
Linguistically Fuelled Text Similarity

Bj örn Andrist
KTH CSC
Stockholm

andrist@kth.se

Martin Hassel
KTH CSC
Stockholm

xmartin@kth.se

Abstract

This paper describes TEXTSIM , a system
for determining the similarity between texts.
Further, we show the results of a com-
parison between two various configurations
of TEXTSIM ; one with and one without
any deeper linguistic analysis. To evaluate
and compare the two models of TEXTSIM

we used two sets of examples: a set of
automatically generated examples and a set
of examples acquired from two assessors.
Depending on the type of documents, we
found the model using linguistic analysis
to perform equally well or better than the
model not using linguistic analysis.

1 Introduction

Many NLP systems utilize statistics for various
tasks, and in many cases it is not desirable that
several instances of the same text are represented
in these statistics. In order to detect similar
texts a similarity system named TEXTSIM has
been implemented and evaluated. We aimed to
develop TEXTSIM in such a way that it mirrors the
human perception of similarity between documents.
Examples of such systems have successfully been
implemented with the use of two mathematical no-
tions calledresemblanceandcontainment(Broder,
1997).

Since the context in which TEXTSIM is to
operate is restricted to documents written in natural
language, the use of linguistic analysis is quite
intuitive in an attempt to improve the technique.

In this project we have focused on texts written
in Swedish. For linguistic analysis the grammar
checker Granska (Domeij et al., 1999) has been
utilized for tokenizing, lemmatizingand part-of-
speech tagging.

Our hypothesis is that a system based on tokens,
lemmas, and tags would outperform a system based
solely on lexical tokens. This applies principally
when comparing documents where lemmas and tags
would provide additional information e.g. when
documents are modified by synonyms or by tense.

2 Similarity between texts

We are interested in finding the documenty in a
document setD which is most similar to some
documentx, i.e.:

y = argmax
d∈D

sim(x, d)

wheresim is some arbitrary function that quantifies
the similarity between two documents. In order
for our similarity function sim to be useful, we
claim that atransitive relationR on a document
setD, given byaRxb ⇔ sim(x, a) > sim(x, b)
where a, b ∈ D, must exist for every document
x ∈ D. The transitive property ofR implies
that if aRxb andbRxc ⇒ aRxc. This property
was of great importance when designing TEXTSIM ,
because it enabled us to construct reliable training
data.

2.1 Training data

In order to mirror human perception of similarity
between documents the training and evaluation data

Joakim Nivre, Heiki-Jaan Kaalep, Kadri Muischnek and Mare Koit (Eds.)
NODALIDA 2007 Conference Proceedings, pp. 207–211

Björn Andrist and Martin Hassel

should preferably be comprised of examples from
human subjects. Furthermore, the training data
ought to be reliable and preferably easy to generate.
In this context, reliable data is data from a subject
who produces approximately the same results when
repeating a test. We used the following method for
generating training examples. Give a subject three
documents: a reference documentR and two other
documentsA andB. Thereafter the subject specifies
which of the documentsA orB that he/she considers
to be most similar toR.

This method generated reliable data and it
was also possible to automatically generate large
amounts of training examples by using hypotheses
about the similarity between documents.

2.2 Resemblance and containment

Resemblance and containment quantify the sim-
ilarity between two documents. The degree of
resemblance and containment is represented by a
real numberx ∈ [0, 1]. A resemblance value close
to 1 indicates a high level of similarity between
two documents. A containment value close to 1
indicates that one of two documents nearly contains
the other document. Resemblance and containment
are clearly defined in (Broder, 1997). However, a
short summary is given below.

Consider a document as a sequence of tokens. A
token could be a word, a punctuation mark, etc. We
call a subsequence of a document ashingle. Further,
a shingle of a specific sizew will be referred to as a
w-shingle.

Let S(A,w) represent the multiset ofw-shingles
for a documentA. Given two documentsA andB

and a fixed shingle size ofw, the resemblance can
be computed by dividing the number ofw-shingles
in common with the total number of distinct
w-shingles:

rw(A,B) =
|S(A,w) ∩ S(B,w)|

|S(A,w) ∪ S(B,w)|
.

To compute the containment ofA in B, divide the
number ofw-shingles in common, with the number
of w-shingles inA:

cw(A,B) =
|S(A,w) ∩ S(B,w)|

|S(A,w)|
.

Computing the resemblance and containment is a
very time consuming task for large document sets
and therefore we make an unbiased estimate of the
resemblance and the containment. The estimate
is performed by comparing sketches of documents,
created by hashing a subset of the sequences of
strings contained in the documents.

2.3 Features, weighting and learning

When comparing two documents,A and B, the
following features are of interest: i) the resemblance
of A and B, r(A,B), which determines to what
degree the documents resemble one another. ii)
the containment ofA in B c(B,A), which is
required to detect those documents which are
contained in previously processed documents. iii)
the containment ofB in A, c(B,A), which
is required to detect documents which contain
previously processed documents.

In order to build a system capable of learning
from the training instances comprised of the three
documents,R, A, and B, a perceptron (Mitchell,
1997) is used. When solely using tokens for
document comparison, the perceptron needs six
input nodes:r(R,A), c(R,A), c(A,R), r(R,B),
c(R,B), andc(B,R). When using tokens, lemmas
and tags for document comparison, the perceptron
needs a total of 18 input nodes (six for each type).
In either case, the perceptron only has one output
node, where a positive output node indicates that
documentR is more similar toA thanB.

Given a documentR and a document setD, the
document inD which is most similar toR can be
found by iterating overD. In each iteration, the
output of the perceptron determines the most similar
document.

3 Evaluation of the text similarity system

We have evaluated two configurations of TEXTSIM :
one based solely on tokens and one based on tokens,
lemmas, and PoS tags. In order to evaluate and
compare the models we used two sets of examples.
First a set of automatically generated examples,
and second, a set of examples acquired from two
assessors. Furthermore, two evaluation experiments
were conducted. The first experiment used a
generated example set for training as well as testing.

208

Linguistically Fuelled Text Similarity

The second experiment used the generated example
set for training and the assessor example set for
testing.

3.1 System configurations

Using TEXTSIM , two models for determining the
similarity between documents were configured:

Model 1 was based on the perceptron with 6 input
nodes. The input was collected from the
resemblance and the containment of documents
in token form.

Model 2 was based on the perceptron with 18 input
nodes. The input was collected from the
resemblance and the containment of documents
using token, lemmas, and tags.

Both models were configured using 3-shingles
where every fourth shingle formed the sketches. The
learning rate and the number of maximum epochs
was determined by evaluating various values of
these parameters. The evaluation was conducted by
means of one representative example set containing
400 examples.

3.2 Data sets

The reference documents that were used during
training and testing were collected from two sources.
The first was KTH News Corpus (Hassel, 2001), a
digital corpus containing news articles from the web
sites of widely spread Swedish newspapers. The
second being the results from an experiment using
Trace-it (Severinson-Eklundh & Kollberg, 1996)
where a group of writers were asked to write short
essays. Trace-it is a revision analysis tool that
automatically stores a revision of a text after every
modification of the text.

To automatically generate variants of the refer-
ence documents we substituted words with syn-
onyms using Synlex and replaced words with
misspellings using Missplel.

Missplel is a program for generating human like
spelling errors (Bigert et al., 2003). It can be
configured to produce a great variety of spelling
errors. One can also configure Missplel to only
substitute words so that the PoS tag of a word is
changed and vice versa.

Synlex is an on-line Swedish dictionary of
synonyms constructed by having people vote for
the synonymity of possible synonym pairs (Kann &
Rosell, 2005). We automatically replace a certain
amount of the words in a document by synonyms
in Synlex. Most likely this will lead to a lot of
inappropriate replacements due to the ambiguity of
many words. However, this method was deemed
sufficient for generating training data.

3.3 Example types

The data used for training and evaluation was
divided into the following five main types:

Type 1.a:A andB were generated fromR with
Missplel using the same type of errors, but with
different amounts of misspelled words.

Type 1.b:A andB were generated fromR with
Synlex using different amounts of synonyms.

Type 2: A and B were generated fromR by
Missplel using different types of errors though the
total sum of errors inA andB was equal.

Type 3:A was generated fromR by substituting
a certain amount of words with synonyms fetched
from Synlex. B was generated fromR with
rearranged paragraphs and sentences.

Type 4:A was generated fromR by introducing
spelling errors with Missplel. B was generated
from R by replacing a certain amount of words with
synonyms from Synlex.

Type 5:A was generated fromR by introducing
spelling errors and/or by replacing words with
synonyms from Synlex.B originated fromR but
was expressed in another tense.

Examples of types 1.a, 1.b, and 4 were not
difficult to generate while examples of the types 2,
3, and 5 required manual editing.

3.3.1 The generated example set

The generated example set was created in order
to acquire large amounts of training and evaluation
data. It contained examples of the types 1.a, 1.b,
and 4. Documents were sampled from the KTH
News Corpus. The samples contained documents
containing 200–300 tokens each. 1000 reference
documents were used to generate 5850 examples.

209

Björn Andrist and Martin Hassel

3.3.2 The assessor example set

The assessor example set was acquired from two
assessors and contained examples of all types, i.e.
1.a, 1.b, 2, 3, 4, and 5. We aimed to find test data that
was both difficult to classify and reliable. This is an
inconsistency since the less difficult the documents
are to classify the more reliable the test data ought
to be.

The test was carried out with two assessors. The
examples were randomly ordered prior to giving
them to the assessors. The assessors were only
informed about the context in which the examples
would be used. The assessors were given 25
examples, five of each main type. Each example
was comprised of a document triple(R,A,B). For
each example the assessors were asked to read the
documentsR, A, andB in order to determine which
of the documentsA or B that they thought was most
similar toR.

3.4 Performance

The performance of the two systems was evaluated
and compared with each other using the generated
example set as well as the assessor example set.
However, consideration should be taken to the fact
that not every type of the examples in the assessor
example set was included in the training examples.
Preferably, all example types should be properly
represented in both the training set as well as the
test set.

3.4.1 Performance on generated examples

The reported error rates are the mean values of
10-fold cross-validations repeated ten times using
the generated example set. Table 1 presents the error
rates for each type and the overall error rate when
evaluating the entire example set.

Type Model 1 Model 2 Examples
Type 1.a 14.5% 13.3% 1970
Type 1.b 0.4% 0.4% 1940
Type 4 29.4% 5.6% 1940
All types 14.2% 8.0% 5850

Table 1: Error rates for each type of text for Model 1
(tokens) and Model 2 (tokens, lemmas and PoS tags)
respectively.

The most significant difference between Model 1
and Model 2 appears in the examples of Type 4.
This corresponds well with our hypothesis. Model 1
has shown not to be efficient in separating document
pairs with the same amount of token overlap.
Further, the differences in performance between
Model 1 and Model 2 are negligible on the examples
of types 1 and 2. Changes that have been initiated in
the examples of types 1 and 2 are mirrored equally in
the token representation, the lemma representation
and the tag representation of the documents. Thus
the tags and lemmas are superfluous and do not
improve the performance of Model 2.

The reason for the substantial differences between
Type 1 and Type 2 is a result of the more accurate
data obtained from the method using Synlex
compared to the method using Missplel. However,
our attention is not drawn to the differences in values
between the various types but to the differences
between Models 1 and 2.

Finally, a significant difference between Models 1
and 2 was apparent when using the entire set of
generated examples.

3.4.2 Performance on the assessor example set

Model 1 and Model 2 were trained on the
generated example set and thereafter compared
with the assessors perception of similarity. The
assessors agreed on 19 of the 25 examples. As
in the evaluation using the generated example set
our attention is drawn to the differences between
Models 1 and 2, and not the absolute error rates. By
using the examples that the assessors agreed upon,
the error rate for Model 1 is 6/19 while the error rate
on Model 2 is 4/19.

Type Assessors Model 1 Model 2
Type 1 4/5 1 0
Type 2 5/5 1 1
Type 3 1/5 0 0
Type 4 5/5 2 0
Type 5 4/5 2 3
Total 19/25 6 4

Table 2: The number of errors for each type of
text for Model 1 and Model 2 respectively. The
assessors column indicates the agreement between
the assessors.

210

Linguistically Fuelled Text Similarity

4 Conclusions

The system using tokens, lemmas, and PoS tags
outperformed the system using only tokens, both
when evaluation was performed on the generated
example set and the examples acquired from asses-
sors. However, this is at the cost of performance
with respect to memory and speed. The most
obvious differences between the systems appeared
on documents with the same amount of token
overlap but with different types of variations.

The evaluation was performed on a small amount
of assessor examples. A more reliable method
would have been to acquire a substantially larger
amount of assessor examples in order to facilitate the
performance of a stratifiedk-fold cross-validation
on the assessor examples without the generated
example set.

References

J. Bigert, L. Ericson, and A. Solis. 2003. Missplel and
AutoEval: Two generic tools for automatic evaluation.
Proc. of NODALIDA 2003.

A. Z. Broder. 1997. On the resemblance and containment
of documents. InCompression and Complexity of
Sequences (SEQUENCES 97), 21–29. IEEE Computer
Society, 1998.

R. Domeij, O. Knutsson, J. Carlberger, and V. Kann.
1999. Granska – an efficient hybrid system for
Swedish grammar checking.Proc. of NODALIDA
1999.

M. Hassel. 2001. Automatic construction of a Swedish
news corpus.Proc. of NODALIDA 2001.

V. Kann and M. Rosell. 2005. Free Construction of
a Free Swedish Dictionary of Synonyms.Proc. of
NODALIDA 2005.

T. Mitchell. 1997.Machine Learning.McGraw Hill.

K. Severinson-Eklundh, P. Kollberg. 1996. A computer
tool and framework for analysing on-line revisions.
Levy, C. M. and Ransdell, S. (eds), The science of
writing: Theories, Methods, Individual Differences,
and Applications, 163–188, Lawrence Erlbaum Ass.

211

