A log-linear model with an n-gram reference distribution for accurate HPSG
parsing

1

Takashi Ninomiya
Information Technology Center
University of Tokyo

ninomi@r.dl.itc.u-tokyo.ac.jp

Takuya Matsuzaki
Department of Computer Science
University of Tokyo

matuzaki@is.s.u-tokyo.ac.jp

Yusuke Miyao
Department of Computer Science
University of Tokyo

yusuke@is.s.u-tokyo.ac.jp

Jun’ichi Tsujii
Department of Computer Science, University of Tokyo
School of Informatics, University of Manchester
NaCTeM (National Center for Text Mining)
tsujii@is.s.u-tokyo.ac.jp

Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan

Abstract

This paper describes a log-linear model with
an n-gram reference distribution for accurate
probabilistic HPSG parsing. In the model,
the n-gram reference distribution is simply
defined as the product of the probabilities
of selecting lexical entries, which are pro-
vided by the discriminative method with ma-
chine learning features of word and POS
n-gram as defined in the CCG/HPSG/CDG
supertagging. Recently, supertagging be-
comes well known to drastically improve
the parsing accuracy and speed, but su-
pertagging techniques were heuristically in-
troduced, and hence the probabilistic mod-
els for parse trees were not well defined.
We introduce the supertagging probabilities
as a reference distribution for the log-linear
model of the probabilistic HPSG. This is the
first model which properly incorporates the
supertagging probabilities into parse tree’s
probabilistic model.

Introduction

sophisticated grammar formalisms, such as head-
driven phrase structure grammar (HPSG) (Pollard
and Sag, 1994), combinatory categorial grammar
(CCQG) (Steedman, 2000) and lexical function gram-
mar (LFG) (Bresnan, 1982). They are preferred
because they give precise and in-depth analyses
for explaining linguistic phenomena, such as pas-
sivization, control verbs and relative clauses. The
main difficulty of developing parsers in these for-
malisms was how to model a well-defined proba-
bilistic model for graph structures such as feature
structures. This was overcome by a probabilistic
model which provides probabilities of discriminat-
ing a correct parse tree among candidates of parse
trees in alog-linear modelor maximum entropy
model(Berger et al., 1996) with many features for
parse trees (Abney, 1997; Johnson et al., 1999; Rie-
zler et al., 2000; Malouf and van Noord, 2004; Ka-
plan et al., 2004; Miyao and Tsuijii, 2005). Follow-
ing this discriminative approach, techniques for effi-
ciency were investigated for estimation (Geman and
Johnson, 2002; Miyao and Tsujii, 2002; Malouf and
van Noord, 2004) and parsing (Clark and Curran,
2004b; Clark and Curran, 2004a; Ninomiya et al.,
2005).

For the last decade, fast, accurate and wide-coverageAn interesting approach to the problem of parsing
parsing for real-world text has been pursued iefficiency was using supertagging (Clark and Cur-
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ran, 2004b; Clark and Curran, 2004a; Wang, 2003iertagging probabilities into parse tree’s probabilis-
Wang and Harper, 2004; Nasr and Rambow, 2004ic model. We compared our model with the proba-
Ninomiya et al., 2006; Foth et al., 2006; Foth andilistic model for phrase structures (Miyao and Tsu-
Menzel, 2006), which was originally developed foijii, 2005). This model uses word and POS unigram
lexicalized tree adjoining grammars (LTAG) (Ban-for its reference distribution, i.e., the probabilities of
galore and Joshi, 1999). Supertagging is a proceasigram supertagging. Our model can be regarded
where words in an input sentence are tagged witlis an extension of a unigram reference distribution
‘supertags,” which are lexical entries in lexicalizedo an n-gram reference distribution with features that
grammars, e.g., elementary trees in LTAG, lexicahre used in supertagging. We also compared with a
categories in CCG, and lexical entries in HPSG. Thprobabilistic model in (Ninomiya et al., 2006). The
concept of supertagging is simple and interestingrobabilities of their model are defined as the prod-
and the effects of this were recently demonstrated wnct of probabilities of supertagging and probabilities
the case of a CCG parser (Clark and Curran, 2004aj the probabilistic model for phrase structures, but
with the result of a drastic improvement in the parstheir model was trained independently of supertag-
ing speed. Wang and Harper (2004) also demoming probabilities, i.e., the supertagging probabili-
strated the effects of supertagging with a statistties are not used for reference distributions.

cal constraint dependency grammar (CDG) parser

by showing accuracy as high as the state-of-the-aft HPSG and probabilistic models

parsers, and Foth et al. (2006) and Foth and Menzgb g (pollard and Sag, 1994) is a syntactic theory
(2006) reported that accuracy was significantly iMp e on lexicalized grammar formalism. In HPSG,

prov_ed by incorporating the _supertagging p_roba_bilié small number of schemata describe general con-
ties into manually tuned Weighted CDG. Ninomiyagy,ction rules, and a large number of lexical entries
et al. (2006) showed the parsing model using only, <5 \word-specific characteristics. The structures
supertagging probabilities could achieve accuracy 3 sentences are explained using combinations of
high as the probabilistic model for phrase structure§.namata and lexical entries. Both schemata and

termined by supertags as is claimed by Bangalotg, g ang constraints represented by feature struc-
and Joshi (1999). However, supertaggers themselv&ﬁes are checked withnification

were heuristically used as an external tagger. TheyAn example of HPSG parsing of the sentence

filter out unlikely lexical entries just to help parsing“Spring has confeis shown in Figure 1. First
(Clark and Curran, 2004a), or the probabilistic M0dz 41 of the lexical entries forhas and ‘:comé '

els for phrase structures were trained independently  ifieq with a daughter feature structure of the
of the supertagger’s probabilistic models (Wang anfhq 4. complement Schema. Unification provides
Harper, 2004; Ninomiya et al., 2006). In the case Gf\e phrasal sign of the mother. The sign of the
supertagging of Weighted CDG (Foth et al., 2006),qr constituent is obtained by repeatedly applying
!oaramef[ers for We|ghted CDG ar_e manually tune chemata to lexical/phrasal signs. Finally, the parse
i.e., their model is not a well-defined probablllstlcresult is output as a phrasal sign that dominates the

mode. _ .. . sentence.
We propose a log-linear model for probabilistic Given a seiV of words and a sef of feature

HPSG parsing in which the supertagging probabilgi,ctres, an HPSG is formulated as a tugle—
ities are introduced as a reference distribution fO{L R), where

the probabilistic HPSG. The reference distribution is
simply defined as the product of the probabilities of
selecting lexical entries, which are provided by the , : _ _
discriminative method with machine leaming fea- %S & set of schemata; i.e..c Ris a partial

tures of word and part-of-speech (POS) n-gram as function: 7 x 7 — F.

defined in the CCG/HPSG/CDG supertagging. Thi§iven a sentence, an HPSG computes a set of
is the first model which properly incorporates the suphrasal signs, i.e., feature structures, as a result of

L={l=(w F)lweW,F e F}isasetof
lexical entries, and
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COMPS <>
COMPS <>

FE’;’ TR H to sentencev. Because the number of parse can-
didates is exponentially related to the length of the

oo SRR sentence, the estimation is intractable for long sen-
[S%?ipéij [ES%JPEEEJ m[égﬁfpé@ﬂ tences. To make the model estimation tractable, Ge-
QJ h\ | man and Johnson (Geman and Johnson, 2002) and
rin as come . N
’ FEQ? verb J Miyao and Tsuijii (Miyao and Tsujii, 2002) proposed
°°M<; . a dynamic programming algorithm for estimating
-SU _ect- eal . .
[HEAD v%bJ p(T|w). Miyao and Tsujii (2005) also introduced a
SuUBJ <[> . . oy .
COMPS <> preliminary probabilistic modeb,(7'|w) whose es-
— o[ [ V%be? :O[T.EAD 2] timation does not require the parsing of a treebank.
SUBJ <> SuBJ <[> 21| suBJ <[> . . . . . .
comps <>]  Lcomps <z>] ~Lcowps <> This model is introduced asraference distribution

Sprlng hls Cor‘ne (Jelinek, 1998; Johnson and Riezler, 2000) of the
probabilistic HPSG model; i.e., the computation of

parse trees given low probabilities by the model is

omitted in the estimation stage (Miyao and Tsuijii,

2005), or a probabilistic model can be augmented

parsing. Note that HPSG is one of the lexicalizethy several distributions estimated from the larger

grammar formalisms, in which lexical entries deterand simpler corpus (Johnson and Riezler, 2000). In

mine the dominant syntactic structures. (Miyao and Tsujii, 2005)p(T'|w) is defined as the
Previous studies (Abney, 1997; Johnson et alproduct of probabilities of selecting lexical entries

1999; Riezler et al., 2000; Malouf and van Noordwith word and POS unigram features:

2004; Kaplan et al., 2004; Miyao and Tsujii, 2005)

defined a probabilistic model of unification-based (Miyao and Tsuijii (2005)’s model)

grammars including HPSG ad@y-linear modelor

Figure 1: HPSG parsing.

maximum entropy modéBerger et al., 1996). The et (TIW) = po(T L \
probability that a parse resuff is assigned to a Punires (T|w) = po(Tlw) 7~ Z wfulT
given sentencev = (wy, ..., wy) IS

Tw = Zpo T |w) exp A fu(T
(Probabilistic HPSG)

o(T'|w) = li|w;),
Phpsg(T|W) *fexp (Z,\ufu ) Po( | ) EP( ‘ )

wherel; is a lexical entry assigned to woud; in

T = Zexp (Z /\ufu(T’)> , T andp(l;|w;) is the probability of selecting lexical
I u entryl; for w;.
where), is a model parametef,, is a feature func-  In the experiments, we compared our model with

tion that represents a characteristic of parse Tfee other two types of probabilistic models using a su-
and Z,, is the sum over the set of all possible parspertagger (Ninomiya et al., 2006). The first one is
trees for the sentence. Intuitively, the probabilitithe simplest probabilistic model, which is defined
is defined as the normalized product of the weightwith only the probabilities of lexical entry selec-
exp(A,) when a characteristic correspondingftp tion. It is defined simply as the product of the prob-
appears in parse resdlt The model parameters,, abilities of selecting all lexical entries in the sen-
are estimated using numerical optimization methodence; i.e., the model does not use the probabilities
(Malouf, 2002) to maximize the log-likelihood of of phrase structures like the probabilistic models ex-
the training data. plained above. Given a set of lexical entriés,a

However, the above model cannot be easily estsentencew = (wy,...,w,), and the probabilistic
mated because the estimation requires the compumodel of lexical entry selectiom(l; € L|w,1), the
tation of p(T'|w) for all parse candidates assignedirst model is formally defined as follows:
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HEAD verb

fron= <S, has, VBZ, {ggﬁp;ﬁ@; } > de

............................... head-comp, 1, 0, , &, G,y
k{ HEAD verb .' :EQ? :ﬁg) fbinary SPi, SYL, hwl7 hpl7 hll7
{SUBJ <> } fbmary: 1, VP, has, VBZ, |Coyps <vps SPr, SYr, hwr, hpT7 hi,

COMPS H
o ...........-". 1, VP, come, VBN, 25/;? :ﬁ&i funary = <77 sY, hwa hpa hl>
COMPS =
subject-hea = froot = (sy, hw, hp, hl>
ggg? Vg]fb : flem = <wi,pi7 l7«>
<1/>
COMPS <>

Fopt _ Wi—1, Wi, Wit1,
- S a -
s Pi—2,Pi—1,Pi; Pi+1, Pi+2

........................

2 FSQ? :;)urj FLEJQ? Z;S } ) FLEJQJD Z%E} r name of the applied schema
i |comps<>| i ilcomps <> COMPS <> d distance between the head words of the daughters
............................ \ \ % whether a comma exists between daughters
| \ ¢ and/or inside daughter phrases
has'VBZ come/VBN sp  number of words dominated by the phrase
¢ = <spring. NN, |HEaD o sy  symbol of the phrasal category
te™ <SPring, NN, |2 ps < |~ hw  surface form of the head word

hp  part-of-speech of the head word
hl lexical entry assigned to the head word

Figure 2: Example of features. w;  i-th word
Di part-of-speech fow;
li lexical entry forw;

Ninomiya et al. (2006)’'s model 1
(Ninomiya etal. (2006)'s model 1) Table 1: Feature templates.

n

Pmodell (T|W) = Hp(ll ‘W, ’L)7

=1
al. (2006)’'s model 1 and 3. The features used in our
model and their model are combinations of the fea-
ture templates listed in Table 1 and Table 2. The
feature templategy;,,qr, and fu,qry are defined for
'constituents at binary and unary branchgs,: is a
feature template set for the root nodes of parse trees.
f1ex is a feature template set for calculating the uni-
gram reference distribution and is used in Miyao and
1 Tsujii (2005)'s model. f,p1q4 is a feature template
Zo P <Z ’\“f“(li’w’i)> set for calculating the probabilities of selecting lex-

“ ical entries in Ninomiya et al. (2006)’s model 1 and

L 3. The feature templates ify, ., are word trigrams

Zu =) exp (Z Aufull ’W”)> ; and POS 5-grams. An example of features applied

. ' , , . to the parse tree for the senten&pting has conie
whereZ,, is the sum over all possible lexical entrieSs <hown in Figure 2

for the wordw;.

The second model is a hybrid model of supertag-
ging and the probabilistic HPSG. The probabilitie%
are given as the product of Ninomiya et al. (2006)’s
model 1 and the probabilistic HPSG.

wherel; is a lexical entry assigned to wotg in T
andp(l;|w, 1) is the probability of selecting lexical
entryl; for w;.

The probabilities of lexical entry selection
p(l;|w, 1), are defined as follows:

(Probabilistic model of lexical entry selection)

p(lilw, i) =

Probabilistic HPSG with an n-gram
reference distribution

(Ninomiya et al. (2006)’s model 3) In this section, we propose a probabilistic model
with an n-gram reference distribution for probabilis-
tic HPSG parsing. This is an extension of Miyao
and Tsujii (2005)’s model by replacing the unigram
In the experiments, we compared our model witheference distribution with an n-gram reference dis-
Miyao and Tsujii (2005)’s model and Ninomiya ettribution. Our model is formally defined as follows:

Pmodel3 (T|W) = Pmodell (T‘W)phPSQ (T‘W)
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combinations of feature templates finary model and their model, the parameters for lexical en-

(r,d, c, hw, hp, hl), (r,d, c, hw, hp), (r,d, ¢, hw, hl), . _ .

(r,d, c, sy, hw), (r, ¢, sp, hw, hp, hl), (r, ¢, sp, hw, hp), tries (= the parameters pf,,oqei1 (T|W)) are first es-

(r, ¢, sp, hw, W), (r, c, sp, sy, hw), (r,d, ¢, hp, hi}, timated from the word and POS sequences indepen-
(r.d,c, hp), (r,d, c, hl), (r,d, c, sy), (r, c, sp, hp, hl), dently of the parameters for phrase structures. That
<T7 c7 Sp7 hp>7 <T, C7 Sp7 hl>7 <T7 c, Sp? Sy>

is, the estimated parameters for lexical entries are
combinations of feature templates fiifnary the same in both models, and hence the probabilities
(s hw, hp, hl), (r, haw, hp), (r, hw, hl), (r, sy, hw), Of Pmoder1 (T|w) of both models are the same. Note
(r, hp, KLY, (r, hp), (r, hl), (r, sy) ; . ;

that the parameters for lexical entries will never be
combinations of feature templates ffo: updated after this estimation stage; i.e., the parame-
(hw, hp, hl), (hw, hp), (hw, hl), ters for lexical entries are not estimated in the same
(sy, hw), (hp, hl), (hp), (hl), (sy) . .

time with the parameters for phrase structures. The

combinations of feature templates f0r. difference of our model and their model is the esti-
(wi, pi, L), {pis ) mation of parameters for phrase structures. In our
combinations of feature templates iz, model, given the probabilities for lexical entries, the
(wi1), (wi), (wis1), parameters for phrase structures are estimated so as
213;_21>,7$§7<11>@%2;§1>)f+1>7<pi+2>’<pi+3>' to maximize the entire probabilistic model (= the
(Di—1, w3, (pi, wi), (Pit1, ws), product of the probabilities for lexical entries and
(Pis Pi+1, Dit2, Pita)s (Pi-2,Pi-1, i), the probabilities for phrase structures) in the train-
éﬁiiﬁfﬁ@ff>+?pp;i>l> (Pit1, Pita) ing corpus. In their model, the parameters for phrase

structures are trained without using the probabili-

Table 2: Combinations of feature templates.  tjes for lexical entries, i.e., the parameters for phrase
structures are estimated so as to maximize the prob-
abilities for phrase structures only. That is, the pa-

rameters for lexical entries and the parameters for
Prref(T|wW) = phrase structures are trained independently in their
> model.

(Probabilistic HPSG with an n-gram reference distribution)

Miyao and Tsujii (2005)’s model also uses a ref-

1
mpmodell (T|W) exp (Z Aufu(T’)
erence distribution, but with word and POS unigram

u

Znref = features, as is explained in the previous section. The
) ) only difference between our model and Miyao and
> pmodert(T'[w)exp | > Xufu(T') |- Tsuijii (2005)'s model is that our model uses se-
T’ u

guences of word and POS tags as n-gram features
for selecting lexical entries in the same way as su-
pertagging does.
In our model, Ninomiya et al. (2006)'s model 1
is used as a reference distribution. The probabilié Experiments

tic model of lexical entry selection and its feature

templates are the same as defined in Ninomiya et §¢ €valuated the speed and accuracy of parsing
(2006)'s model 1. by using Enju 2.1, the HPSG grammar for English

The formula of our model is the same as Ni{Miyao etal., 2005; Miyao and Tsujii, 2005). The

nomiya et al. (2006)'s model 3. But, their modell_eXicon of the grammar was extracted from Sec-

is not a probabilistic model with a reference distrilons 02-21 of the Penn Treebank (Marcus et al,

bution. Both our model and their model consist of-224) (39,832 sentences). The graﬁrg\mar consisted
the probabilities for lexical entries @oqer1 (T]w)) of 3,797 lexical entries for 10,536 wordsT he prob-

and the probabilities for phrase structures (= the rest *An HPSG treebank is automatically generated from the

of each formula). The only difference between oupPenn Treebank. Those lexical entries were generated by apply-
. . . Ing lexical rules to observed lexical entries in the HPSG tree-

model and their model is the way of how to traingan (Nakanishi et al., 2004). The lexicon, however, included

model parameters for phrase structures. In both outany lexical entries that do not appear in the HPSG treebank.
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No. of tested sentences  Total No. of sentences  Avg. length of tested sentences
Section 23 2,299 (100.00%) 2,299 22.2
Section 24 1,245 (99.84%) 1,247 23.0

Table 3: Statistics of the Penn Treebank.

Section 23 (Gold POSs)
LP LR LF upP UR UF Avg. time

) () %) () (%) (%) (ms)
Miyao and Tsujii (2005)'s mode] 87.26 8650 86.88 90.73 89.93 90.33 604
Ninomiya et al. (2006)'s model 1 87.23 86.47 86.85 90.05 89.27 89.66 129
Ninomiya et al. (2006)'s model 3 89.48 88.58 89.02 9233 91.40 91.86 152
our model T 89.78 89.28 8953 9258 92.07 9232 234
our model 2 90.03 89.60 89.82 92.82 92.37 92.60 1379

Section 23 (POS tagger)
LP LR LF upP UR UF Avg. time

%) ) (%) (%) (%) (%) (ms)
Miyao and Tsujii (2005)’'s model 84.96 84.25 84.60 89.55 88.80 89.17 674
Ninomiya et al. (2006)’'s model 1 85.00 84.01 8450 88.85 87.82 88.33 154
Ninomiya et al. (2006)’'s model 3 87.35 86.29 86.82 91.24 90.13 90.68 183
Matsuzaki et al. (2007)’'s model | 86.93 86.47 86.70 - - - 30
our model 1 87.28 87.05 87.17 91.62 91.38 91.50 260
our model 2 87.56 87.46 87.51 91.88 91.77 91.82 1821

Table 4: Experimental results for Section 23.

abilistic models were trained using the same portioand Curran, 2004b; Miyao and Tsuijii, 2005). The
of the treebank. We used beam thresholding, globaekperiments were conducted on an AMD Opteron
thresholding (Goodman, 1997), preserved iterativeerver with a 2.4-GHz CPU. Section 22 of the Tree-
parsing (Ninomiya et al., 2005) and quick checlbank was used as the development set, and the per-
(Malouf et al., 2000). formance was evaluated using sentences: df00

We measured the accuracy of the predicata¥ords in Section 23. The performance of each
argument relations output of the parser. Amodel was analyzed using the sentences in Section
predicate-argument relation is defined as a tupi# of < 100 words. Table 3 details the numbers
(o, wy,, a,w,), Whereo is the predicate type (e.g., and average lengths of the tested sentenceskiio
adjective, intransitive verb)y;, is the head word of Words in Sections 23 and 24, and the total numbers
the predicateq is the argument labeMODARG, Of sentences in Sections 23 and 24.

ARG1, ..., ARG4), andw, is the head word of  The parsing performance for Section 23 is shown
the argument. Labeled precision (LP)/labeled ren Table 4. The upper half of the table shows the per-
call (LR) is the ratio of tuples correctly identified formance using the correct POSs in the Penn Tree-
by the parsér Unlabeled precision (UP)/unlabeledbank, and the lower half shows the performance us-
recall (UR) is the ratio of tuples without the pred-ing the POSs given by a POS tagger (Tsuruoka and
icate type and the argument label. This evaluatiohsujii, 2005). LF and UF in the figure are labeled
scheme was the same as used in previous evaluatidnscore and unlabeled F-score. F-score is the har-
of lexicalized grammars (Hockenmaier, 2003; Clarknonic mean of precision and recall. We evaluated
our model in two settings. One is implemented with
The HPSG treebank is used for training the probabilistic moded narrow beam width (‘our model 1’ in the figure),

for lexical entry selection, and hence, those lexical entries th%[nd the other is implemented with a wider beam
do not appear in the treebank are rarely selected by the proba- ) . ! )
bilistic model. The ‘effective’ tag set size, therefore, is aroundVidth (‘our model 2’ in the figuré) ‘our model
1,361, the number of lexical entries without those never-seen
lexical entries. 3The beam thresholding parameters for ‘our model 1’ are
2When parsing fails, precision and recall are evaluated, ako = 10, Ao = 5, a)ast = 30,80 = 5.0, A8 = 2.5, Bj55t =
though nothing is output by the parser; i.e., recall decreasd$.0,50 = 10,Ad = 5,535t = 30, ko = 5.0,Ar =
greatly. 2.5, K|agt = 15.0, 6o = 6.0, A0 = 3.5, andfjz5t = 20.0.
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0 100 200 300 400 500 600 700 800 900
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Figure 3: F-score versus average parsing time for sentences in Sectiorz2dD6fwords.

1’ was introduced to measure the performance withosed a technique for efficient HPSG parsing with
balanced F-score and speed, which we think appreupertagging and CFG filtering. Their results with
priate for practical use. ‘our model 2’ was intro-the same grammar and servers are also listed in the
duced to measure how high the precision and réewer half of Table 4. They achieved drastic im-
call could reach by sacrificing speed. Our modprovement in efficiency. Their parser ran around 6
els increased the parsing accuracy. ‘our model limes faster than Ninomiya et al. (2006)'s model 3,
was around 2.6 times faster and had around 2.@btimes faster than ‘our model 1" and 60 times faster
points higher F-score than Miyao and Tsujii (2005)'shan ‘our model 2. Instead, our models achieved
model. ‘our model 2’ was around 2.3 times slowebetter accuracy. ‘our model 1’ had around 0.5 higher
but had around 2.9 points higher F-score than MiyaB-score, and ‘our model 2’ had around 0.8 points
and Tsujii (2005)’'s model. We must admit that thehigher F-score. Their efficiency is mainly due to
difference between our models and Ninomiya et aklimination of ungrammatical lexical entries by the
(2006)'s model 3 was not as great as the differ€FG filtering. They first parse a sentence with a
ence from Miyao and Tsujii (2005)’s model, but ‘ourCFG grammar compiled from an HPSG grammatr,
model 1’ achieved 0.56 points higher F-score, andnd then eliminate lexical entries that are not in the
‘our model 2’ achieved 0.8 points higher F-scoreparsed CFG trees. Obviously, this technique can
When the automatic POS tagger was introduced, Biso be applied to the HPSG parsing of our mod-
score dropped by around 2.4 points for all models.els. We think that efficiency of HPSG parsing with
We also compared our model with Matsuzaki eour models will be drastically improved by applying
al. (2007)'s model. Matsuzaki et al. (2007) pro-this technique.
The termss and§ are the thresholds of the number of phrasal The average parsmg t'lme and labeled F-score
signs in the chart cell and the beam width for signs in the chaUrves of each probabilistic model for the sentences
cell. The termsxy and 3 are the thresholds of the number andin Section 24 of< 100 words are graphed in Fig-
S o e et Wil o yre 3. The graph clearly shows the difference of
0 are the initial values. The parser iterates parsing until it su@Ur model and other models. As seen in the graph,
ceeds to generate a parse tree. The parameters increase for gsgh model achieved higher F-score than other model
iteration by the terms prefixed h¥, and parsing finishes when H/ghen beam threshold was widen. This implies that

the parameters reach the terms with suffixes last. Details of t -
parameters are written in (Ninomiya et al., 2005). The bear@ther models were probably difficult to reach the F-

thresholding paﬂrameters fOAréOUf mOdegz' are = 18, A(;Oé = score of ‘our model 1’ and ‘our model 2’ for Section

6, gt = 42,00 = 9.0,A8 = 3.0, 85t = 21.0,00 = . .

18, 80 = 6, dnst = 42, r0 = 9.0, Ak = 3.0, rjqe = 21.0. 23 €ven ifwe changed the beam thresholding param-
In ‘our model 2', the global thresholding was not used. eters. However, F-score of our model dropped eas-
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ily when we narrow down the beam threshold, compoints higher F-score than Miyao and Tsujii (2005)’s
pared to other models. We think that this is mainlynodel and around 0.56 points higher F-score than
due to its bad implementation of parser interfaceghe Ninomiya et al. (2006)’s model 3. When we sac-
The n-gram reference distribution is incorporatedifice parsing speed, our model achieved around 2.9
into the kernel of the parser, but the n-gram feapoints higher F-score than Miyao and Tsuijii (2005)’s
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