System Succ. (std.dev) #turns Pery. POMDP-based dialogue manager to exploit the ad-
MDP-HDC | 68.52 (4.83) 480 890 itional information available from a speech under-
MDP-TRA | 70.37 (4.75) 4.75  9.32 standing system which can generate ranked lists of
ﬂ:g?g; ;ig; (;"'gg) 7.04 7'787 hypotheses. Following a brief overview of the Hid-

- .26 (3.78) 463 12.29 den Information State dialogue manager and pol-

Table 2: Success rates and performance results on parl@y Optimisation using a user simulator, results have

completion.

\ Full Task Completion statistics

been given for both simulated user and real user di-
alogues conducted at a variety of noise levels.

The user simulation results have shown that al-
though the rewards are similar, training with 2-best

System Succ. (std.dev) #urns Peff. rather than 1-best outputs from the user simulator
MDP-HDC | 64.81 (4.96) 586 7.10 Yields better success rates at high noise levels. In
MDP-TRA | 65.74 (4.93) 6.18 6.97 View of this result, we would have liked to inves-
HIS-HDC 63.89 (4.99) 857 4.2 tigate training on longer N-best lists, but currently
HIS-TRA 78.70 (4.25) 6.36 9.34 computational constraints prevent this. We hope in

the future to address this issue by developing more

Table 3: Success rates and performance results on felfficient state partitioning strategies for the HIS sys-

completion.
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The overall results on real data collected from the Dialogue Systems. IRroc 5th Workshop on Knowl-
user trial clearly indicate increased robustness by the edge and Reasoning in Practical Dialogue Systems

HIS system. We would have liked to be able to_ Pages 34-57. .
H Bui, B van Schooten, and D Hofs. 2007b. Practi-

plot performance and success scores as a functlonCal dialogue manager development using POMDPS .

of noise level or speech understanding error rate, |, gin s|Gdial Workshop on Discourse and Dialogue
but there is great variability in these kinds of com-  antwerp.
plex real-world dialogues and it transpired that théP Kaelbling, ML Littman, and AR Cassandra. 1998.
trial data was insufficient to enable any statistically glanni.ng ?An?fA(':tilnlg:nlrartiallyl?)lisggrviglj Stochastic
i i i i omains.Araricial Intelligence 99— .
e o e oy e and TR 3660 Sk Dilous
. . . ) Management Using Probabilistic Reasoning.Phoc
trial data to properly investigate the behaviour of Ac|
such systems as a function of noise level. The tridl Schatzmann, B Thomson, and SJ Young. 2007. Error
described here, including transcription and analysis Simulation for Training Statistical Dialogue Systems.
consumed about 30 man-days of effort. IncreasinS; égﬁ;f#a%w%% Séigggt'ical User and Erfor Mod.
this by a factor of 10 or more is not therefore an :

. . . elling for Spoken Dialogue Systent?h.D. thesis, Uni-
option for us, and clearly an alternative approach is versity of Cambridge.

needed. B Thomson, J Schatzmann, K Weilhammer, H Ye, and
We have also reported results of subjective suc- SJ Young. 2007. Training a real-world POMDP-based

cess rate and opinion scores based on data obtainedPialog System. IFHLT/NAACL Workshop "Bridging

from subjects after each trial. The results were only tThe r?aFI” Aca?gmitr:] a”td Industrial Research in Dialog

: echnologies; Rochester.

weakly correlated with the. measured' performancg Thomsor?, 3’ Schatzmann, and SJ Young.  2008.

and success rates. We belleve_ that this is part_ly dueBayesian Update of Dialogue State for Robust Dia-

to confusion as to what constituted success in the ogue Systems. lint Conf Acoustics Speech and Sig-

minds of the subjects. This suggests that for subjec- nal Processing ICASSPRas Vegas.

tive results to be meaningful, measurements such 48 Williams and SJ Young. 2007a. Partially Observable

these will only be really useful if made on live sys- Markov Decision Processes for Spoken Dialog Sys-

tems where users have a real rather than imagined!€™s: Computer Speech and LanguagH (2):393-

information need. The use of live systems wouldp wijliams and SJ Young. 2007b. Scaling POMDPs

also alleviate the data sparsity problem noted earlier. for Spoken Dialog ManagemenEEE Audio, Speech
Finally and in conclusion, we believe that despite and Language Processing5(7):2116-2129.

the difficulties noted above, the results reported i§J Young, J Schatzmann, K Weilhammer, and H Ye.

this paper represent a first step towards establish—2007' The Hidden Information State Approach to Dia-

. . log Management. [IICASSP 200,Honolulu, Hawaii.
ing the POMDP as a viable framework for develop—SJ Young. 2002. Talking to Machines (Statistically

ing spoken dialogue systems which are significantly speaking). Irint Conf Spoken Language Processing
more robust to noisy operating conditions than con- Denver, Colorado.

ventional state-based systems. B Zhang, Q Cai, J Mao, E Chang, and B Guo. 2001.
Spoken Dialogue Management as Planning and Acting
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