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Abstract

Totally unordered or discontinuous com-
position blows up chart size on most set-
ups. This paper analyzes the effects
of total unordering to type 2 grammars
and simple attribute-value grammars (s-
AVGS). In both cases, charts turn ex-
ponential in size. It is shown that the
k-ambiguity constraint turns charts poly-
nomial, even for s-AVGs. Consequently,
tractable parsing can be deviced.

authors have proposddtally unordered grammars
in face of free word order phenomena that involve
discontinuous constituents. Dowty (1995), origi-
nally published in 1989, is often cited as the original
source.

This paper is structured as follows: Sect. 2 de-
fines type 2 grammars and s-AVGs, and their totally
unordered pendants. Sect. 3 establishes bounds on
chart size for these kinds of grammars. Charts for
totally unordered grammars are shown to be worst
case exponential. In reply to this, Sect. 4 intro-
duces thé-ambiguity constraint, which turns totally

unordered charts polynomial again. Of course this

1 Introduction means that polynomial time parsing can be deviced.

It is common knowledge among linguists that in2 Grammars and total unordering
many languages, the daughters of syntactic con- i i i
stituents can be locally reordered with little or noOur f'_rSt task is to properly define the grammars in
effect on grammaticality. Certain languages — ofluestion:

which Dyirbal and Warlpiri are often-cited mem-2 1 Type 2 grammars

bers, but that also include Estonian and Finnish Definition 2.1 (Type 2 grammars) G —
exhibit a much more radical form of unordering, the !

kind of unordering that has made linguists proposéN’ T P.’ {53) 'S a type 2 grammar iff every
p " production rule inP is of the form
crossed brances” analyses, e.qg.

s A — w

T whered € N andw € {N UT}.

NP vP Definition 2.2 (Derivability). For a type 2 grammar
G andwy,ws € (N UT)*, w1 =1 wy iff there is
Lisa John loved aA — ¢ € P and there are),1 € (NUT)*

yielding love(John, Lisa). The Finnish transla- Such thator = ¢1Ays andwy = 91¢vn. =1
tion is Liisaa Jussi rakasti All six permutations of (the derivability relation) is the reflexive transitive
this sentence are grammatical. Closure of=.

Unordered grammars have been suggested in fabefinition 2.3 (Type 2 languages)The language of
of intra-constituent free word order. Similarly, a fewa type 2 grammaf is defined as
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L(G) {zeT*: S = x}.

Definition 2.4 (Chomsky normal form) A type 2
grammarG = (N, T, P,{S}) is in Chomsky normal

form iff each production has one of the foIIowmg

forms:
e A— BC
e A—a
e S —e¢

wherea € T'andB,C € N — {S}.

Definition 2.10 (s-AVS). An s-AVS A is defined
over a signaturéAttr, Atms, p), wherep : Attr —
2Atms, such thatA € Attr — 2A'™s andVa <
OM(A).A(a) € p(a).
Definition 2.11 (s-AVG). An s-AVG is a 5-tuple
G = ((Attr, Atms, p), AttrPerc, T, P, {S}), where
AttrPerc C Attr, p : Attr — 2™ S is an s-AVS,
and every production rule iR is of the forma — w;
orag — a1 ...a, Wheren > 2, «; is an s-AVS, and

(1) Ya € DOM(cvg) N AttrPerc.V1 <i < n.f €
DOM(c;) A ai(a) = ap(a)

Example 2.5. Consider the type 2 grammar with
rulesS — aXblab,X — aXblab. The Chomsky
normal form of this grammar is obtained by addmg
the rulesA — a, B — b and by reducing the length
of the S, X-rules. Consequently?’ now includes:

wherea(a) is the value ofz in the s-AVSa with

a(a) € pla).

Intuitively, the AttrPerc features are agreement
features whose values percolate up the tree if defined

S — AT|AB T — XB

X — AT|IAB A — a

B — b
Lemma 2.6 (Equivalence of normal forms)Say
G = (N,T,P,{S}) is a type 2 grammar. There
is an algorithm to construct a grammat’
(N',T,P',{S"}) in Chomsky normal form that is
weakly equivalent t6-.

Proof. See Sudkamp (2005, 122-3). O

2.2 Totally unordered type 2 grammars

Definition 2.7 (Totally unordered type 2 grammars)
G = (N,T,P,{S}) is a type 2 grammar iff every
production rule inP is of the form

A — w
whereA € N andw € {N UT}*.

Definition 2.8 (Derivability). If A == w andw’ €
permute(w), thenA ==, o',

Definition 2.9 (Totally unordered type 2 languages)

for every level of it.

Example 2.12. Consider the  grammar
G1 (({CAT,PLU,PER}, {s, up, np, v, n,
1,2,8,+,—}, p), {PLU,PER}, {I, men, John,

sleep, sleeps}, P, S) wherep is the specification of
appropriate values of attributes:

p(CAT) {s,vp,np,v,n}
p(PER) = {1,2,3}
p(PLu) = {+,—}

andP is the set of production rules:

[CAT%—» [CATnp}[CATvq [CATV@—» [CAr{
[CATné}e [CATH} CAT N |
_
PER1
CAT N CAT N
—  men
PLU + PLU- [— John
PER3
CATV | CAT V
—  slee
PLU+ P PLU-|— sleeps
PER3

The language of a totally unordered type 2 grammar (1) applies to the subset of attributésLu,PER}.

G is defined as

L(G)
2.3 s-AVGs

{xeT": 5=z}

The start symbol i :|caT s]- The grammar gener-
ates exactly the sentences:

(2) Isleep.

s-AVGs are defined over simple attribute-value

structures (s-AVSSs):

184

(3) Men sleep.

(4) John sleeps.
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Definition 2.13 (Subsumption) An s-AVS o sub-  (b) (;B;,j+1 Cx € N, andA — BC) = (;A; €
sumes an s-AVY (o C f) iff Va.DOM(a).a(a) = Ny N A — iBjj+1C) € P,)

B(a).

Definition 2.14 (Derivability). Say G

((Attr, Atms, p), AttrPerc, T, P,{S}) is an s-
AVG. If P contains a productiodd — w, then for
any ¢1, g, 1A'y =3 ¢y if A T A’ and
wCw. :*>3 is the reflexive, transitive closure of

Example 3.3. Consider aabb-grammar of the
Chomsky normal form grammar in Example 2.5.
First T, = {a1,a9,b3,b4}. By (a), the terminal
rules are constructed; A1 — a1, 245 — a9,
3Bs — b3, and, B4 — bs. Nonterminal binary rules
can now be constructed:

—>3.

f'3 L I he | 253 — 2A23B3  2X3 — 242383
Definition 2.15 (s-A\_/G anguages) The language 0Ty — 9X34Bs  1X4 — 14127
of an s-AVGG is defined as 1Sy — 1A1oTy

. Naaky = {141,242,3B3,4B4,253,2X3, 274,
L(G) = {x2eT*:35.83SNS =3z} 1 X4, 154}
2.4 Totally unordered s-AVGs Our construction of7,, gives us two sets of pos-
Call totally unordered s-AVGs u-AVGs. sible interest)N,, and P,,. It is easy to see that
’I’L2 n

Definition 2.16 (u-AVG). A Uu-AVG is a 5-tupleG = INol <IN (57)
((Attr, Atms, p), AttrPerc, T, P, {S}). where |w| = n. In our example above this

* — 4x5
Definition 2.17 (Derivability). If A =5 w and @mMOUNts tdNaas| =9 <4 x =2 = 40.
W € permute(w), thenAd == o', The chart size is bounded bg,,| + n.
Remark2.18 (1) means that no Chomsky normallémma 3.4(Chart size) SayG is a type 2 grammar
form can be obtained for s-AVG or u-AVG. in Chomsky normal and € T*. It now holds that
Cawl < (INo| x n x [N|?) + (IN] x 1) + n.

3 Bounds on chart size Proof. Eachw-nonterminal (V,,| many) has at most

3.1 Type 2 grammars two daughters, and x |N| nonterminals are non-
branching. Since there are at masways to split up
the span of a branching terminal in two, and at most

V\JN\Q variable combinations for the two daughters,
((IN,]) x n x |N|2 + (n x |N])) is clearly an upper
bound on P,|. Infact, the result is suboptimal, since

Proof. SinceG is in Chomsky normal form, there the, X;-nonterminals count twice. O

are only two kinds of production rules: Any deriva-

tion of w of lengthn needs:— 1 binary applications,

andn unary ones, i.e. of non-branching rules. Ther

aren many terminals. Consequently, the derivatiory Totally unordered type 2 grammars
structure is at mosin — 1. O

Lemma 3.1(Size of derivation structure)SayD =
(V. e) is a derivation structure fow, G whereG is
a type 2 grammar in Chomsky normal form. It no
holds that|V| < (3n — 1).

The number of trees with leafs isC,,_; (the
gatalan number).

Lemma 3.5(Size of derivation structure)SayD =
Definition 3.2 (w-grammar) Say you have a (V,e) is aderivation structure fow, G whereG is a
type 2 grammar in Chomsky normal fordd = totally unordered type 2 grammar in Chomsky nor-
(N,T, P,{S}) and some string; . ..w,. Construct mal form. It now holds thafi’| < (3n — 1).
G, = (N, T,, P,,{15,}) such that

T, = A{wi,...,wn}
and, recursively

Proof. Similar to the proof of Lemma 3.1. O

Definition 3.6 (w-grammar) Say you have a to-
tally unordered type 2 grammar in Chomsky normal
formG = (N, T, P,{S}) and some string ... wy,.

a ; € T,andA ; € P) = (jA; €
@ ( Y ) ( Construct,, = (N, T, P,,,{S}) such that

N, and;A; — w; € Pw)
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Tw = {wl, . ,wn} (b) (i[al]j,jﬂ Oég]k, ceym—1 [Oén]m S
and, recursively N,, and|ayg] — [ ][ab] ... o) €
Pandvl < ¢ < nfo] C [of] V[ T
(@) (w; € T,andA — w; € P) = (A € [i]) = (lwlm € No A ilaolm  —
Nw andA{Z} — w; € Pw) [al]j7j+1 [OQ]ky ceeom—1 [an]m S Pw)
(b) (By,Csxy € NyandX NY = fandA — | introduce square brackets to enhance readability,
BC) = (Asuyy € N, A Asusy — By Cyy € i.e. to separate daughter tags from positions. Posi-
P,) tions are outside brackets.

: . We no longer have a sg¥| to measure chart size.
Lemma 3.7 (Chart size, upper boundfaydG is a . :
( PP pay The set of possible category structuresiisnst*".

totally unordered type 2 grammar in Chomsky nor- . . L
mal andw € T*. It now holds that|Ce.| < However, by inspection of our definition aof, a

INLIZ % n2 x |[NJ2) + (n x |N|) + . tighter bound is obtained:

. ) N, < |P| x (nn
Proof. There aren? ways to split up a sequence in N = PP (55)
two discontinuous parts. 0 Unfortunately, no such bound can be placed on

|P,|. The reason is, of course, that productions
Z‘[Oé()]m — Z’[Oél] [Oén]m, and nOti[ao]m —
Lemma 3.8 (Chart size, lower bound)SayG is a ;[¢]. .. [a;,], are recorded in Definition 3.10.
totally unordered type 2 grammar in Chomsky nor{ emma 3.11(Chart size) SayG is an s-AVG and
mal andw € T*. Itnow holds tha{Cc..|  O(n*), o, ¢ T*. It now holds thalCg.,| < (IN.| x n x
i.e. chart size is exponential. | Atms|/Atr1XEY 1 (|P| x n) +n, if G do not contain

Proof. It is easy to see this. You only need to con/"-&ry rules such thatn > k.

sider the upper bound ofiV,| in the totally un- pyoof. Compare the situation to Lemma 3.4.
ordered case: |Atms|Attr<F is the number of combinations of
IN,| < |N|x2° daughter categories irary productions. 0

O 3.4 Totally unordered s-AVGs

33 S-AVGs The upper bound on derivation structions in the to-
' _ o tally unordered case is the same as for s-AVGs.
Lemma 3.9(Size of derivation structure)SayD = grammars for u-AVG are built analogously te-

(V,e) is a derivation structure fow, G whereG is  grammars for totally unordered type 2 grammars. It
an s-AVG. It now holds th&V! S 3n—1x (‘Attl" + is easy to see that:

1).

) N, < |P|x2"
Definition 3.10 (w-grammar) Say you have an .

s-AVG G = ((Attr, Atms, p), AttrPerc, T, P, {S}) It now holds:

and some string wi...wp,. Construct Lemma 3.12(Chart size) SayG is an u-AVG and
G, = ((Attr,Atms,, p), AttrPerc, T,,, P, {1S,}) w € T*. It now holds thaiCg .| < (|N,| x n x
such that |Atms|/AtIXEY (| P| x n) 4 n, if G do not contain

-ary rules such thatn > k.
T, = {wi,...,wn} m-ary =

. In sum,
and, recursively

Theorem 3.13. Totally unordered 2 grammars, s-
(@ (w]; € T,anda — [w]; € P) = (;la]; € AVGs and u-AVGs have worst case exponential
N, and;[a]; — [w]; € P,) charts.

This leads us to consider complexity and genera-
tive capacity.
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3.5 Complexity and generative capacity manya’s or b's or so on, and extends into all pos-
Consider the universal recognition problem: sible vertices. Since the grammar and input string
can be constructed in polynomial time from an un-
derlying vertex cover problentk, V, E), universal
recognition of UCFG must be at least as hard as

Definition 3.14 (Universal recognition) Universal
recognition is the decision problem:

INSTANCE: A grammag and a stringo. solving the vertex cover problem. Since the vertex
QUESTION: Iswinthe language denoted  cover problem is NP-complete (Garey and Johnson,
by G? 1979), the universal recognition problem for totally

Lemma 3.15((Barton, 1985)) The universal recog- unordered type 2 grammars is accordingly NP-hard.

nition problem for totally unordered type 2 gram-It is easy to see that it is also in NP. Simply guess
mars is NP-complete. a derivation, polynomial in size by Lemma 3.5, and

_ ~_evaluate it in polynomial time. O
Proof. The vertex cover problem involves finding

the smallest sdt” of vertices in a graply = (V, £) Lemma 3.16. The universal recognition problem
such that every edge has at least one endpoint in tH¥f S-AVGs is NP-complete.

set. FormallyV' CV :V{a,b} e E:a € V'Vbe
V'. The problem is thus an optimization problem
formulated as a decision problem:

Proof. The 3SAT problem is a variant of the sat-
isfiability problem of propositional logic for con-
junctions of clauses of three literals, eV p Vv

INSTANCE: A graphG and a positive p A —pV —pV —pis not satisfiable in any model.
integerk. Its complexity is the same as its older sister's: It

QUESTION: Isthere a vertex cover of size  is NP-complete. It is relatively easy to code this
kL or less forG? problem up in s-AVG. The details are left for the

reader.Hint: Introduce agreement features for truth
Say k= 2V = {abcdhE "~ assignments and build ternary phrases that ensure at
{(a,¢), (b,¢), (b, d), (c,d)}. One way to obtain a |56t gne propositional variable in the original prob-
vertex cover is to go through the edges and underllqgm is true. SinceAttrPerc must percolate by (1),

onle endpoll_nt of each edge. If yolu can do that a u need four rules for each propositional variable
only underline two vertex symbols, a vertex Covejy,e and false for with and without negation). It

has begn found. Singd| = 4, this is equivalent follows that the universal recognition problem for s-
to leaving two vertex symbols untouched. Conseéa s js Np-hard. It is easy to see that it is also in

guently, t_he vertex cover problem for this specifigp Simply guess a derivation, polynomial in size by
instance is encoded by the totally unordered type emma 3.9, and evaluate it in polynomial time]
grammar, whereé is a bookkeeping dummy symbol:

Lemma 3.17. The universal recognition problem

S = P1papspauuddsd for u-AVGs is NP-complete.

pr — ale

p2 — blc Proof. Similar to the proof of Lemma 3.16. Extra
p3 — bld features can be used for clause bounds. O

pr = cld Remark3.18 It is cheap to add linear precedence
1(; : Zﬁ;‘gbbb'cwc‘dddd constraints to totally unordered type 2 grammars and

u-AVGs, e.g. to ensure that all verbs precede nouns.
p: captures theth edge inE. The input string Such constraints can be resolved in tidén?) on

w = aaaabbbbcecedddd. Generally, the first produc- even the most naive set-up.

tion has as many; as there are edges in the graph, |f linear precedence constraints are added, it holds

[V|—k manyu's and|E|x [V|—|E|-|E|x([V[-k)  that

manyd’s, i.e. the length of the string minus the num-

ber of edges and the extension|&f — £ manyu’s.

The p; productions are simpley extends into|E|

187



Anders Sggaard

Lemma 3.19. The totally unordered type 2 lan- pu.
guages and the totally unordered simple attribute-  you.SG.NOM

value languages both are not included in the type 2 'She asked whether the suspect surely was
languages. you.

Proof. Both the totally unordered type 2 languages |n addition, both SVO and OVS constructions oc-
and the totally unordered simple attribute-value lancyr, So in many cases, a verb that seeks to combine
guages includga™b"c™d"}. The simplest way to \yith an object has more than one candidate for doing

encode it is to let some rulé — abScd|abed inter-  go even in sentences with only three constituents:
act with some precedence rule that requireg’alto

precede alb’s, and so on. Similarly, with s-AVSs.
It is just as easy to code up the MIX language, for NPNOM V. NPNOM

nstance. . The V constituent is said to be horizontally 2-

4  k-ambiguity ambiguous in this case.

0 btai | ol ch in th For simplicity, the notion of the order of an s-AVS
ur strategy to obtain polynomial charts in the to;_ . .4/ ~aq:

tally unordered cases is to restrict ambiguity. Arigid . ) )
lexicon is first imposed. In a rigid lexicon everyDef'n'“on 4.4. An s-AVS « is said to be of ordef

phonological string is associated with at most ondf [DOM(@)| = . If all s-AVSs in a grammat- are
lexical entry. of orderl, GG is itself said to be of order 1.
Remark4.1 Rigidity is a strong constraint in the Lemma 4.5. Type 2 grammars are equivalent to s-
absence of inheritance. Inheritance provides an gfVGs of order 1. Totally unordered type 2 languages
ternative to lexical ambiguity, namely underspeci&re equivalent to u-AvVGs of order 1.

fication. Such use of inheritance seems necessapyyof. Trivial. H

for realistic applications of-ambiguous grammars. _ o
Rigidity needs only to apply to open class items. S&y S-AVSs are of order 1, and vertical ambiguity
There seems to be some evidence from cognitive(i-€. horizontal ambiguity:). We then have:

neuropsychology that people actually underspecify i<n

. . n2—n N
open class items wrt. morphological features, va- 1Cawl < (%52 + > (kn(n—1)))+n
lence and even syntactic category. 1<i

The next step is to restrict ambiguity in parsing.  First all initial combinations"QZ‘" are checked.
Definition 4.2. A sign is horizontallyk-ambiguous At this point, there can be at mdst candidate mod-
if it only combines withk signs in a sentence. A e!s. For e_ach candldate_model, t_he next §et_of com-
binations is checked. Since vertical ambiguityijs
the set of candidate models remains at ntest

If we fix vertical ambiguity tok (i.e. horizontal

o ambiguityn):
It is important to remember that our unordered ien

grammars allow signs to combine non-locally. The C < (n’-n ki, _ s
notion of k-ambiguity can be illustrated by an exam- Co.l (52 Z(n (n=1))+n
ple from Icelandic:

grammar is horizontally-ambiguous if all signs are
k-ambiguous. A grammar is verticallrambiguous
if signs are combined unambiguously aftesteps.

1<i
. o _ which is in O(n¥*2). Since the order of s-AVSs
Example 4.3. Icelandic has nominative objects.js hound byjAttr|, it holds that:

Consider, for instance: Theorem 4.6. k-ambiguous totally unordered 2

(5) HUn spurdi hvort  sa grammars,k-ambiguous s-AVGs ank-ambiguous
she asked whether theNoOM u-AVGs have polynomial charts.

grunadi veeri orugglega Proof. See above. The result for s-AVGs is sub-

suspectedioM was.3G.SUBJ surely sumed by the result for u-AVGs. O

188



Polynomial Charts For Totally Unordered Languages

Remark4.7. For unordered type 2 grammars, andefinition 5.2. An nc-LFG is called a fc-LFG (fi-
possibly for totally unordered ones too, it is an alternite ...) if it contains only a finite number of so-
native to say that all totally unordered productions ircalled “subphrase nonterminal” (SPN) multisets, i.e.
a chart have a yield of at mokt This gives a bound a multiset of nonterminalsV such that there ex-

on chart size: ists consistent productiond; — ay... A, ...a,
LS 9= - and an attributeattr such thatN = ;€
SN x (=i x> (NF x (k=) x (n ) avtr S {o
i<k j<(k—1) {041 c. Oén}‘(T attr :l) is the FS Obl}
+'§(|N\3 X (n — 1)) A nice example of an nc-LFG that is not an fc-
i<n

. LFG is mentioned in (Seki et al., 1993):
This fragment no longer generates the MIX lan- xample 5.3. Let G be an nc-LFG wherdy — {5,

guage. Such a constraint is obviously not enougg
) . ) = , Lbls = {1 , e the only value, and
for u-AVG, since s-AVG is NP-complete. A third {‘?} s_ {Tog}, e y
productions are:

possibility is to restrict the arity of productions. g - g g
5 Conclusions and related work 5 (Tlog=1) (T 1log=l)
— a

In last year's conference, Sggaard and (1 log = e)

Haugereid (2006) presented, in a rather infor- G isnotan fc-LFG, since the SPN multisetsdn
mal fashion, a restrictive typed attribute-valueinclude

structure grammar formalismy for free word order {{S}},{{S, S}},{{S, 5,8, S},....
phenomena, equipped with a polynomial parsing

algorithm. In7;, horizontalk — 1. The purpose Both fragments are tractable, and the weak gen-

erative capacity of dc-LFG is equivalent to that of

f their r was mostly phil hical, i.e. in_ _ . .
of el paper was mostly pniosophical, 1.€ finite-state translation systems, while the weak gen-

favor of underspecification rather than ambiguit brative capacity of fc-LFG is equivalent to that of

but many details were left unclear. In a sense, th||s .
. . - linear indexed grammars. It follows that fc-LFG
paper provides a formal basis for some of the claims

i . .IS also equivalent to one-reentrant attribute-value
made in that paper. In particular, types are easil

added to s-AVG and u-AVG, and more erxibIeEgrammar (Feinstein and Wintner, 2006).

. Keller and Weir (1995) go beyond linear indexed
attribute-value structures can be employed (as lon . .
L . . ammars on their way toward attribute-value gram-
as they are at most polynomial in the size of strings).

. . g ar. The first step on this path is to replace the
Unlike 7, k-ambiguous grammars also admit fixe . s . .
stacks of indeces in linear indexed grammars with

ambiguity. e .
Other researchers have tried to single out tractabhraees' Tractability is ensured by the requirement that
: . Subtrees of any mother that are passed to daughters
attribute-value grammars:

Seki et al. (1993) operate in the context of LFGFhat. shar_e subtrees W'Fh one another mus_t appear as
. . §|bllngs in the mother’s tree. The following such
For a start, they restrict the expressive power O

LFG by restricting the syntax of LFG-style func- drammar generatefw:"bc" )

tional schemas to: gl F’?] ) - fg[[x]]? [[U](x’ )]
_ _ 2lo(r,y)] — Blz|S3ly
(T attr = val) or (T attr =|) Ss[a] —~ Ol

Call this fragment non-deterministic copying Aloa(z)] —  aAlx]
LFG (nc-LFG). They then proceed to define two Blos(z)] — bB[z]
tractable fragments of nc-LFG: Cloa(x)] —  cClx]
Definition 5.1. An nc-LFG is called a dc-LFG (de- Aloy] - a
terministic ...) if each pair of rules; : 4 — a3 Blo] — b
andr, : A — a9 whose left-hand sides are the Clo] - ¢

same is inconsistent in the sense that there exists noln a sense, this is much like s-AVG, except that
f-structure that locally satisfies both of the functionateentrancies replace (1) and roots cannot be reen-
schemata of; andrs. tered. Keller and Weir argue this is no problem if
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not include (all of) the regular languages. New York
Proof. Consider the language Bill Keller and David Weir. 1995. A tractable exten-
sion of linear indexed grammars. Rroceedings of
a{b ... m} U pill... m} U {bl.-In} the 7th European Chapter of the Association for Com-
but notj but noti

putational Linguisticspages 75-82, Dublin, Ireland.

in which ab, ai, pj, b are strings, whileuj, pi, bb  yirgyuki Seki, Ryuichi Nakanishi, Yuichi Kaji, Sachiko
are not. This language is regular, but cannot be gen- Ando, and Tadao Kasami. 1993. Parallel multi-
erated by d-ambiguous u-AVG. O ple context-free grammars, finite-state translation sys-
tems, and polynomial-time recognizable subclasses of
It should be relatively easy to see how this gener- lexical-functional grammars. IProceedings of the
alizes tok-ambiguous u-AVG. 31st Annual Meeting on the Association for Compu-

In sum, it was shown that the exponential worst tational Linguistics pages 130-139, Columbus, Ohio.

case complexity of totally unordered charts is dramanders Sggaard and Petter Haugereid. 2006. Functional-

maticaly reduced by the-ambiguity constraint. ity in grammar design. In Stefan Werner, editero-
In particular k-ambiguous charts are i@(n**2). ceedings of the 15th Nordic Conference of Computa-

Since subsumption is linear time solvable, the recog- tional Linguistics pages 180-189, Joensuu, Finland.

nition problem for k-ambiguous u-AVGs is also Thomas Sudkamp. 2005Languages and machines
solvable in polynomial time. Efficient algorithms Pearson, Boston, Massachusetts, 3rd edition.
and their complexity are the topic of future pub-

lications. k-ambiguous u-AVG differs in signif-

icant ways from other polynomial time attribute-

value grammars. In particulak;ambiguous u-AVG

was designed for analyses of discontinuous con-

stituency. It provides the formal machinery needed

for “crossed branches” analyses. In additidn,

ambiguous u-AVG is not superfinite. It is conjec-

tured — also by one of the reviewers — that this has

interesting consequences for learnability.
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