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Abstract 

Despite the popularity of stochastic parsers, 
symbolic parsing still has some advantages, 
but is not practical without an effective 
mechanism for selecting among alternative 
analyses. This paper describes the symbolic 
preference system of a hybrid parser that 
combines a shallow parser with an overlay 
parser that builds on the chunks.  The hy-
brid currently equals or exceeds most sto-
chastic parsers in speed and is approaching 
them in accuracy. The preference system is 
novel in using a simple, three-valued scor-
ing method (-1, 0, or +1) for assigning 
preferences to constituents viewed in the 
context of their containing constituents.  
The approach addresses problems associ-
ated with earlier preference systems, and 
has considerably facilitated development. It 
is ultimately based on viewing preference 
scoring as an engineering mechanism, and 
only indirectly related to cognitive princi-
ples or corpus-based frequencies.  

1 Introduction 

Despite the popularity of stochastic parsers, sym-
bolic parsing still has some advantages, but is not 
practical without an effective mechanism for se-
lecting among alternative analyses. Without it, ac-
cept/fail grammar rules must either be overly 
strong or admit very large numbers of parses. . 

Symbolic parsers have recently been augmented 
by stochastic post-processors for output disam-
biguation, which reduces their independence from 
corpora.  Both the LFG XLE parser (Kaplan et.al. 
2004), and the HPSG LinGO ERG parser (Tou-
tanova et al. 2005) have such additions.    

This paper examines significant aspects of a 
purely symbolic alternative: the preference and 
pruning system of the RH (Retro-Hybrid) parser 

(Newman, 2007). The parser combines a pre-
existing, efficient shallow parser with an overlay 
parser that builds on the emitted chunks. The over-
lay parser is "retro" in that the grammar is related 
to ATNs (Augmented Transition Networks) origi-
nated by Woods (1970). 

RH delivers single "best" parses providing syn-
tactic categories, syntactic functions, head features, 
and other information (Figure 1). The parenthe-
sized numbers following the category labels in the 
figure are preference scores, and are explained fur-
ther on.  While the parses are not quite as detailed 
as those obtained using "deep" grammars, the 
missing information, mostly relating to long dis-
tance dependencies, can be added at far less cost in 
a post-parse phase that operates only on a single 
best parse.  Methods for doing so, for stochastic 
parser output, are described by Johnson (2002) and 
Cahill et al (2004). 

The hybrid parser exceeds most stochastic pars-
ers in speed, and approaches them in accuracy, 
even based on limited manual "training" on a par-
ticular idiom, so the preference system is a suc-
cessful one  (see Section 6), and continues to im-
prove. 

The RH preference system builds on earlier 
methods.  The major difference is a far simpler 
scoring system, which has considerably facilitated 
overlay parser development.  Also, the architecture 
allows the use of large numbers of preference tests 
without impacting parser speed. Finally, the treat-
ment of coordination exploits the lookaheads af-
forded by the shallow parser to license or bar alter-
native appositive readings. 

Section 2 below discusses symbolic preference 
systems in general, and section 3 provides an over-
view of RH parser structure.   Section 4 describes 
the organization of the RH preference system and 
the simplified scoring mechanism.  Section 5 dis-
cusses the training approach and Section 6 pro-
vides some experimental results.  Section 7 sum-
marizes, and indicates directions for further work. 
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Figure 1. Output Parse Tree for "Rumsfeld micromanaged daily briefings and rode roughshod 
               over people."  * indicates head. Mouseover shows head features for "micromanaged". 

2 Background: Symbolic Preference  

2.1 Principles 

Preference-based parsing balances necessarily 
permissive syntactic rules by preference rules that 
promote more likely interpretations.  One of the 
earliest works in the area is by Wilks (1975), 
which presented a view of preference as based on 
semantic templates. Throughout the 1980's there 
was a considerable amount of work devoted to 
finding general principles, often cognitively ori-
ented, for preference rules, and then to devise 
mechanisms for using them in practical systems.   
Hobbs and Bear (1990) provide a useful summary 
of the evolved principles.  Slightly restated, these 
principles are:  
1. Prefer attachments in the "most restrictive 

context". 
2. If that doesn't uniquely determine the result, 

attach low and parallel, and finally  
3. Adjust the above based on considerations of 

punctuation 
Principle 1 suggests that the preference for a 

constituent in a construction should depend on the 
extent to which the constituent meets a narrow set 
of expectations. Most of the examples given by 
Hobbs and Bear use either (a) sub-categorization 
information, e.g., preferring the attachment of a 
prepositional phrase to a head that expects that par-
ticular preposition, or (b) limited semantic infor-
mation, for example, preferring the attachment of a 
time expression to an event noun.  

Principle 2 implies that in the absence of coor-
dination, attachment should be low, and in the 
presence of coordination, parallel constituents 
should be preferred.  Principle 3 relates primarily 
to the effect of commas in modifying attachment 
preferences.  

2.2 Implementations 

Abstractly, symbolic preference systems can be 
thought of as regarding a set of possible parses as a 
collection of spanning trees over a network of po-
tential relationships, with each edge having a nu-
meric value, and attempting to find the highest 
scoring tree.1  

However, for syntactic parsers, in contrast with 
dependency parsers, it is convenient to associate 
scores with constituents as they are built, for con-
sistency with the parser structure, and to permit 
within-parse pruning.   A basic model for a prefer-
ence system assigns preference scores to rules. For 
a rule   

C → c1, c2, …, cn 
the preference score PS(CC) of a resultant con-
stituent CC is the sum: 

PS(cc1) + PS(cc2) +  +PS(ccn)  
             + TRS (C, cc1, cc2, …, ccn) 

where PS(cci) is the non-contexted score of con-
stituent cci, and the total relationship score TRS is a 
value that assesses the relationships among the sib-
ling constituents of CC.   The computation of TRS 
depends on the parser approach.  For a top-down 
parser, TRS may be the sum of contexted relation-
ship scores CRS, for example: 

TRS = CRS (cc1|C) +CRS (cc2|C, cc1), + 
           CRS (cc3|C, cc1, cc2) + ….. 
          + CRS (cn |C,  cc1,….ccn-1) 

where each CRS (cci|_ ) evaluates cci in the context 
of the prior content of the constituent CC and the 
category C..  

Few publications specify details of how prefer-
ence scores are assigned and combined. For exam-
ple, Hobbs and Bear (1990) say only that "When a 
                                                 
1 The idea has also been used directly in stochastic pars-
ers that consider all possible attachments, for example, 
by McDonald et al. (2005). 
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non-terminal node of a parse tree is constructed, it 
is given an initial score which is the sum of the 
scores of its child nodes. Various conditions are 
checked during the construction of the node and, as 
a result, a score of 20, 10, 3, -3, -10, or -20 may be 
added to the initial score." 

McCord (1993), however, carefully describes 
how the elements of TRS are computed in his slot 
grammar system. Each element value is the sum of 
the results of up to 8 optional, typed tests, relating 
to structural, syntactic, and semantic conditions. 
One of these tests, relating to coordination, is a 
complex test involving 7 factors assessing parallel-
ism. 

2.3 Multi-Level Contexted Scoring 

The scores assigned by symbolic preference sys-
tems to particular relationships or combinations 
usually indicate not just whether they are preferred 
or dispreferred, but to what degree.  For example, a 
score of 1 might indicate that a relationship is 
good, and 2 that it is better.  

Such multi-level scores create problems in tun-
ing parsers to remove undesirable interactions, 
both in the grammar and the preference system.  
Even for interactions foreseen in advance, one 
must remember or find out the sizes of the prefer-
ences involved, to decide how to compensate.  
Yamabana et al. (1993) give as an example a bot-
tom-up parser, where an S constituent with a tran-
sitive verb head but lacking an object is initially 
given a strong negative preference, but when it is 
discovered that the constituent actually functions 
as a relative clause, the appropriate compensation 
must be found.  (Their solution uses a vector of 
preference scores, with the vector positions corre-
sponding to specific types of preference features, 
together with an accumulator.  It allows the content 
of vector elements to be erased based on subse-
quently discovered compensating features.)  

For unforeseen interactions, for example when a 
review of parser outputs finds that the best parse is 
not given the highest preference score, multi-level 
contexted scoring requires complex tracing of the 
contribution of each score to the total, remember-
ing at each point what the score should be, to de-
termine the necessary adjustments.  

A different sort of problem of multi-level scor-
ing stems from the unavoidable incompleteness of 
information.  For example, in Figure 1, the attach-
ment of an object to the "guessed" verb "micro-

managed" is dispreferred because the verb is not 
identified as transitive.  Here, the correct reading 
survives because there are no higher scoring ones.  
But in some situations, if such a dispreference 
were given a large negative score, the parser could 
be forced into very odd readings not compensated 
for by other factors. 

2.4 Corpus-Based Preference  

In the early 1990's, the increasing availability and 
use of corpora, together with a sense that multi-
level symbolic preference scores were based on ad-
hoc judgments, led to experiments and systems that 
used empirical methods to obtain preference 
weights. Examples of this work include a system 
by Liu et al (1990), and experiments by Hindle and 
Rooth (1993), and Resnik and Hearst (1993).2 

These efforts had mixed success, suggesting that 
while multi-level preference scores are problem-
atic, integrating some corpus data does not solve 
the problems.  In light of later developments, this 
might be expected.  Full-scale contemporary sto-
chastic parsers use a broad range of interacting fea-
tures to obtain their fine-grained results; frequen-
cies of particular relationships are just one aspect. 

2.5 OT-based Preference 

A more recent approach to symbolic preference 
adapts optimality theory to parser and generator 
preference.  Optimality Theory (OT) was origi-
nally developed to explain phonological rules 
(Prince and Smolensky, 1993).  In that use, poten-
tial rules are given one "optimality mark" for each 
constraint they violate. The marks, all implicitly 
negative, are ranked by level of severity. A best 
rule R is one for which (a) the most severe level of 
constraint violation L is ≤ the level violated by any 
other rule, and (b) if other rules also violate level L 
constraints, the number of such violations is ≥  the 
number of violations by R.  

As adapted for use in the XLE processor for 
LFG (Frank et al. 1998) optimality marks are asso-
ciated with parser and generator outputs.  Positive 
marks are added, and also labeled inter-mark posi-
tions within the optimality mark ranking. The la-
beled positions influence processor behavior.  For 
generation, they are used to disprefer infelicitous 
strings accepted in a parse direction. And for pars-
                                                 
2 McCord (1993) also includes some corpus-based in-
formation, but to a very limited extent. 
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ing they can be used to disprefer (actually ignore) 
rarely-applicable rules, in order to reduce parse 
time (Kaplan et al, 2004).   

However, because the optimality marks are 
global, a single dispreference can rule out an entire 
parse. To partially overcome this limitation, a fur-
ther extension (see XLE Online Documentation) 
allows direct comparisons of alternative readings 
for the same input extent.  A different optimality 
mark can be set for each reading, and the use of 
one such mark in the ranking can be conditioned 
on the presence of another particular mark for the 
same extent.  For example, a conditional disprefer-
ence can be set for an adjunct reading if an argu-
ment reading also exists. The extension does not 
address more global interactions, and is said (Forst 
et al. 2005) to be used mostly as a pre-filter to limit 
the readings disambiguated by a follow-on stochas-
tic process.   

2.6 A Slightly Different View 

A slightly different view of preference–based pars-
ing is that the business of a preference system is to 
work in tandem with a permissive syntactic gram-
mar, to manipulate outcomes. 

The difference focuses on the pragmatic role of 
preference in coercing the parser.  In this light, the 
principles of section 2.1 are guidelines for desired 
outcomes, not bases for judging the goodness of a 
relationship or setting preference values. Instead, 
preference values should be set based on their ef-
fectiveness in isolating best parses. Also, in this 
light, the utility of a preference system lies not 
only in its contribution to accuracy, but also in its 
software-engineering convenience. These consid-
erations led to the simpler, more practical scoring 
system of the RH overlay parser, described  in sec-
tion 4 below, in which contexted preference scores 
CRS can have one of only 3 values, -1, 0, or +1. 

3 Background: The RH Parser 

The RH parser consists of three major components, 
outlined below: the shallow parser, a mediating 
"locator" phase, and the overlay parser. 

3.1 Shallow Parser 

The shallow parser used, XIP, was developed by 
XRCE (Xerox Research Center Europe).  It is 
actually a full parser, whose per-sentence output 
consists of a single tree of basic chunks, together 

with identifications of (sometimes alternative) 
typed dependences among the chunk heads  (Ait-
Mokhtar et al. 2002, Gala 2004).  But because the 
XIP dependency analysis for English was not 
mature at the time that work on RH began, and 
because a classic parse tree annotated by syntactic 
functions is more convenient for some 
applications, we focused on the output chunks. 

XIP is astonishingly fast, contributing very little 
to parse times (about 20%).  It consists of the XIP 
processor, plus grammars for a number of 
languages.  The grammar for a particular language 
consists of:  
(a) a finite-state lexicon producing alternative 

part-of-speech and morphological analyses for 
each token, together with bit-expressed 
subcategorization and control features, and 
(some) semantic features, 

(b) a substitutable tagger identifying the most 
probable part of speech for each token, and 

(c) sequentially applied rule sets that extend and 
modify lexical information, disambiguate tags, 
identify named entities and other  multiwords, 
and produce output chunks and inter-chunk 
head dependences (the latter not used in the 
hybrid).   

Work on the hybrid parser has included large 
scale extensions to the XIP English rule sets. 

3.2 Locator phase 

The locator phase accumulates and analyses some 
of the shallow parser results to expedite the 
grammar and preference tests of the overlay parser.   

For preference tests,  for any input position, the 
positions of important leftward and rightward 
tokens are identified.  These "important" tokens 
include commas, and leftward phrase heads that 
might serve as alternative attachment points. 

Special attention is given to coordination, a 
constant source of inefficiency and inaccuracy for 
all parsers. To limit this problem, an input string is 
divided into spans ending at coordinating conjunc-
tions, and the chunks following a span are exam-
ined to determine what kinds of coordination might 
be present in the span.  For example, if a chunk 
following a span Sp is a noun phrase, and there are 
no verbs in the input following that noun phrase, 
only noun phrase coordination is considered within 
Sp.  Also, with heuristic exceptions, the locator 
phase disallows searching for appositives within 
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long sequences of noun and prepositional phrases 
ending with a coordinating conjunction. 

3.3 Overlay Parser 

The overlay parser uses a top-down grammar, 
expressed as a collection of ATN-like grammar 
networks. A recursive control mechanism traverses 
the grammar networks depth-first to build 
constituents. The labels on the grammar network 
arcs represent specialized categories, and are 
associated with tests that, if  successful, either 
return  a chunk or reinvoke the control to attempt 
to build a constituents for the category.  The label-
specific tests include both context-free tests, and 
tests taking into account the current context.  For 
details see (Newman, 2007). 

If an invocation of the control is successful, it 
returns an output network containing one or more 
paths, with each path representing an alternative 
sequence of immediate children of the constituent.  
An example output network is shown in figure 2.  
Each arc of the network references either a basic 
chunk, or a final state of a subordinate output net-
work. Unlike the source grammar networks, the 
output networks do not contain cycles or converg-
ing arcs, so states represent unique paths.  

The states contain both (a) information about 
material already encountered along the path, in-
cluding syntactic functions and head features, and 
(b) a preference score for the path to that point. 
Thus the figure 2 network represents two 
alternative noun phrases, one represented by the 
path containing OS0 and OS1, and one containing 
OS0, OS1, and OS2.  State OS2 contains the 
preference score (+1), because attaching a locative 
pp to a feature of the landscape is preferred. 

 
From To Cat Synfun Reference 
OSo OS1 NP HEAD NPChunk 

(The park) 
OS1 OS2 PP NMOD Final state of 

 PP net for 
(in Paris) 

States Score Final? 
OS0 0 No 
OS1 0 Yes 
OS2 +1 Yes 

Figure 2. Output network for "The park in Paris" 

 

Before an output network is returned from an 
invocation of the control mechanism, it is pruned 
to remove lower-scoring paths, and cached. 

Output from the overlay parser is a single tree 
(Figure 1) derived from a highest scoring full path 
(i.e. final state) of a topmost output network. If 
there are several highest scoring paths, low attach 
considerations select a "best" one. The preference 
scores shown in Figure 1 in parentheses after the 
category labels are the scores at the succeeding 
states of the underlying output networks. 

4 Preference System  

Any path in an output network has the form: 
S0, Ref1, S1, Ref2, …, Sn-1 , Refn, Sn 

where Si is a state, and Refi labels an arc, and refer-
ences either a basic chunk, or a final state of an-
other output network.   A state Si has total prefer-
ence score TPS(i) where: 

• TPS(0) = 0 
• TPS(i),  i>0 =  

              TPS( i-1) + PS(Refi) +CRS(Refi) 
• PS(Refi) is the non-contexted score of the 

constituent referenced by Refi, that is, the 
score at the referenced final state. 

• CRS(Refi) is the contexted score for Refi, in 
the context of the network category and the 
path ending at the previous state i-1.  

For example, if Refi refers to a noun phrase con-
sidered a second object within a path, and the syn-
tactic head along the path does not expect a second 
object, CRS(Refi) might be (-1).  

Each value CRS is limited to values in {-1, 0, 
+1}. Therefore, no judgment is needed to decide 
the degree to which a contexted reference is to be 
dispreferred or preferred.  Also, if the desired parse 
result does not receive the highest overall score, it 
is relatively easy to trace the reason. Pruning (see 
below) can be disabled and all parses can be dis-
played, as in Figure 1, which shows the scores 
TPS(i) in parentheses after the category labels for 
each Refi (with zero scores not shown).  Then, if  

TPS(i) >  ( TPS(i-1) + PS(Refi)) 
it is clear that the contexted reference is preferred.  
If multi-level contexted scoring were used instead, 
it would be necessary to determine whether the 
reference was preferred to exactly the right degree. 
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Test Block 
Type 

Length  
Independent? 

Indexed By 

Coordinate Y Parent syncat 
Subcat Y No index 
FN1 Y synfun 
TAG1 Y syncat 
FN2 N synfun 
TAG2 N syncat 
Table 1. Preference Test Block Types 

4.1 Preference test organization 

To compute the contexted score CRS for a refer-
ence, relevant tests are applied until either (a) a 
score of -1 is obtained, which is used as CRS for 
the reference, or (b) the tests are exhausted.  In the 
latter case, CRS is the higher of the values {0, +1} 
returned by any test. 

For purposes of efficiency, the preference tests 
are divided into typed blocks, as shown in Table 1.  
At most one block of each type can be applied to a 
reference.  Four of the blocks contain tests that are 
independent of referenced constituent length. They 
are applied at most once for a returned output net-
work and the results are assumed for all paths.  The 
other two blocks are length dependent.  

Referring to Table 1, the length-independent co-
ordinate tests are applied only to non-first siblings 
of coordinated constituents.  The parent category 
indicates the type of constituents being coordinated 
and selects the appropriate test block.  Tests in 
these blocks focus on the semantic consistency of a 
coordinated sibling with the first one.   

Subcategorization tests are applied to preposi-
tional, particle, and clausal dependents of the cur-
rent head. These tests consist to a large extent of 
bit-vector implemented operations, comparing the 
expected dependent types of the head with lexical 
features of the prospective dependent.  The tests 
are made somewhat more complex because of 
various exceptions, such as (a) temporal and loca-
tive phrases, and (b) the presence of a nearer po-
tential head also expecting the dependent type. 

The other test block types are selected and ac-
cessed either by the syntactic category or the syn-
tactic function of the reference, depending on the 
focus of the test.  The length-dependent tests in-
clude tests of noun-phrases within coordinations to 
determine whether post modifiers should be ap-
plied to the individual phrase or to the coordination 
as a whole. 

The test blocks are expressed in procedural 
code. This has allowed the parser to be developed 
without advance prediction of the types of infor-
mation needed for the tests, and also has contrib-
uted some efficiency.  The blocks, usually short 
but occasionally long, generally consist of ordered 
(if-then-else) subtests. 

4.2 Preference test scope 

A contexted preference test can refer to material on 
three levels of the developing parse tree: (a) the 
syntactic category of the parent (available because 
of the top-down parser direction) (b) information 
about the current output network path, including 
head features, already-encountered syntactic func-
tions, and a small collection of special-purpose 
information, and (c) information about the refer-
enced constituent, specifically its head and a list of 
the immediately contained syntactic functions. The 
tests can also reference lookahead information fur-
nished by the locator phase.  This material is suffi-
cient for most purposes.  Limiting the kind of ref-
erenced information, particularly not permitting 
access to sibling constituents or deep elements of 
the referenced constituent, contributes to perform-
ance. 

4.3 Pruning  

Before an output network is completed, it is pruned 
to remove lower-scoring output network paths. 
Any path with the same length as another but with 
a lower score is pruned.  Also, paths having other 
lengths but considerably lower preference scores 
than the best-scoring path are often pruned as well. 

4.4 Usage Example 

To illustrate how the simple scores and modular 
tests are used to detect and repair problems in the 
preference system, Figure 1 shows, as noted be-
fore, that the attachment of an object to the guessed 
verb "micromanaged" is dispreferred.  In this case 
the probable reason is the lack of a transitive fea-
ture for the verb. To check this, we would look at 
the FN1 test block for OBJ and find that in fact the 
test assigns (-1) in this case.  The required modifi-
cation is best made by adding a transitive feature to 
guessed verbs.   

But there is another problem here: the attach-
ment of the pp "over people" is not given a positive 
preference.  Checking the FN1 test block for 
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VMOD and the TAG1 test block for PP finds that 
there is in fact no subtest that prefers combinations 
of motion verbs and "over".  While this doesn't 
cause trouble in the example, it could if there were 
a prior object in the verb phrase.  A subtest or sub-
categorization feature could be added. 

5 Training the Preference System 

To obtain the preference system, an initial set of 
tests is identified, based primarily on subcategori-
zation considerations, and then refined and ex-
tended based on manual "training" on large num-
bers of documents.  Several problem situations 
result in changes to the system, besides random 
inspection of scores: 
(a) the best parse identified is not the correct one, 

either because the correct parse is not the high-
est scoring one, or because another parse with 
the same score was considered "best" because 
of low-attach considerations. 

(b) The best parse obtained is the correct one, but 
there are many other parses with the same 
score, suggesting a need for refinement, both 
to improve performance and to avoid errors in 
related circumstances when the correct parse 
does not "float" to the top. 

(c) No parse is returned for an input, because of 
imposed space constraints, which indirectly 
control the amount of time that can be spent to 
obtain a parse. 

In some cases the above problems can be solved 
by adjusting the base grammar, or by extending 
lexical information to obtain the appropriate pref-
erences.  For example, the preference scoring prob-
lems of Figure 1 can be corrected by adding sub-
categorization information, as described above. 

 In other cases, one or more modifications to the 
preference system are made, adding positive tests 
to better distinguish best parses, adding negative 
tests to disprefer incorrect parses, and/or refining 
existing tests to narrow or expand applicability. 

Positive tests often just give credit to expected 
structures not previously considered to require rec-
ognition beyond acceptance by the grammar.  
Negative tests fall into many classes, such as: 
(a) Tests for "ungrammatical" phenomena that 

should not be ruled out entirely by the gram-
mar.  These include lack of agreement, lack of 
expected punctuation, and presence of unex-
pected punctuation (such as a comma between 

a subject and a verb when there is no comma 
within the subject). 

(b) Tests for probably incomplete constituents, 
based on the chunk types that follow them.   

(c) Tests for unexpected arguments, except in 
some circumstances. For example, "benefac-
tive" indirect objects ("John baked Mary a 
cake") are dispreferred if they are not in ap-
propriate semantic classes.  

Also, a large, complex collection of positive and 
negative tests, based on syntactic and semantic fac-
tors, are used to distinguish among coordinated and 
appositive readings, and among alternative attach-
ments of appositives. 

If the addition or modification of preference 
tests does not solve a particular problem, then 
some more basic changes can be made, such as the 
introduction of new semantic classes.  And, in rare 
cases, new features are added to output network 
states in order to make properties of non-head con-
stituents encountered along a path available for 
testing both further along the path and in the de-
velopment of higher-level constituents. An exam-
ple is the person and number of syntactic subjects, 
allowing contexted preference tests for finite verb 
phrases to check for subject consistency. 

5.1 Relationship to "supervised" training 

To illustrate the relationship between the above 
symbolic training method for preference scoring 
and corpus-based methods, perhaps the easiest way 
is to compare it to an adaptation (Collins and 
Roark, 2004) of the perceptron training method to 
the problem of obtaining a best parse (either di-
rectly, or for parse reranking), because the two 
methods are analogous in a number of ways.  

The basic adapted perceptron training assumes a 
generator function producing parses for inputs. 
Each such parse is associated with a vector of fea-
ture values that express the number of times the 
feature appears in the input or parse.  The features 
used are those identified by Roark (2001) for a top-
down stochastic parser.   

The training method obtains a weight vector W 
(initially 0) for the feature values, by iterating mul-
tiple times over pairs <xi, yi> where xi is a training 
input, and yi is the correct parse for xi.  For each 
pair, the best current parse zi for xi  produced by the 
generator, with feature value vector V(zi),  is se-
lected based on the current value of (W · V(zi)).  
Then if zi ≠ yi, W is incremented by V(yi), and dec-
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remented by V(zi). After training, the weights in W 
are divided by the number of training steps (# in-
puts * # iterations).   

The method is analogous to the RH manual 
training process for preference in a number of 
ways.  First, the features used were developed for 
suitability to a top-down parser, for example taking 
into account superordinate categories at several 
levels, some lexical information associated with 
non-head, left-side siblings of a node, and some 
right-hand lookahead.  Although only one su-
perordinate category is routinely used in RH pref-
erence tests, in order to allow caching of output 
networks for a category, the preference system al-
lows for and occasionally uses the promotion of 
non-head features of nested constituents to provide 
similar capability.  

Also, the feature weights obtained by the per-
ceptron training method can be seen to focus on 
patterns that actually matter in distinguishing cor-
rect from incorrect parses, as does RH preference 
training.  Intuitively, the difference is that while 
symbolic training for RH explicitly pinpoints pat-
terns that distinguish among parses, the perceptron 
training method accomplishes something similar 
by postulating some more general features as nega-
tive or positive based on particular examples, but 
allowing the iterations over a large training set to 
filter out potentially indicative patterns that do not 
actually serve as such. 

These analogies highlight the fact that prefer-
ence system training, whether symbolic or corpus-
based, is ultimately an empirical engineering exer-
cise.   

6 Some Experimental Results 

Tables 2, 3, and 4 summarize some recent results 
as obtained by testing on Wall Street Journal sec-
tion 23 of the Penn Treebank (Marcus et al. 1994).  
The RH results were obtained by about 8 weeks of 
manual training on the genre.   

Table 2 compares speed and coverage for RH 
and Collins Model3 (Collins, 1999) run on the 
same CPU. The table also extrapolates the results 
to two other parsers, based on reported compari-
sons with Collins.  One extrapolation is to a very 
fast stochastic parser by Sagae and Lavie (2005).  
The comparison indicates that the RH parser speed 
is close to that of the best contemporary parsers.  

 The second extrapolation is to the LFG XLE 
parser (Kaplan et al. 2004) for English, consisting 
of a highly developed symbolic parser and gram-
mar, an OT-based preference component, and a 
stochastic back end to select among remaining al-
ternative parser outputs.  Two sets of values are 
given for XLE, one obtained using the full English 
grammar, and one obtained using a reduced gram-
mar ignoring less-frequently applicable rules. The 
extrapolation indicates that the coverage of RH is 
quite good for a symbolic parser with limited train-
ing on an idiom. 

While the most important factor in RH parser 
speed is the enormous speed of the shallow parser, 
the preference and pruning approach of the overlay 
parser make contributions to both speed and cover-
age. This can be seen in Table 2 by the difference 
between RH parser results with and without prun-
ing.  Pruning increases coverage because without it 
more parses exceed imposed resource limits. 

Table 3 compares accuracy. The values for 
Collins and Sagae/Lavie are based on comparison 
with treebank data for the entire section 23. How-
ever, because RH does not produce treebank-style 
tags,  the RH values are  based only on a random 

 
 Time No full parse 
Sagae/Lavie ~ 4 min 1.1% 
RH Prune 5 min 14 sec 10.8% 
RH NoPrune  7 min 5 sec  13.9 % 
Collins m3 16 min  .6% 
XLE reduced ~24 minutes unknown 
XLE full ~80 minutes ~21% 
Table 2. Speeds and Extrapolated speeds 

 

 Fully 
accurate 

F-score Avg cross  
bkts  

Sagae/Lavie unknwn 86% unknwn 
Collins Lbl 33.6% 88.2% 1.05 
CollinsNoLbl 35.4% 89.4 % 1.05 
RH NoLbl 46% 86 % .59 
Table 3. Accuracy Comparison 

 

 Average  Median 
RH Base 137.10 11 
RH Pref    5.04 2 
Table 4. Highest Scoring Parses per Input 
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100-sentence sample from section 23, and com-
pared using a different unlabeled bracketing stan-
dard.  For details see Newman (2007).  For non-
parsed sentences the chunks are bracketed.  Accu-
racy is not extrapolated to XLE because available 
measurements give f-scores (all ≤ 80%) for de-
pendency relations rather than for bracketed con-
stituents. 

As a partial indication of the role and effective-
ness of the RH preference system, if non-parsed 
sentences are ignored, the percentage of fully accu-
rate bracketings shown in Table 3 rises to ap-
proximately 46/89 = 51.6% (it is actually larger 
because coverage is higher on the 100-sentence 
sample). As further indication, Table 4 compares, 
for section 23, the average and median number of 
parses per sentence obtained by the base grammar 
alone (RH Base), and the base grammar plus the 
preference system (RH Pref).3  The table demon-
strates that the preference system is a crucial parser 
component.  Also, the median of 2 parses per sen-
tence obtained using the preference system ex-
plains why the fallback low-attach strategy is suc-
cessful in many cases. 

 
7 Summary and Directions  

The primary contribution of this work is in demon-
strating the feasibility of a vastly simplified sym-
bolic preference scoring method.  The preference 
scores assigned are neither "principle-based", nor 
"ad-hoc", but explicitly engineered to facilitate the 
management of undesirable interactions in the 
grammar and in the preference system itself.   Re-
stricting individual contexted scores to {-1, 0, +1} 
addresses the problems of multi-level contexted 
scoring discussed in Section 2, as follows:  

• No abstract judgment is required to assign a 
value to a preference or dispreference. 

• Information deficiencies contribute only 
small dispreferences, so they can often be 
overcome by preferences. 

• Compensating for interactions that are fore-
seen does not require searching the rules to 
find necessary compensating values. 

• For unforeseen interactions discovered when 
reviewing parser results, the simplified pref-

                                                 
3 The values are somewhat inflated because they include 
duplicate parses, which have not yet been entirely 
eliminated. 

erence scores facilitate finding the sources of 
the problems and potential methods of solv-
ing them. 

This approach to symbolic preference has facili-
tated development and maintenance of the RH 
parser, and has enabled the production of results 
with a speed and accuracy comparable to the best 
stochastic parsers, even with limited training on an 
idiom.   

An interesting question is why this very simple 
approach does not seem to have been used previ-
ously.  Part of the answer may lie in the lack of 
explicit recognition that symbolic preference scor-
ing is ultimately an engineering problem, and is 
only indirectly based on cognitive principles or 
approximations to frequencies of particular rela-
tionships. 

Ongoing development of the RH preference sys-
tem includes continuing refinement based on 
"manual" training, and continuing expansion of the 
set of semantic features used as the parser is ap-
plied to new domains.  Additional development 
will also include more encoding of, and attention 
to, the expected semantic features of arguments. 
Experiments are also planned to examine the accu-
racy/performance tradeoffs of using additional 
context information in the preference tests. 
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