An Architecture for Data-to-Text Systems

Ehud Reiter
University of Aberdeen
Aberdeen, UK
ereiter@csd.abdn.ac.uk

Abstract

I present an architecture for data-to-text systems,
that is NLG systems which produce texts from
non-linguistic input data; this essentially extends
the architecture of Reiter and Dale (2000) to sys-
tems whose finput is raw data instead of Al knowl-
edge bases. This architecture is being used in fthe
BABYTALK project, and is based on experiences in
several projects at Aberdeen; it also seems to be
compatible with many data-to-text systems devel-
oped elsewhere. It consists of four stages which are
organised in a pipeline: Signal Analysis, Data Inter-
pretation, Document Planning, and Microplanning
and Realisation.

1 Introduction

Data-to-text systems are Natural Language Genera-
tion (NLG) systems which generate texts from non-
linguistic input data, such as sensor data and event
logs. Such systems need to perform data analysis as
well as linguistic processing. In this paper I present
a 4-stage pipeline architecture which I believe is
suitable for many data-to-text systems. It is being
used in a new project at Aberdeen, BABYTALK,
and is partially based on our experiences with other
data-to-text systems developed at Aberdeen.
Very briefly, the four stages are

1. Signal Analysis:
other input data, looking for patterns
trends.

Analysing numerical End
nd

2. Data |Interpretation: Identifying more com-
plex (and domain-specific) messages from the
patterns land trends detected in Signal Analy-
sis; also identifying causal and other relations
between messages.

97

3. Document Planning: Deciding which of the
above messages should be mentioned in the
generated text, and creating a document and
rhetorical structure around these messages.

4. Microplanning and Realisation: Creating an
actual text which communicates the document
plan.

In the rest of this paper, I describe the above
stages. I then explain why I think this architec-
ture is an appropriate one for data-to-text systems;
look at how well it fits existing data-to-text sys-
tems; discuss intermediate representations between
the stages; and briefly describe software resources
which we are (slowly) developing to support the ar-
chitecture.

2 Background
2.1 Data-to-text

Data-to-text systems generate texts from non-
linguistic input data, which is typically numeri-
cal. For example, SUMTIME (Reiter et al., 2005)
and FOG (Goldberg et al., 1994) generate textual
weather forecasts from numerical weather predic-
tion data; ANA (Kukich, 1983) generates textual
stock market reports from numerical stock market
data; and VITRA (Herzog and Wazinski, 1994) and
DESCRIBER (Roy, 2002) generate natural descrip-
tions of visual scenes. Some work has also been
done on generating texts from lists of events; for
example PLANDoOC (McKeown et al., 1994) gen-
erates summaries based on trace files from a simula-
tor, land Hallett and Scott (2005) describe a system
which generates summaries of events in a medical
record.

Perhaps the biggest difference between data-to-
text systems and NLG jystems whose input is a

knowledge base is that data-to-text systems must
analyse and interpret their input data, as well as de-
cide how to [linguistically communicate it. While
there is of course a substantial literature on data
analysis, this primarily focuses on hypothesis test-
ing and data mining; there are differences between
this kind of data analysis and data analysis for the
purposes of generating a textual summary (Sripada
et al., 2003).

2.2 NLG Architectures

Perhaps the best-known architecture for general
NLG systems is the three-stage pipeline model
(Reiter and Dale, 2000), which divides NLG into
document planning, microplanning, and realisation
stages. This architecture focused on NLG Systems
whose input was a knowledge base. The architec-
ture proposed here essentially extends the Reiter
and Dale architecture by adding two new stages,
Signal Analysis and Data Interpretation, which are
placed before document planning in the pipeline;
this extension allows the inputs to the system to be
data instead of (or in addition to) knowledge.

The RAGS (Mellish et al., 2006) project icon-
ducted a survey of NLG systems, and concluded that
they were architecturally quite diverse in terms of
how they were modularised; it proposed a fairly
abstract NLG architecture which described different
representations which might be used in an NLG sys-
tem, but did not commit to specific stages or mod-
ules.

The only proposal for an architecture which lis
specifically for data-to-text systems (which I am
aware of) is Yu et al. (2004). The architecture given
in that paper is quite detailed, and based on one sys-
tem; the architecture presented here, in contrast, fis
higher-level and applies to many systems.

3 The Architecture

In this section I outline my proposed architecture,
which is summarised in Figures 1 and 2. Note that
some data-to-text systems only have some of the
stages; Figure 2 explains when a stage is needed in
a system.

I also explain how this architecture is being used
in BABYTALK (Portet et al., 2007). BABYTALK is
a new project at Aberdeen whose goal is to generate
summaries of medical data about babies in a neona-
tal intensive care unit. BABYTALK systems have
two types of inputs: (1) numerical sensor data about
the baby, recording information such as heart rate,
blood pressure and temperature; and (2) records of

98

Event Numeric Input Data
Input Data l

Signal Analysis

Patterns

A 4

» Data Interpretation

Messages,
Relations

A 4

Document Planning

Selected msgs,
doc/rhet struct

A 4

Microplanning and
Realisation

v

Text

Figure 1: The Architecture

medical actions and observations, such as medica-
tion administered to the baby and blood test re-
sults. Different BABYTALK systems generate dif-
ferent kinds lof texts from this input data; here I
will focus on the BABYTALK BT45 system, which
generates summaries bf about 45 iminutes worth of
medical data which are intended to help doctors and
nurses make appropriate treatment decisions (Law
t al., 2005).
r(Figures 3 and 4 show examples of numeric and
event inputs to BT45; Figure 5 shows the text that a
doctor wrote to describe this data. This is an extract
from a corpus text, not a generated text; it illustrates
the type of text BT45 is trying to generate.
BABYTALK is a multi-person project, involving
people with diverse backgrounds, ranging from sig-
nal analysis to computational linguistics. From this
perspective, the architecture needs to not only be
intellectually sensible, it also needs to modularise
the system in a way which allows people to develop
modules in their area of expertise without needing to
become experts in all of the research areas involved
in BABYTALK.

Stage input output

needed if . ..

Signal Analysis numeric data

discrete patterns in data

there is
numeric input data

Data Interpretation | basic patterns

higher-level messages,

text communicates

and events relations between messages more than basic patterns
Document Planning | messages, messages to be mentioned, only some messages are

relations document and rhetorical struct | mentioned in text
Microplanning and | messages, text users want fluent texts
Realisation structure

Figure 2: Stages in the Architecture

200.0
HR

0.0
100.0
0 B et N F S
60.0
38.0
TC —_—
P
32.0
40.0
BM
20.0
03Jan01 [10:38 10:39 10:40

Figure 3: Example of BT45 numeric input data

time | action parameters

10.38 | FiO2 changed new-value = 35%
10.39 | morphine given | amt=50ug, route=IV
10.41 | incubator opened | agent = doctor

10.51 | baby intubated agent = doctor

Figure 4: Example of BT45 event input data

3.1 Signal Analysis

The first stage in the architecture is to try to detect
basic patterns in the numerical input data. Patterns
are often organised into a taxonomy or ontology, al-
though this is not required by the architecture. From

99

n preparation for re-intubation, a bolus of 50ug
of morphine is given at 1039 when the FiO2 =
35%. There is a momentary pradycardia and then
the mean BP increases to 40. The kats go down to
79 land take 2 mins to come back up. The toe/core
temperature gap increases to 1.6 degrees.

Figure 5: Extract from BT45 corpus text

a high-level perspective, the |goal of signal analy-
sis is to replace numerical data by a set of discrete
patterns; this allows the remainder of the system to
reason symbolically instead of numerically.

Signal analysis must also distinguish ‘real’ data
from noise. For example, RR (Pianesi et al., 2007),
which summarises the behaviour of participants in a
meeting, must analyse audio signals and determine
Wwhen a participant is talking (and hence contribut-
ing ito the meeting), and when he or she is making
non-communicative noises, such as coughing.

Input data which is already structured as discrete
events, such as log files or records of medical ac-
tions, can bypass signal analysis. If all input data
is of this form (as in PLANDOC (McKeown et al.,
1994), for example), then the data-to-text system
does not need to perform any signal analysis.

In my experience, signal analysis in data-to-text
systems can usually be done with existing signal
analysis algorithms. There is a substantial litera-
ture on signal analysis and pattern detection, includ-
ing specialist journals such as Pattern Recognition.
Quite sophisticated algorithms can be used in data-
to-text systems; for example TREND (Boyd, 1998)
used wavelet analysis. The basic challenge for the
system [developer is to understand the algorithms,
the domain, and the way humans talk about the do-
main well enough to identify which algorithms are
appropriate for a particular system.

BT45’s signal analysis module uses three plgo-
rithms to detect patterns:

e Short-term changes in channels, such as spikes
and steps, are detected using a simplified ver-
sion of the algorithm proposed by Yu et al.
(2007).

e Longer-term changes in the data, such as sen-
sor values increasing or decreasing over time,
are detected using linear segmentation (Keogh
et al., 2001).

e artefacts, that is data which is corrupted or
otherwise should be ignored (for example, be-
cause a sensor has fallen off the baby) are de-
tected as described by Portet et al. (2007).

To take a concrete example, one pattern type in
BT45 is SPIKE; this indicates that the values in a
sensor channel have temporarily increased or de-
creased, but then reverted to their previous value.
The SPIKE class has several parameters, including
channel, direction, time, and extremeValue. One
particular spike which is detected in the Figure 3
data has parameters channel=HR (Heart Rate), di-
rection=Down, time=1039, extreme Value=90.

3.2 Data Interpretation

The second stage of the architecture analyses the
patterns detected by signal analysis, and also any
events which are directly specified in the input data,
and infers more complex (and domain-specific)
messages about the data set from these patterns and
events. It may also infer relationships (such as
causality) between patterns, events, and messages.
From a high-level perspective, the goal of data inter-
pretation is to map basic patterns and events into the
messages and relationships that humans use when
discussing this domain.

In some applications, such as marine weather
forecasts (Reiter et al., 2005), humans only refer
to basic patterns when discussing the domain, and
do not refer to relationships. Systems in such do-
mains do not need to perform data interpretation.
But in other domains, humans also communicate
about higher-level events or patterns. For exam-
ple, SCUBATEXT (Sripada and Gao, 2007), which
generates safety-oriented summaries of scuba dives
from depth profiles and other dive computer data,
looks for patterns that suggest potentially dangerous
activities in a dive. For instance, one risky activity
is a ‘sawtooth’ dive where the diver descends, as-
cends, and then descends again. SCUBATEXT cre-

100

ates sawtooth messages wherever it sees an increas-
ing trend in depth, followed by a decreasing trend in
depth, followed by another increasing trend; this is
an example of data interpretation.

BT45 performs three basic activities in data inter-
pretation:

o Create messages: This is similar to SCUBA-
TEXT. For example, a BRADYCARDIA (heart
rate is temporarily too low) message is created
from ldownward kpikes in heart rate which go
below 100.

e Decide how important events are: BT45 as-
signs an importance to every message; this is
needed by the document planner. For example,
the importance of a BRADYCARDIA depends
primarily on how long it lasts for (5 seconds is
unimportant, 5 minutes is very important), and
secondarily on how low heart rate goes.

e Detect relationships between events: BT45
looks for three kinds of relationships between
messages: causality (for example, blood oxy-
gen increases because the nurse increased oxy-
gen levels in the ventilator); part of a procedure
(for example, giving morphine is part of a re-
intubation procedure); and other (for example,
an increase in blood oxygen is associated with
a decrease in blood CO2).

Currently, data interpretation in BT45 is primarily
done by production rules written in JESS', which
are based on knowledge-acquisition activities con-
ducted with experienced doctors. We may lin the
future use KBTA (Shahar, 1997) for some of this
reasoning.

To take a concrete example in BT45, the SPIKE
event mentioned at the end of the Signal Analy-
sis section is interpreted in Data Interpretation as a
BRADYCARDIA. It has moderate importance (15 on
a scale of 0 to 100), and has an associated with link
to a drop in blood oxygen saturation (SO) which
happens at about the same time.

3.3 Document Planning

The third stage of the architecture decides which
events to mention in the text, and also on the text’s
rhetorical and document (e.g., paragraph break)
structure. This is the same as the Document Plan-
ning stage in the architecture of Reiter and Dale

Ihttp ://herzberg.ca.sandia.gov/jess/

(2000). From a high-level perspective, signal analy-
sis and data interpretation can produce a large num-
ber of messages, patterns, and events (often hun-
dreds or thousands), but texts usually are limited
to only describing a small number of messages (the
actual number depends on the genre, but often lis
between 5 and 25 events). The Document Planner
must decide which messages are actually communi-
cated in the text; this decision is based on the do-
main and genre. It must also try to communicate
how the messages mentioned in the text relate to
each other; this can partially be done using rhetori-
cal and document structure.

In some data-to-text applications, such as pollen
forecasts (Turner et al., 2006), all the input data lis
communicated to the user, so document planning is
a trivial task. But this is unusual, usually some se-
lection is needed. Indeed, Law et al. (2005), who
found that doctors made better decisions from tex-
tual summaries than from graphical displays, spec-
ulate that this happened precisely because the texts
only communicated the most relevant information.

Document planning is perhaps the least-
understood aspect of data-text systems, and indeed
of NLG in general; in fact Evans et al. (2002) argue
that document planning should not be considered
part of NLG. Of course document planning still
needs to be done in data-to-text systems regardless
of whether it is regarded as an ‘NLG’ task.

Yu et al. (2007) treat document planning in data-
to-text systems as the task of finding ‘interesting
patterns’, and use two mechanisms to do this: rules
acquired from domain experts, and novelty (how of-
ten a pattern has been seen before). They use simple
schemas to specify document structure.

Hallett and Scott (2005), who summarise medi-
cal events, use a different approach. The input to
their document planner is a graph of events and re-
lations between events. Their system works by par-
titioning this graph finto inter-connected clusters of
events; dropping small clusters (unless they contain
information which domain knowledge says must be
reported); and then mapping clusters onto a spe-
cific report spine for the target type of report, which
specifies which events are central for this type of re-
port. Non-spinal events are linked to spinal events
using rhetorical relations which are based on event
relations; they may be dropped if they are too far
away from a spinal event in the graph.

Document planning in BT45 is currently done in
a similar fashion to Hallett and Scott, except that

101

many decisions take into account the importance
of messages |calculated by Data Interpretation).
BT45’s document planner decides on paragraph
boundaries, but not sentence boundaries (sentence
boundaries are chosen by the microplanner/realiser,
as part of aggregation).

For example, the BRADYCARDIA message men-
tioned in the last section is included in a cluster
of messages which happen at about the same time
(these essentially are the messages mentioned in the
text of Figure 5). This cluster is overall the second-
most important message cluster, so it is included in
the text; and the BRADYCARDIA message is moder-
ately important, so it is included in the text describ-
ing the cluster. The cluster is realised at the doc-
ument level as a single paragraph (this decision is
based on its size). A simple SEQUENCE rhetorical
relation is used to relate the BRADYCARDIA mes-
sage to other messages, because it only has generic
associated with links to other messages in its clus-
ter.

3.4 Microplanning and Realisation

The fourth stage of the architecture generates ac-
tual texts based on the content and structure cho-
sen by Document Planning. It corresponds to the
two stages of Microplanning and Realisation in Re-
iter and Dale (2000). From a high-level perspective,
microplanning and realisation must decide how to
actually express in language the concepts and struc-
ture selected by earlier stages.

It is possible to perform microplanning and real-
isation using simple templates. Whether this is ac-
ceptable depends on what is appropriate for users.
For example, IGRAPH (Ferres et al., 2006) uses tem-
plates to generate (spoken) descriptions of graphs
for visually-impaired users. IGRAPH’s texts look
clumsy and repetitive on paper, and probably would
not be acceptable as textual summaries ffor people
Wwho can read. But visually impaired users listening
to a speech synthesiser have different requirements,
and in some cases may prefer simple repetitive texts.

Microplanning and realisation in data-to-text are
fairly similar to microplanning and realisation in
other NLG systems, so I will not describe them in
detail here. There are a few differences in empha-
sis, though.

One difference is that most (although not all)
data-to-text systems produce simple Jlanguage from
a syntactic perspective, because their users [prefer
this. Syntactic realisation in such systems is Irela-
tively straightforward.

Another difference is that data-to-text systems
must deal with differences in how readers interpret
words that communicate data. For example, Reiter
et al. (2005) found considerable differences in how
different readers and writers of weather forecasts in-
terpreted time phrases such as by late evening and
later; and Roy (2002) found inconsistencies fin the
way that different people mapped colour terms such
as pink into numerical RGB colour specifications.
There is no clear solution to this problem, it is a ma-
jor open research issue.

Finally, data-to-text system may need to commu-
nicate uncertainty about about the reliability of the
input data or the system’s analysis. Again this is an
open research issue. There is a substantial litera-
ture in linguistics and psychology on communicat-
ing uncertainty, but I am not aware of attempts to
incorporate these findings into data-to-text systems.

The current version of BT45 lexicalises Ithe
BRADYCARDIA message mentioned above as There
is a bradycardia to 90; ie, it uses a there-is sentence
and mentions the extreme value but not the duration.
The corpus text shown in Figure 5, in contrast, uses
the phrase There is a momentary bradycardia. ‘mo-
mentary’ is a qualitative description of the duration
of the bradycardia; determining when it can be used
is not easy, in part because different people use it in
different ways.

4 Justification for Architecture

The architecture presented here divides the data-to-
text generation process into 4 stages. Obviously
we could form an architecture with more stages
by splitting the stages presented here into smaller
stages (for example, split Microplanning and Re-
alisation into two separate stages); we could also
form an architecture with fewer stages by combin-
ing stages (for example, combine Signal Analysis
and Data Interpretation into one stage). The stages
of the architecture described here are based on the
following criteria.

Types of processing performed and knowledge
required. Signal analysis uses numerical pattern-
recognition algorithms and is to some degree do-
main independent; data interpretation uses sym-
bolic reasoning and relies on domain knowledge;
document planning uses symbolic reasoning and
relies on domain communication knowledge (Kit-
tredge et al., 1991); and microplanning and reali-
sation are based on linguistic reasoning and are par-
tially domain-independent. This consideration is es-

102

pecially important in projects such as BABYTALK
which involve developers from diverse backgrounds
(as mentioned above).

Intermediate representations. Modules need
clear API’s which will remain fairly stable even fif
a module is re-implemented using different tech-
niques. One of the jprimary reasons for combin-
ing Microplanning and Realisation into one stage is
that it is difficult to define a igeneric API between
a Microplanner and a Realiser, because the inputs
expected by a Realiser depend on the syntactic for-
malism it is based on.

Perhaps the hardest decision to justify is the sep-
aration of Data Interpretation and Document Plan-
ning, as these both involve domain-dependent sym-
bolic Al reasoning, and they tend to either both
be present or both be absent in individual sys-
tems. My main reason for separating these is that
they emerge from two very different research com-
munities; Data Interpretation has been studies by
researchers in knowledge-based (expert) systems,
while Document Planning has been studied by re-
searchers in the NLG community.

5 Applicability

Perhaps not surprisingly, the architecture described
here fits many data-to-text systems developed at Ab-
erdeen by the author and his colleagues, includ-
ing SUMTIME (Reiter et al., 2005) (generates ma-
rine weather forecasts for offshore oil rigs); pollen
forecast generator (Turner et al., 2006); SUMTIME-
TURBINE (Yu et al., 2007) (generates summaries of
sensor data from a gas turbine); and SCUBATEXT
(Sripada and Gao, 2007) (generates safety-oriented
summaries of scuba dives). It also seems to fit many
data-to-text systems developed elsewhere.

For example, ANA (Kukich, 1983), which gener-
ates stock market summaries, is described as hav-
ing 4 modules in a pipeline: fact generator, mes-
sage ggenerator, discourse organiser, and text gener-
ator. These correspond to the signal analysis, data
interpretation, document planning, and microplan-
ning/realisation modules described here.

Another example is PLANDoOC (McKeown et
al., 1994), which generates summaries of what hap-
pened in a simulation. It is described as having 5
modules: Message Generator, Ontologiser, Content
Planner, Lexicaliser, and Surface Generator. The
Message Generator is essentially an interface to the
simulation package; the Ontologiser performs data
interpretation; the Content Planner does document

planning; and the Lexicaliser and Surface Genera-
tor perform microplanning and realisation (respec-
tively). As mentioned above, PLANDOC does not
need to perform signal analysis, because its input is
already in the form of discrete events.

However, the architecture described here does
not fit all data-to-text systems. For example DE-
SCRIBER (Roy, 2002) takes a more integrated ap-
proach based on machine learning.

6 Representations

The above description of the architecture is of
course very high-level. To make it more con-
crete, we need to specify intermediate representa-
tions (APIs) between the modules. As Mellish et al.
(2006) point out, it is difficult to do this for NLG as
a whole, because the field is very diverse. However,
we believe this problem is more tractable (although
still hard) in the more limited area of data-to-text.

In particular, we use the following intermediate
representations in BT45, and believe these could be
used in other systems as well:

e output of Signal Analysis is a set of pat-
terns. Patterns are represented as objects in a
Protégé® ontology, which includes types such
as SPIKE and INCREASING TREND. Objects
have parameters (feature values), such as the
channel they occurred in and the time they oc-
curred at.

e output of Data Interpretation is a set of mes-
sages which are again represented as objects in
a Protégé ontology; all messages have an im-
portance parameter. Data Interpretation also
produces a set of relations between messages;
these are represented as (RelationType, Mes-
sagel, Message?2) triples.

e output of Document Planning is a document
plan. This is represented as a tree. Nodes in
the tree can specify messages; they can also be
annotated with document structure level (e.g.,
paragraph). Parent-child links can be anno-
tated with rhetorical relations (which are finer-
grained than the domain relations produced by
Data Interpretation; e.g., VOLITIONAL-CAUSE
instead of CAUSES). In RAGS (Mellish et al.,
2006) terminology, a document plan is a tree
which represents both document and rhetorical
structure, and whose nodes can specify con-
ceptual structures (ie, messages).

2 http://protege.stanford.edu

103

e output of Microplanning and Realisation is a
text, which may include HTML mark-ups.

7 Software

An architecture should lalso be supported by soft-
ware resources which help developers create sys-
tems based on the architecture. We are trying to cre-
ate such resources for building data-to-text systems.
n particular

e Signal Analysis: The TSNET (Hunter, 2006)
system, which has been developed at Aberdeen
over a number of years, includes many signal
analysis algorithms for time series data. We
are adapting TSNET so that it can be used to
perform Signal Analysis in BABYTALK, and
believe it could be used in other data-to-text
systems as well.

e Microplanning and Realisation: We are devel-
oping a Java library called SIMPLENLG? to per-
form these tasks; again this is based on several
previous projects. SIMPLENLG currently per-
forms morphological processing, realisation of
simple syntactic structures, and simple lexical-
isation; we hope to add support for simple mi-
croplanning soon.

We hope over the next few years to expand the
above, and in particular also provide software tools
for Data Interpretation and Document Planning.

8 Conclusion

There fis growing interest in data-to-text systems.
Such systems are both practically useful (all fielded
NLG systems that I am aware of are data-to-text sys-
tems) and scientifically interesting (in part because
they help us study how language relates to the non-
linguistic world). I have tried in this paper to out-
line the kinds of processing that data-to-text systems
must perform, and show how this processing can fit
into an architecture which is an extension of (not a
replacement of) existing NLG architectures.

Acknowledgements

Many thanks to the reviewers and to my colleagues
at |Aberdeen for their comments on this paper. All
opinions expressed here are of course mine alone.
BABYTALK is supported by grant EP/D049520/1
from the UK Engineering and Physical Sciences Re-
search Council (EPSRC).

3http://www.csd.abdn.ac.uk/fvereiter/simplenlg/

References

Sarah Boyd. 1998. TREND: a system for gener-
ating intelligent descriptions of time-series data.
In Proceedings of the IEEE International Confer-
ence on Intelligent Processing Systems (ICIPS-
1998).

Roger Evans, Paul Piwek, and Lynne Cahill. 2002.
What is NLG? In Proceedings of the Second
International Conference on Natural Language
Generation, pages 144-151.

Leo Ferres, Avi Parush, Shelley Roberts, and Gitte
Lindgaard. 2006. Helping people with visual im-
pairments gain access to graphical information
through natural language: The iGraph system.
In Proceedings of the 10th International Confer-
ence on Computers Helping People with Special
Needs.

Eli Goldberg, Norbert Driedger, and Richard Kit-
tredge. 1994. Using natural-language process-
ing to produce weather forecasts. [EEE Expert,
9(2):45-53.

Catalina Hallett and Donia Scott. 2005. Struc-
tural variation in generated health reports. In
Third International Workshop on Paraphrasing
(IWP2005).

Gerd Herzog and Peter Wazinski. 1994. VlIsual
TRAnslator: Linking perceptions and natural lan-
guage descriptions. Artificial Intelligence Re-
view, 8(2-3):175-187.

Jim Hunter. 2006. TSNet a distributed architec-
ture for time series analysis. In Proceedings of
IDAMAP 2006, pages 85-92.

Eamonn Keogh, Selina Chu, David Hart, and
Michael Pazzani. 2001. An online algorithm for
segmenting time series. In Proceedings of IEEE
International Conference on Data Mining, pages
289-296.

Richard Kittredge, Tanya Korelsky, and Owen Ram-
bow. 1991. On the need for domain commu-
nication language. Computational Intelligence,
7(4):305-314.

Karen Kukich. 1983. Design and implementation
of a knowledge-based report generator. In Pro-
ceedings of ACL-1983, pages 145-150.

Anna Law, Yvonne Freer, Jim Hunter, Robert Lo-
gie, Neil MclIntosh, and John Quinn. 2005. Gen-
erating textual summaries of graphical time series
data to support medical decision making in tthe
neonatal intensive care unit. Journal of Clinical
Monitoring and Computing, 19:183-194,

Kathleen McKeown, Karen Kukich, and James

104

Shaw. 1994, Practical issues in automatic docu-
ment generation. In Proceedings of ANLP-1994,
pages 7-14.

hris Mellish, Donia Scott, Lynn Cahill, Daniel
Paiva, Roger Evans, and Mike Reape. 2006. A
reference architecture for natural language gen-
eration systems. Natural Language Engineering,
12:1-34.

Fabio Pianesi, Massimo Zancanaro, Elena Not,
Chiara Leonardi, Vera Falcon, and Bruno Lepri.
2007. Multimodal support to group dynamics.
Personal and Ubiquitous Computing, 11. In
press.

Francois Portet, Ehud Reiter, Jim Hunter, and So-
mayajulu Sripada. 2007. Automatic generation
of textual summaries from neonatal intensive care
data. In Proceedings of AIME 2007. Forthcom-
ing.

Ehud Reiter and Robert Dale. 2000. Building Nat-
ural lILanguage Generation Systems. Cambridge
University Press.

Ehud Reiter, Somayajulu Sripada, Jim Hunter, and
Jin Yu. 2005. Choosing words in computer-
generated weather forecasts. Artificial Intelli-
gence, 167:137-169.

Deb Roy. 2002. Learning visually grounded words
and syntax for a scene description task. Com-
puter Speech and Language, 16:353-385.

Yuval Shahar. 1997. A framework for knowledge-
based temporal abstraction. Artificial Intelli-
gence, 90:79-133.

Somayajulu Sripada and Feng Gao. 2007. Sum-
marizing dive computer data. In Proceedings of
the Workshop on Multimodal Output Generation
(MOG-2007), pages 149-157.

Somayajulu Sripada, Ehud Reiter, Jim Hunter, and
Jin Yu. 2003. Generating English summaries of
time series data using the Gricean maxims. In
Proceedings of KDD-2003, pages 187-196.

Ross Turner, Somayajulu Sripada, Ehud Reiter, and
Ian Davy. 2006. Generating spatio-temporal de-
scriptions in pollen forecasts. In Proceedings of
EACL-2006 Poster Session, pages 163—166.

Jin Yu, Ehud Reiter, Jim Hunter, and Somayajulu
Sripada. 2004. A new architecture for summaris-
ing time series data. In Proceedings pf INLG-04
Poster Session, pages 47-50.

Jin Yu, Ehud Reiter, Jim Hunter, and Chris Mellish.
2007. Choosing the content of textual summaries
of large ttime-series data sets. Natural Language
Engineering, 13:25-49.

