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Abstract

Swedish morphology differs significantly
from English in several ways. This is
something which makes natural language
processing based on the English language
not always applicable for Swedish mate-
rial. One area where there is a difference
is compounding. The word-forming pro-
cess of compounding is very productive in
Swedish. The compounds are mostly writ-
ten as one word, without the segmentation
point marked in any way. Thus segmenta-
tion has to be done in order to interpret the
compounds.

In this study I have implemented a decom-
poser which finds the segmentation point
in Swedish compounds, making it easier to
handle compounds in natural language pro-
cessing. Brodda’s algorithm for heuristic
compound segmentation guided the work.
The decomposer is implemented in TiMBL,
a memory-based learner.

1 Introduction

Compounding is, in Swedish, a very productive pro-
cess. The number of possible compounds is huge,
and it is not possible to list them. The use of com-
pounds and the coining of new compounds is also
significant. 10% of the words in Swedish newspaper
text have been found to be compounds after removal
of stopwords (Hedlund, 2002). The frequency and
the structure of Swedish compounds poses problems

in natural language processing tasks which have to
be dealt with.

Areas where this is important are for example in-
formation retrieval, machine translation and speech
synthesis. In information retrieval a search query
may contain a term which in a certain document only
occurs hidden in a compound. Or it can be the other
way around. The query may contain a compound but
the concepts of any or both of the constituents may
in a certain document only occur as simplex words.

In order to make use of the constituents of
Swedish compounds, one must first determine which
they are. One problem for languages where com-
pounds are written with no white space between the
parts, as in Swedish, is to find the parts, that is to
determine the compound segmentation point.

In this paper I describe an experiment using
memory-based learning for compound segmenta-
tion. The hypothesis is that this should work because
n-grams around a segmentation point tend to con-
tain grapheme clusters that do not occur in simplex
words (Brodda, 1979). The learner is thus trained to
distinguish clusters appearing around segmentation
points from other clusters.

2 Background

There are different approaches for constructing sys-
tems that deal with segmentation of Swedish com-
pounds, including the use of word lists, manually
written rules or machine learning. The simplest ap-
proach would be to list the compounds in a word
list with the segmentation point marked. However,
since the process of compounding is so productive,
it would be difficult to get sufficient coverage with
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such a system.

2.1 Previous work

Sjobergh and Kann (2006) present a successful seg-
mentation system which uses word lists, although
not with whole compounds. The system consists of
a first part list, a last part list, and an individual word
list. Sjobergh and Kann report 99% success for both
precision and recall.

A well-known system for analyzing Swedish
words, including compounds, is SWETWOL (Karls-
son, 1992). SWETWOL is based on manually
written rules, and uses the Two Level formalism.
SWETWOL gives several alternative interpretations
if found, and the analyses include part of speech of
all segments. Lexicalized compounds and deriva-
tions have been listed in SWETWOL and the system
regards these as wholes in order to avoid incorrect
decomposition.

Witschel and Biemann (2005) present a segmen-
tation system for German compounds using Com-
pact Patricia Tries, a type of classifier which they
themselves present as something between a rule-
based and a memory-based learner. They report re-
sults around 96% for the F-value.

In his thesis Kokkinakis (2001) mentions a rule-
based segmentation tool based on Brodda’s segmen-
tation algorithm describing clusters at compound
segmentation points. (See section 2.2.) Kokkinakis
reports 96% precision.

2.2 Brodda’s Segmentation Algorithm

The present study presents a compound segmenta-
tion system that, as Kokkinaki’s system, is inspired
by Brodda’s segmentation algorithm, but instead of
manually written rules uses memory-based learning.

Brodda’s algorithm concerns Swedish grapheme
combinations. Like other languages, the Swedish
language has rules stating which combinations of
consonants and vowels can appear at the beginning
of a word, at the end or internally. In his algo-
rithm, Brodda (1979) states that when two Swedish
words are combined together in a compound, the
result is often a consonant cluster in the segmen-
tation point that is not allowed internally in sim-
plex words, for example the cluster ‘rkskr’ in
‘korkskruv’ (‘corkscrew’). Brodda describes a six
level hierarchy of clusters, from those that say noth-

ing about the probability of a segmentation point,
like ‘II’, to those that always signal a segmentation
point, like ‘ntst’. Brodda’s algorithm identifies 50%
of tested compounds uniquely with the correct seg-
mentation and another 40% with multiple segmen-
tation points. 10% of the compounds are missed
(Brodda, 1979).

2.3 TiMBL

TiMBL (Daelemans et al., 2004) is a memory-based
learner used here to classify positions in presumed
compounds as being segmentation points or not.

A memory-based learner stores classified in-
stances in memory and later, given test instances,
compares these to the stored instances by calculat-
ing the distance or similarity between them. It then
assigns the class of the majority of the nearest neigh-
bors to the instance to be classified.

The properties of the instances are described in
feature vectors in the form of a list of an arbitrary
number of features, separated by commas, followed
by a class label and ended by a period. (See Example
1 in section 3.1.)

After testing for optimal settings for the learner,
I chose ‘Overlap’, which counts the number
of features that coincide between two vectors,
and ‘MVDM’ (Modified Value Difference Metric)
which considers some values to be more alike than
others, making the distance smaller. For example,
an ‘n’ can be considered to be more similar to an ‘m’
than to a ‘p’. The parameter feature weighting con-
cerns how much weight each feature is given. For
this I used the setting ‘Gain Ratio’which normalizes
the weight considering the number of values the fea-
ture may take. Finally, there is class voting which is
about how much influence each neighbor has. Here
I chose ‘Majority Voting’ where the class with the
largest part of the k nearest neighbors is chosen re-
gardless of the distance.

3 Method

The aim of this study is to have TIMBL learn to clas-
sify every position in a string as a compound seg-
mentation point or not.

To train a memory-based learner, data is needed
to supply instances of all classes. In this case the
classes are: segmentation point = Y, no segmenta-
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tion point = N. To this end I used compounds from
the on-line medical lexicon MedLex (Kokkinakis,
2004). I had at my disposal a list of 5 786 com-
pounds with the segmentation point marked. Since
MedLex is a medical lexicon constructed by adding
medical terms to a learners’ dictionary, a great part
of these compounds, but far from all, are from the
medical domain. I put aside one tenth of the com-
pounds for testing and used nine tenths for training.

3.1 Feature vectors

The starting point of this study is, as mentioned,
Brodda’s segmentation algorithm (Brodda, 1979),
which tells us that clusters not allowed in sim-
plex words signal probable compound segmentation
points. With this in mind I created feature vectors
representing the graphemes around a supposed com-
pound boundary.

The feature vector I used as baseline had the
following components: the word in question (ig-
nored in training and testing), four graphemes before
and four graphemes after the supposed segmentation
point, three graphemes before and three graphemes
after the segmentation point, two graphemes before
and two graphemes after the segmentation point, and
finally the class label.

abstinens~besvir,nens,besv,ens,bes,ns,be,Y.
abstinens~besvir,inen,sbes,nen,sbe,en,sb,N.

Example 1. A positive (Y) and a negative (N)
example of the baseline feature vector.

The graphemes closest to the segmentation point
are repeated in several features in order to give
graphemes closer to the compound boundary more
weight and also to catch cases where the cluster
around the segmentation point is smaller than four
graphemes on either side.

I limited the negative cases of training instances
to represent points one and two positions to the
right and to the left of the predetermined compound
boundary. For the batch testing below, the test cases
were limited to testing five positions in each word,
the supposed segmentation point and two positions
to the left and two to the right of the boundary.

3.2 Experiments

I did some experimenting with the feature vector,
ignoring a varying number of features. No combi-
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nation of ignored features gave a positive result. I
went on trying to group similar graphemes. Since
the clusters Brodda mentioned were mostly conso-
nant clusters, I replaced all vowels with one and the
same symbol, hoping to get more matching of close
neighbors. This had a devastating result. I tried the
same approach with the so called heavy vowels ‘d’,
‘a, ‘0’, ‘y’, ‘w and ‘i’ which are mostly found in
stems (Brodda, 1979). This gave a somewhat better
result, but again worse than with no vowel substitu-
tion.

I also tried a case of consonant substitution.
Swedish phonotactics tells us that if a word starts
with a cluster of three consonants the first one has
to be ‘s’, the second a voiceless plosive, ‘p’, ‘" or
‘k’, and the last one ‘r’, ‘I’, j> or ‘v’ (Lundstrém-
Holmberg and af Trampe, 1987). With this in mind I
replaced all voiceless plosives with a common sym-
bol. This did not have as bad result as the vowel
substitutions, but was still no improvement to the
baseline.

I finally tried extending the feature vector with
features representing graphemes across the segmen-
tation point. First, a feature consisting of one
grapheme on each side (1+1). I then added another
one with varying numbers of graphemes on either
side of the segmentation point (2+2, 1+2, 3+1, etc.).
This, finally, gave results improving on the original
vector. (See Table 1 below.)

abstinens~besvir,nens,besv,ens,bes,ns,be,sb,ensb, Y.
abstinens~besvir,inen,sbes,nen,sbe,en,sb,ns,nens,N.

Example 2. The feature vector giving the best
results, with boundary features 1+1 and 3+1.

4 Results

The outcome important in this case is ‘positive re-
call’, that is the procentage of found segmentation
points and ‘positive precision’, the procentage of
true segmentation points among the declared seg-
mentation points. Positive recall is a measure that
mirrors the procentage of missed positives and pos-
itive precision mirrors the procentage of false posi-
tives. In many cases having high recall is more es-
sential than having high precision since a user get-
ting superfluous results easily can discard the incor-
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Feature properties Missed Recall False Precision
positives | (positive) | positives | (positive)
Baseline 41 92.9 40 93.1
Ignore feature 6 41 92.9 40 93.1
Ignore features 5 and 6 42 92.7 52 91.2
Ignore features 4 and 6 46 92.1 47 91.9
Ignore feature 2 57 90.2 57 90.2
Ignore feature 3 64 88.9 61 89.4
Vowel substitution 94 83.8 107 81.9
Heavy vowel substitution 64 88.9 71 87.9
Voiceless plosive substitution 47 91.9 51 91.3
Boundary feature 1+1 38 93.4 43 92.6
Boundary feature 1+1, 2+2 40 93.1 38 93.4
Boundary feature 1+1, 2+1 35 94.0 37 93.6
Boundary feature 1+1, 142 35 94.0 40 93.2
Boundary feature 1+1, 3+1 32 94.5 36 93.8
Boundary feature 1+1, 3+2 40 93.1 34 94.1
Boundary feature 1+1, 4+1 41 93.8 36 93.0

Table 1: The effect on precision and recall, when experimenting with the feature vector, testing on five

positions in a total of 579 words.

rect ones. Furthermore, there are often multiple cor-
rect answers. Declared false positives are not sel-
dom morpheme boundaries or alternative or even ad-
ditional compound boundaries.

Looking at the false positives in this case, it is
clear that the learner has not been able to detect all
forbidden clusters. No Swedish words begin with
‘ttk’, ‘tst’, ‘Ik’, ‘tg’, ‘rs or end with ‘rnskl’ ‘sn’
or ‘mk’. The fact that these clusters are missed fol-
lows from never explicitly having stated which the
forbidden clusters are. Among the false positives
is also the case of ‘Bricker+-bldsa’ which has been
declared to have its segmentation point before the
hyphen, as well as after. One way to go from here
might be to combine this learner with a filter remov-
ing false positives containing forbidden start or end
clusters and segmentation points before hyphens.

The results of the false positives also reveals a
well-known problem in decomposing Swedish com-
pounds. It is the handling of the link morpheme.
In in the process of compounding a link morpheme,
most often an ‘s’, is sometimes inserted between
the parts of a compound. The problem is to deter-
mine whether an ‘s’ in the vicinity of a segmentation

point, belongs to the component to the right, or if it
is in fact a link morpheme, which is closer bound to
the component to the right.

The results from experimenting with the feature
vector can be seen in Table 1 above. The best result,
with the vector including boundary features 1+1 and
3+1, gave 94,5% recall, which means that almost 19
out of 20 segmentation points were found. This is
somewhat better than the 90% reported by Brodda
(1979). The precision in the tables above are not
quite comparable to Brodda’s results since tests have
not been done in every position of the words, only
the compound boundary and two positions preced-
ing and following it.

To see how well the learner manages to decom-
pose whole compounds, I tried the best feature vec-
tor (boundary feature 1+1 and 3+1) on 12 randomly
selected words. (See Appendix A.) All 12 seg-
mentation points were found, that is 0% failure. 3
words, 25%, were unambiguously decomposed cor-
rectly, and 9 words, 75%, had multiple segmenta-
tion. This can be compared to Brodda’s 10% fail-
ure, 50% unambiguous segmentation and 40% mul-
tiple segmentation (Brodda, 1979). However, 8§ out
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of 15 false positives have been decomposed at mor-
pheme boundaries. In other words, there are only 7
instances of completely false positives, that is seg-
mentation within a morpheme.

5 Conclusion

A conclusion that can be drawn from the experi-
ments above is that it is possible to state that some
features are more alike than others, hence the good
results of the MVDM setting. Considering the fact
that no improvements could be reached by ignoring
features, it appears correct to assume that substrings
up to the length of four graphemes on either side of
the segmentation point give information about per-
missible clusters. It is also important to consider
information across the segmentation point. How-
ever, replacing groups of graphemes with a common
substitute is not successful, which tells us that every
grapheme has its own way of behaving.

The performance of the TIMBL decomposer must
be considered satisfactory. Several of the failures are
proposed boundaries at morpheme borders, which
could be of use in some applications. Finally, the
precision could be further improved by simple fil-
ters, removing forbidden start and end clusters and
compound boundaries before hyphens.

A Results testing all positions
in 12 randomly selected words

Below is the result of running 12 randomly selected
words through the decomposer, testing in every
position of the words. The strings in boldface are
correctly decomposed. A plus sign (+) represents
segmentation at a morpheme boundary. A minus
sign (-) represents an incorrect decomposition
within a morpheme.

anti+klimax

abort+radgivning
abor-tradgivning
abortrad+givning

elektroretino+grafi
el-ektroretinografi
elektro+retinografi
elektrore-tinografi
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folk+bokforing
folkbok+foring

immuno-tlogi
im-munologi

kommun-+fullméiktige
kommunfull+méktige

millimeter+rittvisa
milli+meterrittvisa
millimeterritt+visa

overhead+projektor
o-verheadprojektor
over+headprojektor

overheadproj-ektor

senare-+lagga
sen+arelidgga

sommar+stuga
som-marstuga

tid+rymd

varme+bolja

B Missed positives using
boundary features 1+1 and 3+1

an+fordran
bak+at
bockhorns+klover
cerebro+spinal
del+ta
dos+ekvivalent
dods+trott
hov+tang
in+jaga
kontant+insats
kull+kasta
land+sitta
Medel+svensson
mot+atgird
nefr+ektomi
nor+adrenalin
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pappers+tiger
prust+rot
rep+ovning
rid+sér
rok+dykare
silver+nitrat
skram+skott
sldt+struken
tinning+lob
tviste+mal
ur+skog
utom+kved
vak-+natt
varnings+triangel
ved+bod
vid+6ppen

C False positives using
boundary features 1+1 and 3+1

The correct segmentation point is marked by two
vertical bars (||). A plus sign (+) represents an in-
correct segmentation by the learner at a morpheme
boundary. A minus sign (-) represents an incorrect
segmentation by the learner within a morpheme.
In the string Bricker+-||bldsa the minus sign is a
grapheme which belongs to the compound that is
decomposed.

abor-t||radgivning
akter||se-glad
ben||s-tomme
bockhorn+s||klover
bockhorns||kl-6ver
Bricker+-||blasa
elektrol||en-cefalogram
hop-p||16s
hydro||ne-fros
hog+t||staende
konsument||om+budsman
kontan-t||insats
kort||s-lutning
kul-1||kasta
land+s||kamp
lek||s-kola
luft/[om+byte
lang+t||gdende

lang||s-6kt
16ne||an+sprak
mikrovag+s|lugn
mot||at+gérd
pastor+s||expedition
prus-t||rot
rid||s-ar
rétte||sn-Ore
sjuk||av+drag
skorbjugg+s||ort
spo-rs||mal
strepto||my-cin
stru-p||lock
tallko-tt|| kortel
tillhand+a||halla
tvis-te||mal
titt||be+byggd
utom||k-ved
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