
Polynomial Charts for Totally Unordered Languages

Anders Søgaard
Center for Language Technology

Njalsgade 80
DK-2300 Copenhagen
anders@cst.dk

Abstract

Totally unordered or discontinuous com-
position blows up chart size on most set-
ups. This paper analyzes the effects
of total unordering to type 2 grammars
and simple attribute-value grammars (s-
AVGs). In both cases, charts turn ex-
ponential in size. It is shown that the
k-ambiguity constraint turns charts poly-
nomial, even for s-AVGs. Consequently,
tractable parsing can be deviced.

1 Introduction

It is common knowledge among linguists that in
many languages, the daughters of syntactic con-
stituents can be locally reordered with little or no
effect on grammaticality. Certain languages – of
which Dyirbal and Warlpiri are often-cited mem-
bers, but that also include Estonian and Finnish –
exhibit a much more radical form of unordering, the
kind of unordering that has made linguists propose
“crossed brances” analyses, e.g.

S

NP VP

Lisa John loved

yielding love(John,Lisa). The Finnish transla-
tion is Liisaa Jussi rakasti. All six permutations of
this sentence are grammatical.

Unordered grammars have been suggested in face
of intra-constituent free word order. Similarly, a few

authors have proposedtotally unordered grammars
in face of free word order phenomena that involve
discontinuous constituents. Dowty (1995), origi-
nally published in 1989, is often cited as the original
source.

This paper is structured as follows: Sect. 2 de-
fines type 2 grammars and s-AVGs, and their totally
unordered pendants. Sect. 3 establishes bounds on
chart size for these kinds of grammars. Charts for
totally unordered grammars are shown to be worst
case exponential. In reply to this, Sect. 4 intro-
duces thek-ambiguity constraint, which turns totally
unordered charts polynomial again. Of course this
means that polynomial time parsing can be deviced.

2 Grammars and total unordering

Our first task is to properly define the grammars in
question:

2.1 Type 2 grammars

Definition 2.1 (Type 2 grammars). G =
〈N,T, P, {S}〉 is a type 2 grammar iff every
production rule inP is of the form

A → ω

whereA ∈ N andω ∈ {N ∪ T}+.

Definition 2.2 (Derivability). For a type 2 grammar
G andω1, ω2 ∈ (N ∪ T)∗, ω1 =⇒1 ω2 iff there is
a A → φ ∈ P and there areψ1, ψ2 ∈ (N ∪ T)∗

such thatω1 = ψ1Aψ2 andω2 = ψ1φψ2.
∗

=⇒1

(the derivability relation) is the reflexive transitive
closure of=⇒1.

Definition 2.3 (Type 2 languages). The language of
a type 2 grammarG is defined as

Joakim Nivre, Heiki-Jaan Kaalep, Kadri Muischnek and Mare Koit (Eds.)
NODALIDA 2007 Conference Proceedings, pp. 183–190

Anders Søgaard

L(G) = {x ∈ T ∗ : S
∗

=⇒1 x}.

Definition 2.4 (Chomsky normal form). A type 2
grammarG = 〈N,T, P, {S}〉 is in Chomsky normal
form iff each production has one of the following
forms:

• A→ BC

• A→ a

• S → ǫ

wherea ∈ T andB,C ∈ N − {S}.

Example 2.5. Consider the type 2 grammar with
rulesS → aXb|ab,X → aXb|ab. The Chomsky
normal form of this grammar is obtained by adding
the rulesA→ a,B → b and by reducing the length
of theS,X-rules. Consequently,P ′ now includes:

S → AT |AB T → XB

X → AT |AB A → a

B → b

Lemma 2.6 (Equivalence of normal forms). Say
G = 〈N,T, P, {S}〉 is a type 2 grammar. There
is an algorithm to construct a grammarG′ =
〈N ′, T, P ′, {S′}〉 in Chomsky normal form that is
weakly equivalent toG.

Proof. See Sudkamp (2005, 122–3).

2.2 Totally unordered type 2 grammars

Definition 2.7 (Totally unordered type 2 grammars).
G = 〈N,T, P, {S}〉 is a type 2 grammar iff every
production rule inP is of the form

A → ω

whereA ∈ N andω ∈ {N ∪ T}∗.

Definition 2.8 (Derivability). If A
∗

=⇒1 ω andω′ ∈
permute(ω), thenA

∗
=⇒2 ω

′.

Definition 2.9 (Totally unordered type 2 languages).
The language of a totally unordered type 2 grammar
G is defined as

L(G) = {x ∈ T ∗ : S
∗

=⇒2 x}.

2.3 s-AVGs

s-AVGs are defined over simple attribute-value
structures (s-AVSs):

Definition 2.10 (s-AVS). An s-AVS A is defined
over a signature〈Attr,Atms, ρ〉, whereρ : Attr →
2Atms, such thatA ∈ Attr → 2Atms and ∀a ∈
DOM(A).A(a) ∈ ρ(a).

Definition 2.11 (s-AVG). An s-AVG is a 5-tuple
G = 〈〈Attr,Atms, ρ〉,AttrPerc, T, P, {S}〉, where
AttrPerc ⊆ Attr, ρ : Attr → 2Atms, S is an s-AVS,
and every production rule inP is of the formα→ ωi

orα0 → α1 . . . αn wheren ≥ 2,αi is an s-AVS, and

(1) ∀a ∈ DOM(α0) ∩ AttrPerc.∀1 ≤ i ≤ n.f ∈
DOM(αi) ∧ αi(a) = α0(a)

whereα(a) is the value ofa in the s-AVSα with
α(a) ∈ ρ(a).

Intuitively, the AttrPerc features are agreement
features whose values percolate up the tree if defined
for every level of it.

Example 2.12. Consider the grammar
G1 = 〈〈{CAT,PLU,PER}, {s, vp,np, v ,n,

1 , 2 , 3 ,+,−}, ρ〉, {PLU,PER}, {I ,men, John,

sleep, sleeps}, P, S〉 whereρ is the specification of
appropriate values of attributes:

ρ(CAT) = {s, vp,np, v ,n}
ρ(PER) = {1 , 2 , 3 }
ρ(PLU) = {+,−}

andP is the set of production rules:
h

CAT s
i

→

h

CAT np
i

,
h

CAT vp
i h

CAT vp
i

→

h

CAT v
i

h

CAT np
i

→

h

CAT n
i "

CAT n
PER1

#

→ I

"

CAT n
PLU +

#

→ men

2

6

4

CAT n
PLU -
PER3

3

7

5
→ John

"

CAT v
PLU +

#

→ sleep

2

6

4

CAT v
PLU -
PER3

3

7

5
→ sleeps

(1) applies to the subset of attributes{PLU,PER}.
The start symbol isS :

[

CAT s
]

. The grammar gener-

ates exactly the sentences:

(2) I sleep.

(3) Men sleep.

(4) John sleeps.

184

Polynomial Charts For Totally Unordered Languages

Definition 2.13 (Subsumption). An s-AVS α sub-
sumes an s-AVSβ (α ⊑ β) iff ∀a.DOM(a).α(a) =
β(a).

Definition 2.14 (Derivability). Say G =
〈〈Attr,Atms, ρ〉,AttrPerc, T, P, {S}〉 is an s-
AVG. If P contains a productionA → ω, then for
any φ1, φ2, φ1A

′φ2 =⇒3 φ1ω
′φ2 if A ⊑ A′ and

ω ⊑ ω′.
∗

=⇒3 is the reflexive, transitive closure of
=⇒3.

Definition 2.15 (s-AVG languages). The language
of an s-AVGG is defined as

L(G) = {x ∈ T ∗ : ∃S′.S′ ⊒ S ∧ S′
∗

=⇒3 x}.

2.4 Totally unordered s-AVGs

Call totally unordered s-AVGs u-AVGs.

Definition 2.16(u-AVG). A u-AVG is a 5-tupleG =
〈〈Attr,Atms, ρ〉,AttrPerc, T, P, {S}〉.

Definition 2.17 (Derivability). If A
∗

=⇒3 ω and
ω′ ∈ permute(ω), thenA

∗
=⇒4 ω

′.

Remark2.18. (1) means that no Chomsky normal
form can be obtained for s-AVG or u-AVG.

3 Bounds on chart size

3.1 Type 2 grammars

Lemma 3.1(Size of derivation structure). SayD =
〈V, e〉 is a derivation structure forω,G whereG is
a type 2 grammar in Chomsky normal form. It now
holds that|V | ≤ (3n− 1).

Proof. SinceG is in Chomsky normal form, there
are only two kinds of production rules: Any deriva-
tion ofω of lengthn needsn−1 binary applications,
andn unary ones, i.e. of non-branching rules. There
aren many terminals. Consequently, the derivation
structure is at most3n− 1.

Definition 3.2 (ω-grammar). Say you have a
type 2 grammar in Chomsky normal formG =
〈N,T, P, {S}〉 and some stringω1 . . . ωn. Construct
Gω = 〈Nω, Tω, Pω, {1Sn}〉 such that

Tω = {ω1, . . . , ωn}

and, recursively

(a) (ωi ∈ Tω andA → ωi ∈ P) ⇒ (iAi ∈
Nω andiAi → ωi ∈ Pω)

(b) (iBj ,j+1Ck ∈ Nω andA → BC) ⇒ (iAk ∈
Nω ∧ iAk → iBjj+1Ck ∈ Pω)

Example 3.3. Consider aabb-grammar of the
Chomsky normal form grammar in Example 2.5.
First Tω = {a1, a2, b3, b4}. By (a), the terminal
rules are constructed:1A1 → a1, 2A2 → a2,

3B3 → b3, and4B4 → b4. Nonterminal binary rules
can now be constructed:

2S3 → 2A23B3 2X3 → 2A23B3

2T4 → 2X34B4 1X4 → 1A12T4

1S4 → 1A12T4

Naabb = {1A1, 2A2, 3B3, 4B4, 2S3, 2X3, 2T4,

1X4, 1S4}.

Our construction ofGω gives us two sets of pos-
sible interest,Nω andPω. It is easy to see that

|Nω| ≤ |N | × (n2+n
2

)

where |ω| = n. In our example above this
amounts to|Naabb| = 9 ≤ 4× 4×5

2
= 40.

The chart size is bounded by|Pω|+ n.

Lemma 3.4(Chart size). SayG is a type 2 grammar
in Chomsky normal andω ∈ T ∗. It now holds that
|CG,ω| ≤ (|Nω| × n× |N |2) + (|N | × n) + n.

Proof. Eachω-nonterminal (|Nω|many) has at most
two daughters, andn × |N | nonterminals are non-
branching. Since there are at mostn ways to split up
the span of a branching terminal in two, and at most
|N |2 variable combinations for the two daughters,
((|Nω|)×n× |N |

2 + (n× |N |)) is clearly an upper
bound on|Pω|. In fact, the result is suboptimal, since
the iXi-nonterminals count twice.

The number of trees withn leafs isCn−1 (the
Catalan number).

3.2 Totally unordered type 2 grammars

Lemma 3.5(Size of derivation structure). SayD =
〈V, e〉 is a derivation structure forω,G whereG is a
totally unordered type 2 grammar in Chomsky nor-
mal form. It now holds that|V | ≤ (3n − 1).

Proof. Similar to the proof of Lemma 3.1.

Definition 3.6 (ω-grammar). Say you have a to-
tally unordered type 2 grammar in Chomsky normal
formG = 〈N,T, P, {S}〉 and some stringω1 . . . ωn.
ConstructGω = 〈Nω, Tω, Pω, {S}〉 such that

185

Anders Søgaard

Tω = {ω1, . . . , ωn}

and, recursively

(a) (ωi ∈ Tω andA → ωi ∈ P) ⇒ (A{i} ∈
Nω andA{i} → ωi ∈ Pω)

(b) (BΣ, CΣ′ ∈ Nω andΣ ∩ Σ′ = ∅ andA →
BC) ⇒ (AΣ∪Σ′ ∈ Nω ∧ AΣ∪Σ′ → BΣCΣ′ ∈
Pω)

Lemma 3.7 (Chart size, upper bound). SayG is a
totally unordered type 2 grammar in Chomsky nor-
mal and ω ∈ T ∗. It now holds that|CG,ω| ≤
|Nω|

2 × n2 × |N |2) + (n× |N |) + n.

Proof. There aren2 ways to split up a sequence in
two discontinuous parts.

.

Lemma 3.8 (Chart size, lower bound). SayG is a
totally unordered type 2 grammar in Chomsky nor-
mal andω ∈ T ∗. It now holds that|CG,ω| 6∈ O(nk),
i.e. chart size is exponential.

Proof. It is easy to see this. You only need to con-
sider the upper bound on|Nω| in the totally un-
ordered case:

|Nω| ≤ |N | × 2n

3.3 s-AVGs

Lemma 3.9(Size of derivation structure). SayD =
〈V, e〉 is a derivation structure forω,G whereG is
an s-AVG. It now holds that|V | ≤ 3n−1×(|Attr|+
1).

Definition 3.10 (ω-grammar). Say you have an
s-AVG G = 〈〈Attr,Atms, ρ〉,AttrPerc, T, P, {S}〉
and some string ω1 . . . ωn. Construct
Gω = 〈〈Attr,Atmsω, ρ〉,AttrPerc, Tω, Pω, {1Sn}〉
such that

Tω = {ω1, . . . , ωn}

and, recursively

(a) ([ω]i ∈ Tω andα → [ω]i ∈ P) ⇒ (i[α]i ∈
Nω andi[α]i → [ω]i ∈ Pω)

(b) (i[α1]j ,j+1 [α2]k, . . . ,m−1 [αn]m ∈
Nω and[α0] → [α′1][α

′
2] . . . [α

′
n] ∈

P and∀1 ≤ i ≤ n.[αi] ⊑ [α′i] ∨ [α′i] ⊑
[αi]) ⇒ (i[α0]m ∈ Nω ∧ i[α0]m →i

[α1]j,j+1 [α2]k, . . . ,m−1 [αn]m ∈ Pω)

I introduce square brackets to enhance readability,
i.e. to separate daughter tags from positions. Posi-
tions are outside brackets.

We no longer have a set|N | to measure chart size.
The set of possible category structures isAtms

Attr.
However, by inspection of our definition ofω, a
tighter bound is obtained:

|Nω| ≤ |P | × (n2+n
2

)

Unfortunately, no such bound can be placed on
|Pω|. The reason is, of course, that productions

i[α0]m → i[α1] . . . [αn]m, and not i[α0]m →

i[α
′
1] . . . [α

′
n]m are recorded in Definition 3.10.

Lemma 3.11(Chart size). SayG is an s-AVG and
ω ∈ T ∗. It now holds that|CG,ω| ≤ (|Nω| × n ×
|Atms||Attr|×k) + (|P | ×n) + n, if G do not contain
m-ary rules such thatm > k.

Proof. Compare the situation to Lemma 3.4.
|Atms||Attr|×k is the number of combinations of
daughter categories ink-ary productions.

3.4 Totally unordered s-AVGs

The upper bound on derivation structions in the to-
tally unordered case is the same as for s-AVGs.ω-
grammars for u-AVG are built analogously toω-
grammars for totally unordered type 2 grammars. It
is easy to see that:

|Nω| ≤ |P | × 2n

It now holds:

Lemma 3.12(Chart size). SayG is an u-AVG and
ω ∈ T ∗. It now holds that|CG,ω| ≤ (|Nω| × n ×
|Atms||Attr|×k) + (|P | ×n) + n, if G do not contain
m-ary rules such thatm > k.

In sum,

Theorem 3.13. Totally unordered 2 grammars, s-
AVGs and u-AVGs have worst case exponential
charts.

This leads us to consider complexity and genera-
tive capacity.

186

Polynomial Charts For Totally Unordered Languages

3.5 Complexity and generative capacity

Consider the universal recognition problem:

Definition 3.14 (Universal recognition). Universal
recognition is the decision problem:

INSTANCE: A grammarG and a stringω.
QUESTION: Isω in the language denoted

by G?

Lemma 3.15((Barton, 1985)). The universal recog-
nition problem for totally unordered type 2 gram-
mars is NP-complete.

Proof. The vertex cover problem involves finding
the smallest setV ′ of vertices in a graphG = 〈V,E〉
such that every edge has at least one endpoint in the
set. Formally,V ′ ⊆ V : ∀{a, b} ∈ E : a ∈ V ′ ∨ b ∈
V ′. The problem is thus an optimization problem,
formulated as a decision problem:

INSTANCE: A graphG and a positive
integerk.

QUESTION: Is there a vertex cover of size
k or less forG?

Say k = 2, V = {a, b, c, d}, E =
{(a, c), (b, c), (b, d), (c, d)}. One way to obtain a
vertex cover is to go through the edges and underline
one endpoint of each edge. If you can do that and
only underline two vertex symbols, a vertex cover
has been found. Since|V | = 4, this is equivalent
to leaving two vertex symbols untouched. Conse-
quently, the vertex cover problem for this specific
instance is encoded by the totally unordered type 2
grammar, whereδ is a bookkeeping dummy symbol:

S → ρ1ρ2ρ3ρ4uuδδδδ

ρ1 → a|c
ρ2 → b|c
ρ3 → b|d
ρ4 → c|d
u → aaaa|bbbb|cccc|dddd
δ → a|b|c|d

ρi captures theith edge inE. The input string
ω = aaaabbbbccccdddd. Generally, the first produc-
tion has as manyρi as there are edges in the graph,
|V |−k manyu’s and|E|×|V |−|E|−|E|×(|V |−k)
manyδ’s, i.e. the length of the string minus the num-
ber of edges and the extension of|V | − k manyu’s.
The ρi productions are simple,u extends into|E|

manya’s or b’s or so on, andδ extends into all pos-
sible vertices. Since the grammar and input string
can be constructed in polynomial time from an un-
derlying vertex cover problem〈k, V,E〉, universal
recognition of UCFG must be at least as hard as
solving the vertex cover problem. Since the vertex
cover problem is NP-complete (Garey and Johnson,
1979), the universal recognition problem for totally
unordered type 2 grammars is accordingly NP-hard.
It is easy to see that it is also in NP. Simply guess
a derivation, polynomial in size by Lemma 3.5, and
evaluate it in polynomial time.

Lemma 3.16. The universal recognition problem
for s-AVGs is NP-complete.

Proof. The 3SAT problem is a variant of the sat-
isfiability problem of propositional logic for con-
junctions of clauses of three literals, e.g.p ∨ p ∨
p ∧ ¬p ∨ ¬p ∨ ¬p is not satisfiable in any model.
Its complexity is the same as its older sister’s: It
is NP-complete. It is relatively easy to code this
problem up in s-AVG. The details are left for the
reader.Hint: Introduce agreement features for truth
assignments and build ternary phrases that ensure at
least one propositional variable in the original prob-
lem is true. SinceAttrPerc must percolate by (1),
you need four rules for each propositional variable
(true and false for with and without negation). It
follows that the universal recognition problem for s-
AVGs is NP-hard. It is easy to see that it is also in
NP. Simply guess a derivation, polynomial in size by
Lemma 3.9, and evaluate it in polynomial time.

Lemma 3.17. The universal recognition problem
for u-AVGs is NP-complete.

Proof. Similar to the proof of Lemma 3.16. Extra
features can be used for clause bounds.

Remark3.18. It is cheap to add linear precedence
constraints to totally unordered type 2 grammars and
u-AVGs, e.g. to ensure that all verbs precede nouns.
Such constraints can be resolved in timeO(n2) on
even the most naïve set-up.

If linear precedence constraints are added, it holds
that

187

Anders Søgaard

Lemma 3.19. The totally unordered type 2 lan-
guages and the totally unordered simple attribute-
value languages both are not included in the type 2
languages.

Proof. Both the totally unordered type 2 languages
and the totally unordered simple attribute-value lan-
guages include{ambncmdn}. The simplest way to
encode it is to let some ruleS → abScd|abcd inter-
act with some precedence rule that requires alla’s to
precede allb’s, and so on. Similarly, with s-AVSs.
It is just as easy to code up the MIX language, for
instance.

4 k-ambiguity

Our strategy to obtain polynomial charts in the to-
tally unordered cases is to restrict ambiguity. A rigid
lexicon is first imposed. In a rigid lexicon every
phonological string is associated with at most one
lexical entry.

Remark4.1. Rigidity is a strong constraint in the
absence of inheritance. Inheritance provides an al-
ternative to lexical ambiguity, namely underspeci-
fication. Such use of inheritance seems necessary
for realistic applications ofk-ambiguous grammars.
Rigidity needs only to apply to open class items.
There seems to be some evidence from cognitive
neuropsychology that people actually underspecify
open class items wrt. morphological features, va-
lence and even syntactic category.

The next step is to restrict ambiguity in parsing.

Definition 4.2. A sign is horizontallyk-ambiguous
if it only combines withk signs in a sentence. A
grammar is horizontallyk-ambiguous if all signs are
k-ambiguous. A grammar is verticallyk-ambiguous
if signs are combined unambiguously afterk steps.

It is important to remember that our unordered
grammars allow signs to combine non-locally. The
notion ofk-ambiguity can be illustrated by an exam-
ple from Icelandic:

Example 4.3. Icelandic has nominative objects.
Consider, for instance:

(5) Hún
she

spurði
asked

hvort
whether

sá
the.NOM

grunaði
suspected.NOM

væri
was.3SG.SUBJ

örugglega
surely

þú.
you.SG.NOM

’She asked whether the suspect surely was
you.’

In addition, both SVO and OVS constructions oc-
cur. So in many cases, a verb that seeks to combine
with an object has more than one candidate for doing
so, even in sentences with only three constituents:

NP.NOM V. NP.NOM

The V constituent is said to be horizontally 2-
ambiguous in this case.

For simplicity, the notion of the order of an s-AVS
is introduced:

Definition 4.4. An s-AVSα is said to be of orderl
iff |DOM(α)| = l. If all s-AVSs in a grammarG are
of orderl,G is itself said to be of order 1.

Lemma 4.5. Type 2 grammars are equivalent to s-
AVGs of order 1. Totally unordered type 2 languages
are equivalent to u-AVGs of order 1.

Proof. Trivial.

Say s-AVSs are of order 1, and vertical ambiguity
1 (i.e. horizontal ambiguityk). We then have:

|CG,ω| ≤ (n2−n
2

+
i<n
∑

1<i

(kn(n− i))) + n

First all initial combinationsn2−n
2

are checked.
At this point, there can be at mostkn candidate mod-
els. For each candidate model, the next set of com-
binations is checked. Since vertical ambiguity is1,
the set of candidate models remains at mostkn.

If we fix vertical ambiguity tok (i.e. horizontal
ambiguityn):

|CG,ω| ≤ (n2−n
2

+

i<n
∑

1<i

(nk(n− i))) + n

which is inO(nk+2). Since the order of s-AVSs
is bound by|Attr|, it holds that:

Theorem 4.6. k-ambiguous totally unordered 2
grammars,k-ambiguous s-AVGs andk-ambiguous
u-AVGs have polynomial charts.

Proof. See above. The result for s-AVGs is sub-
sumed by the result for u-AVGs.

188

Polynomial Charts For Totally Unordered Languages

Remark4.7. For unordered type 2 grammars, and
possibly for totally unordered ones too, it is an alter-
native to say that all totally unordered productions in
a chart have a yield of at mostk. This gives a bound
on chart size:

0≤i
X

i<k

(|N | × (n− i) ×

0≤j
X

j<(k−i)

(|N |
k−j)

× (k − i) × (n− j))

+

k<i
X

i<n

(|N |3 × (n− i))

This fragment no longer generates the MIX lan-
guage. Such a constraint is obviously not enough
for u-AVG, since s-AVG is NP-complete. A third
possibility is to restrict the arity of productions.

5 Conclusions and related work

In last year’s conference, Søgaard and
Haugereid (2006) presented, in a rather infor-
mal fashion, a restrictive typed attribute-value
structure grammar formalismTf for free word order
phenomena, equipped with a polynomial parsing
algorithm. InTf , horizontalk = 1. The purpose
of their paper was mostly philosophical, i.e. in
favor of underspecification rather than ambiguity,
but many details were left unclear. In a sense, this
paper provides a formal basis for some of the claims
made in that paper. In particular, types are easily
added to s-AVG and u-AVG, and more flexible
attribute-value structures can be employed (as long
as they are at most polynomial in the size of strings).
Unlike Tf , k-ambiguous grammars also admit fixed
ambiguity.

Other researchers have tried to single out tractable
attribute-value grammars:

Seki et al. (1993) operate in the context of LFG.
For a start, they restrict the expressive power of
LFG by restricting the syntax of LFG-style func-
tional schemas to:

(↑ attr = val) or (↑ attr =↓)

Call this fragment non-deterministic copying
LFG (nc-LFG). They then proceed to define two
tractable fragments of nc-LFG:

Definition 5.1. An nc-LFG is called a dc-LFG (de-
terministic . . .) if each pair of rulesr1 : A → α1

and r2 : A → α2 whose left-hand sides are the
same is inconsistent in the sense that there exists no
f-structure that locally satisfies both of the functional
schemata ofr1 andr2.

Definition 5.2. An nc-LFG is called a fc-LFG (fi-
nite . . .) if it contains only a finite number of so-
called “subphrase nonterminal” (SPN) multisets, i.e.
a multiset of nonterminalsN such that there ex-
ists consistent productionsA1 → α1 . . . An . . . αn

and an attributeattr such thatN = {αi ∈
{α1 . . . αn}|(↑ attr =↓) is the FS ofαi}.

A nice example of an nc-LFG that is not an fc-
LFG is mentioned in (Seki et al., 1993):

Example 5.3.LetG be an nc-LFG whereN = {S},
T = {a}, Lbls = {log}, e the only value, and
productions are:

S → S S

(↑ log =↓) (↑ log =↓)
S → a

(↑ log = e)
G is not an fc-LFG, since the SPN multisets inG

include

{{S}}, {{S, S}}, {{S, S, S, S}},

Both fragments are tractable, and the weak gen-
erative capacity of dc-LFG is equivalent to that of
finite-state translation systems, while the weak gen-
erative capacity of fc-LFG is equivalent to that of
linear indexed grammars. It follows that fc-LFG
is also equivalent to one-reentrant attribute-value
grammar (Feinstein and Wintner, 2006).

Keller and Weir (1995) go beyond linear indexed
grammars on their way toward attribute-value gram-
mar. The first step on this path is to replace the
stacks of indeces in linear indexed grammars with
trees. Tractability is ensured by the requirement that
subtrees of any mother that are passed to daughters
that share subtrees with one another must appear as
siblings in the mother’s tree. The following such
grammar generates{anbncn}:

S1[σ0] → A[x]S2[σ(x, x)]
S2[σ(x, y)] → B[x]S3[y]
S3[x] → C[x]
A[σ2(x)] → aA[x]
B[σ2(x)] → bB[x]
C[σ2(x)] → cC[x]
A[σ1] → a

B[σ1] → b

C[σ1] → c

In a sense, this is much like s-AVG, except that
reentrancies replace (1) and roots cannot be reen-
tered. Keller and Weir argue this is no problem if

189

Anders Søgaard

the entire structure is seen as the derivational output,
rather than just the AVS of the mother. In addition,
reentrancy is interpreted intensionally in their set-
up, rather than extensionally. This is similar to ours.

Both formalisms are stronger thank-ambiguous
u-AVG in some respects. This is easy to see. Both
nc-LFG and Keller and Weir’s richer fragment of
attribute-value grammar are superfinite, i.e. they
generate all finite languages.k-ambiguous u-AVG
doesn’t. It holds that:

Lemma 5.4. Thek-ambiguous u-AVG languages do
not include (all of) the regular languages.

The proof is omitted, but consider the simpler
proof of:

Lemma 5.5. The1-ambiguous u-AVG languages do
not include (all of) the regular languages.

Proof. Consider the language

a{b| . . . |n} ∪ p{b| . . . |n} ∪ {b| . . . |n}
but notj but noti

in which ab, ai, pj, b are strings, whileaj, pi, bb
are not. This language is regular, but cannot be gen-
erated by a1-ambiguous u-AVG.

It should be relatively easy to see how this gener-
alizes tok-ambiguous u-AVG.

In sum, it was shown that the exponential worst
case complexity of totally unordered charts is dram-
maticaly reduced by thek-ambiguity constraint.
In particular k-ambiguous charts are inO(nk+2).
Since subsumption is linear time solvable, the recog-
nition problem for k-ambiguous u-AVGs is also
solvable in polynomial time. Efficient algorithms
and their complexity are the topic of future pub-
lications. k-ambiguous u-AVG differs in signif-
icant ways from other polynomial time attribute-
value grammars. In particular,k-ambiguous u-AVG
was designed for analyses of discontinuous con-
stituency. It provides the formal machinery needed
for “crossed branches” analyses. In addition,k-
ambiguous u-AVG is not superfinite. It is conjec-
tured – also by one of the reviewers – that this has
interesting consequences for learnability.

References

Edward Barton. 1985. The computational difficulty of
ID/LP parsing. InProceedings of the 23th Annual
Meeting of the Association for Computational Linguis-
tics, pages 76–81, Chicago, Illinois.

David Dowty. 1995. Toward a minimalist theory of syn-
tactic structure. In Harry Bunt and Arthur van Horck,
editors,Discontinuous constituency, pages 11–62. de
Gruyter, Berlin, Germany.

Daniel Feinstein and Shuly Wintner. 2006. Highly
constrained unification grammars. InProceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 1089–1096,
Sydney, Australia.

Michael Garey and David Johnson. 1979.Computers
and intractability. W. H. Freeman & Co., New York,
New York.

Bill Keller and David Weir. 1995. A tractable exten-
sion of linear indexed grammars. InProceedings of
the 7th European Chapter of the Association for Com-
putational Linguistics, pages 75–82, Dublin, Ireland.

Hiroyuki Seki, Ryuichi Nakanishi, Yuichi Kaji, Sachiko
Ando, and Tadao Kasami. 1993. Parallel multi-
ple context-free grammars, finite-state translation sys-
tems, and polynomial-time recognizable subclasses of
lexical-functional grammars. InProceedings of the
31st Annual Meeting on the Association for Compu-
tational Linguistics, pages 130–139, Columbus, Ohio.

Anders Søgaard and Petter Haugereid. 2006. Functional-
ity in grammar design. In Stefan Werner, editor,Pro-
ceedings of the 15th Nordic Conference of Computa-
tional Linguistics, pages 180–189, Joensuu, Finland.

Thomas Sudkamp. 2005.Languages and machines.
Pearson, Boston, Massachusetts, 3rd edition.

190

