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Abstract

Latent Semantic Analysis has only recently
been applied to textual entailment recogni-
tion. However, these efforts have suffered
from inadequate bag of words vector repre-
sentations. Our prototype implementation
for the Third Recognising Textual Entail-
ment Challenge (RTE-3) improves the ap-
proach by applying it to vector represen-
tations that contain semi-structured repre-
sentations of words. It uses variable size
n-grams of word stems to model indepen-
dently verbs, subjects and objects displayed
in textual statements. The system perfor-
mance shows positive results and provides
insights about how to improve them further.

1 Introduction

The Third Recognising Textual Entailment Chal-
lenge (RTE-3) task consists in developing a system
for automatically determining whether or not a hy-
pothesis (H) can be inferred from a text (T), which
could be up to a paragraph long.

Our entry to the RTE-3 challenge is a system
that takes advantage of Latent Semantic Analysis
(LSA) (Landauer and Dumais, 1997). This numer-
ical method for reducing noise generated by word
choices within texts is extensively used for docu-
ment indexing and word sense disambiguation. Re-
cently, there have also been efforts to use techniques
from LSA to recognise textual entailment (Clarke,
2006; de Marnefte et al., 2006). However, we argue
that these efforts (like most LSA approaches in the
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past) suffer from an inadequate vector representation
for textual contexts as bags of words. In contrast,
we have applied LSA to vector representations of
semi-structured text. Our representation takes into
account the grammatical role (i.e. subject, verb or
object) a word occurs in.

Within this system report, we describe and dis-
cuss our methodology in section 2, our current im-
plementation in section 3, and system results in sec-
tion 4. We conclude in section 5 with a discussion
of the results obtained and with the presentation of
possible steps to improve our system’s performance.

2 Methodology for detecting Textual
Entailment

2.1 Textual entailment formalisation

Our approach addresses the problem of the semantic
gap that exists between low level linguistic entities
(words) and concepts. Concepts can be described
by means of predicate-argument structures or by a
set of alternative natural language realisations. In
this work we use terminology co-occurrence infor-
mation to identify when different spans of text have
common semantic content even if they do not share
vocabulary. To achieve this, we use variable size n-
grams to independently model subject, verb and ob-
ject, and capture semantics derived from grammati-
cal structure. In order to detect textual entailment we
measure the semantic similarity between n-grams in
each T-H pair.

2.2 Using n-grams to align SVOs

To align subjects, verbs and objects within H and T,
we build the set of all n-grams for T, and do the same
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for H. Section 3.5 describes this process in more de-
tail.

2.3 Deriving word senses with Latent Semantic
Analysis

Our approach is based on the assumption that a
word sense can be derived from the textual contexts
in which that words occurs. This assumption was
formalised in the Distributional Hypothesis (Harris,
1954).

We implemented a vector space model (Salton et
al., 1975) to capture word semantics from linguis-
tic (i.e. grammatical role) and contextual (i.e. fre-
quency) information about each word. To avoid high
matrix sparsity our vector space model uses second
order co-occurrence (Widdows, 2004, p. 174).

We assumed that the corpus we generated the vec-
tor space model from has a probabilistic word distri-
bution that is characterised by a number of seman-
tic dimensions. The LSA literature seems to agree
that optimal number of dimensions is somewhere
between two hundred and one thousand depending
on corpus and domain. As specified by LSA we ap-
plied Singular Value Decomposition (SVD) (Berry,
1992) to identify the characteristic semantic dimen-
sions.

The resulting model is a lower dimensional pro-
jection of the original model that captures indi-
rect associations between the vectors in the original
model. SVD reduces the noise in word categori-
sations by producing the best approximation to the
original vector space model.

3 Implementation

3.1 Development data set

The development data set consists of eight hundred
T-H pairs, half of them positive. By positive pair
we mean a T-H pair in which T entails H. All other
pairs we call negative. Each T-H pair belongs to a
particular sub-task. Those sub-tasks are Information
Extraction (IE), Information Retrieval (IR), Ques-
tion Answering (QA) and Summarisation (SUM). In
the current prototype, we ignored annotations about
sub-tasks.
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3.2 Corpus analysis
3.2.1 Corpora used

The only knowledge source we used in our imple-
mentation was a parsed newswire corpus (Reuters
News Corpus) (Lewis et al., 2004). To derive con-
textual information about the meaning of words con-
stituting the SVOs, we analysed the Reuters corpus
as explained below.

3.2.2 SVO triple extraction

For parsing the corpus, we used Minipar' because
of its speed and because its simple dependency triple
output format (-t option) contains word stems and
the grammatical relations between them. A simple
AWK script was used to convert the parse results into
Prolog facts, one file for each sentence. A straight-
forward Prolog program then identified SVOs in
each of these fact files, appending them to one big
structured text file.

Our algorithm currently recognises intransitive,
transitive, ditransitive, and predicative clauses. In-
transitive clauses are encoded as SVOs with an
empty object slot. Transitive clauses result in a fully
instantiated SVOs. Ditransitive clauses are encoded
as two different SVOs: the first containing subject,
verb and direct object; the second triple containing
the subject again, an empty verb slot, and the indi-
rect object. Predicatives (e.g. “somebody is some-
thing”) are encoded just like transitive clauses.

In this first prototype, we only used one word
(which could be a multi-word expression) for sub-
ject, verb and object slot respectively. We realise
that this approach ignores much information, but
given a large corpus, it might not be detrimental to
be selective.

3.2.3 SVO Stemming and labeling

To reduce the dimensionality of our vector space
model we stem the SVOs using Snowball?>. Then,
we calculate how many times stems co-occur as sub-
ject, verb or object with another stem within the
same SVO instance.

"Minipar can be downloaded from http://www.cs.ualberta.
ca/~lindek/minipar.htm. It is based on Principar, which is de-
scribed in Lin (1994).

2Snowball is freely available from http://snowball.tartarus.
org/. The English version is based on the original Porter Stem-
mer (Porter, 1980).



To keep track of the grammatical role (i.e. subject,
verb, object) of the words we stem them and label
the stems with the corresponding role.

3.3 Building vector spaces to represent stem
semantics

From the corpus, we built a model (S,V, O) of the
English (news) language consisting of three matri-
ces: S for subjects, V for verbs, and O for objects.

We built the three stem-to-stem matrices from
labeled stem co-occurrences within the extracted
triples. The entries to the matrices are the frequen-
cies of the co-occurrence of each labeled stem with
itself or with another labeled stem. In our current
prototype, due to technical restrictions explained in
Section 3.4, each matrix has 1000 rows and 5000
columns.

Columns of matrix S contain entries for stems la-
beled as subject, columns of matrix ) contain en-
tries for stems labeled as verb, and columns of ma-
trix O contain entries for stems labeled as object.
The frequency entries of each matrix correspond to
the set of identically labeled stems with the highest
frequency.

Rows of the three matrices contain entries corre-
sponding to the same set of labeled stems. Those la-
beled stems are the ones with the highest frequency
in the set of all labeled stems. Of these, 347 stems
are labeled as subject, 356 are labeled as verb, and
297 are labeled as object. Each row entry is the fre-
quency of co-occurrence of two labeled stems within
the same triple.

Finally, each column entry is divided by the num-
ber of times the labeled stem associated with that
column occurs within all triples.

3.4 Calculating the singular value
decomposition

We calculated the Singular Value Decompositions
(SVDs) for S, V and O. Each SVD of a matrix A is
defined as a product of three matrices:

A=Ux 8 xV’ (1)

SVD is a standard matrix operation which is sup-
ported by many programming libraries and com-
puter algebra applications. The problem is that only
very few can handle the large matrices required for
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real-world LSA. It is easy to see that the memory re-
quired for representing a full matrix of 64 bit float-
ing point values can easily exceed what current hard-
ware offers. Fortunately, our matrices are sparse, so
a library with sparse matrix support should be able
to cope. Unfortunately, these are hard to find out-
side the Fortran world. We failed to find any Java li-
brary that can perform SVD on sparse matrices.> We
finally decided to use SVDLIBC, a modernised ver-
sion of SVDPACKC using only the LAS2 algorithm.
In pre-tests with a matrix derived from a different
text corpus (18371 rows x 3469 columns, density
0.73%), it completed the SVD task within ten min-
utes on typical current hardware. However, when
we try to use it for this task on a matrix S of dimen-
sion 5000 x 5000 (density 1.4%), SVDLIBC did not
terminate*. In theory, there is a Singular Value De-
composition for every given matrix, so we assume
this is an implementation flaw in either SVDLIBC or
GCC. With no time left to try Fortran alternatives,
we resorted to reducing the size of our three matri-
ces to 1000 x 5000, thus losing much information
in our language model.

3.5 Looking for evidence of H in T using
variable size n-grams

3.5.1 Building variable size n-grams

Our Minipar triple extraction algorithm is not able
to handle SVOs that are embedded within other
SVOs (as e.g. in “Our children play a new game that
involves three teams competing for a ball.”). There-
fore, in order to determine if SVOs displayed in H
are semantically similar to any of those displayed in
T, we generate all n-grams of all lengths for each T
and H: one set for subjects, one for verbs and another
one for objects.

Example: “The boy played tennis.”

Derived n-grams: the; the boy; the boy played; the
boy played tennis; boy; boy played; boy played

3The popular JAMA library and the related Jampack library
have no sparse matrix support at all. MTJ and Colt do support
sparse matrices but cannot perform SVD on them without first
converting them to full matrices.

“We tried various hardware / operating system / compiler
combinations. On Linux systems, SVDLIBC would abort after
about 15 minutes with an error message “imtqlb failed to con-
verge”. On Solaris and Mac OS X systems, the process would
not terminate within several days.



tennis; played; played tennis; tennis.

We use n-grams to model subjects, verbs and ob-
jects of SVOs within T and H.

3.5.2 How to compare n-grams

We generate three vector representations for each
n-gram. To do this, we add up columns from the
Reuters Corpus derived matrices. To build the first
vector representation, we use the $ matrix, to build
the second vector we use the }V matrix, and to build
the third vector we use the O matrix. Each of
the three representations is the result of adding the
columns corresponding to each stem within the n-
gram.

To calculate the semantic similarity between n-
grams, we fold the three vector representations of
each n-gram into one of the dimensionally reduced
matrices Sapg, V200 or O209. Vector representation
originating from the S matrix are folded into Sagp.
We proceed analogously for vector representations
originating from Vg and Oop9. We apply equation
2 to fold vectors from G” where r € {S,V,0}. G
is a matrix which consists of all the vector represen-
tations of all the n-grams modeling T or H. S5, and
Ujgo are SVD results reduced to 200 dimensions.

G" % Uggo % (S50) " = Ghoo

2

For each T-H pair we calculate the dot product
between the G matrices for H and T as expressed in
equation 3

text ~r hypothesis r!
G X G
200

200 — o" (3)

The resulting matrix O" contains the dot product
similarity between all pairs of n-grams within the
same set. Finally, for each T-H pair we obtain three
similarity values s, v, o by selecting the entry of O"
with the highest value.

3.5.3 Scoring

Now we have calculated almost everything we
need to venture a guess about textual entailment.

For each T-H pair, we have three scores s, v, o
for for subject, verb and object slot respectively. The
remaining task is to combine them in a meaningful
way in order to make a decision. This requires some
amount of training which in the current prototype
is as simple as computing six average values: 5,
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E 0 o
positive | 0.244 5.05-10"7 0.323
negative | 0.196 4.76 - 107 0.277

Table 1: Values computed for 5, U, 0p, 5p, Un, O
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Figure 1: Subject similarities s = max O® for all
H-T pairs

Up, Op are the average scores of subject, verb and
object slots over those T-H pairs for which textual
entailment is known to hold. Conversely, 5,,, U, O,
are the averages for those pairs that do not stand in
a textual entailment relation. The (rounded) values
were determined are shown in table 1.

Note that the average values for non-entailment
are always lower than the average values for entail-
ment, which indicates that our system indeed tends
to discriminate correctly between these cases.

The very low values for the verb similarities (fig-
ure 3) compared to subject similarities (figure 1) and
object similarities (figure 2) remind us that before
we can combine slot scores, they should be scaled
to a comparable level. This is achieved by divid-
ing each slot score by its corresponding average. Ig-
noring the difference between positive and negative
pairs for a moment, the basic idea of our scoring al-
gorithm is to use the following threshold:
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Figure 2: Object similarities 0 = max O© for all
H-T pairs
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Figure 3: Verb similarities v = max OV for all H-T

pairs

At this point we observed that scaling the verb
similarities so much seemed to make results worse.
It seems to be necessary to introduce weights:

&)

Without loss of generality, we may assume ¢ = 1:

S v o]
o-+¢-—tw-—=0+¢+w
S v o]

(6)

The complete scoring formula with both positive
and negative scores is shown below. We assumed
that the weights o and w are the same in the positive

S v ]
c-—+-Fw-=0+1+w
S v o

and in the negative case, so 0 = 0, = 0, and w =
Wp = Wp.
s v 0 s 0
o—+—Fw—Fo—+—+tw—=2(0+1+w)
5, Uy Op Sp Uy On
(N

At this point, some machine learning over the de-
velopment data set should be performed in order to
determine optimal values for o and w. For lack of
time, we simply performed a dozen or so of test runs
and finally set o = w = 3.

Our entailment threshold is thus simplified:

S v o S v ]
3—+ —4+3—4+3—+ —+3—=¢q
5 Uy 0p Sp Uy Oy

®)

If ¢ > 14, our prototype predicts textual entail-
ment. Otherwise, it predicts non-entailment.

4 Results

Using the scoring function described in section
3.5.3, our system achieved an overall accuracy of
0.5638 on the development dataset. Table 2 shows
results for the system run on the test dataset. On this
unseen dataset, the overall accuracy decreased only

117

| all | IE IR QA SUM
accuracy | 0.5500 | 0.4950 0.5750 0.5550 0.5750
av.prec. | 0.5514 | 04929 0.5108 0.5842 0.6104

Table 2: Results on the test set

slightly to 0.5500. We take this as a strong indica-
tion that the thresholds we derived from the develop-
ment dataset work well on other comparable input.
Results show that our system has performed signifi-
cantly above the 0.5 baseline that would result from
a random decision.

As shown in section 3.5.3, the values in the three
similarity plots (see figures 1, 2 and 3) obtained with
the development set seem to be scattered around the
means. Therefore it seems that the threshold values
used to the decide whether or not T entails H do not
fully reflect the semantics underlying textual entail-
ment.

The nature of the SVD calculations do not allow
us directly to observe the performance of the vari-
able size n-grams in independently aligning subject,
verb and objects from T and from H. Nevertheless
we can infer from figures 1, 2 and 3 that many of
the values shown seem to be repeated. These value
configurations can be observed in the three horizon-
tal lines. These lines better visible in figures 2 and
3 are the effect of (a) many empty vectors resulting
from the rather low number of stems represented by
columns in our Reuters-derived matrices S, V and
O, and (b) the effect of folding the n-gram vector
representations into reduced matrices with two hun-
dred dimensions.

5 Conclusion

Even though our system was developed from scratch
in a very short period of time, it has already out-
performed other LSA-based approaches to recognis-
ing textual entailment (Clarke, 2006), showing that
it is both feasible and desirable to move away from
a bag-of-words semantic representation to a semi-
structured (here, SVO) semantic representation even
when using LSA techniques.

Our system displays several shortcomings and
limitations owing to its immature implementation
state. These will be addressed in future work, and
we are confident that without changing its theoret-
ical basis, this will improve performance dramati-



cally. Envisaged changes include:
e using larger matrices as input to SVD

e using the complete Reuters corpus, and adding
Wikinews texts

e performing corpus look-up for unknown words
e extracting larger chunks from S and O slots

e using advanced data analysis and machine
learning techniques to improve our scoring
function

In addition, our approach currently does not take
into consideration the directionality of the entail-
ment relationship between the two text fragments. In
cases where T1 entails T2 but T2 does not entail T1,
our approach will treat (T1, T2) and (T2, T1) as the
same pair. We expect to correct this misrepresenta-
tion by evaluating the degree of specificity of words
composing the SVOs in asymmetric entailment rela-
tionships where the first text fragment is more gen-
eral than the second one. For that purpose, one can
use term frequencies as an indicator of specificity
(Spirck Jones, 1972).

Obviously, system performance could be further
improved by taking a hybrid approach as e.g. in de
Marneffe et al. (2006), but we find it more instruc-
tive to take our pure LSA approach to its limits first.
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